
LINEAR HYPOTHESIS TESTING USING DLR METRIC

ALIREZA ARABPOUR1∗ AND MAHDIEH MOZAFARI2

1 DEPARTMENT OF STATISTICS, FACULTY OF MATHEMATICS AND

COMPUTER, SHAHID BAHONAR UNIVERSITY OF KERMAN, KERMAN,

IRAN

2 DEPARTMENT OF STATISTICS, HIGHER EDUCATION COMPLEX OF

BAM, KERMAN, IRAN

E-MAILS: ARABPOUR@UK.AC.IR, MOZAFARI@BAM.AC.IR

(Received: 12 Augest 2015, Accepted: 24 May 2016)

Abstract. Several practical problems of hypotheses testing can be under a

general linear model analysis of variance which would be examined. In analysis

of variance, when the response random variable Y , has linear relationship with

several random variables X, another important model as analysis of covariance

can be used. In this paper, assuming that Y is fuzzy and using DLR metric,

a method for testing the linear hypothesis has been proposed based on fuzzy

techniques. In fact, in this method a set of confidence intervals has been used

for creating fuzzy test statistic and fuzzy critical values. In addition, the pro-

posed method has been mentioned for the reforming of the hypothesis testing

when there is an uncertaity in accepting or rejecting hypotheses. Finally, by

presenting two examples this method is illustrated. The result are illustrated

by the means of some case studies.
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1. Introduction and Background

Several practical problems of hypotheses testing can be under a general linear

model analysis of variance which would be examined. Analysis of variance is a

common and popular method used in the analysis of experimental designs. Many

authors have studied this topic from various aspects for fuzzy environments. For

instance, in [1] one-way and two-way analysis of variance using a set of confidence

intervals for the variance parameter has been carried out. In [12] analysis of variance

for fuzzy data is discussed by considering the α-cuts of fuzzy data via introducing

the pessimistic and optimistic degrees and solving an optimization problem. One-

way analysis of variance is presented in [8] to a case where observed data are fuzzy

observations.

In analysis of variance, when the response random variable Y , has linear rela-

tionship with several random variables x, another important model as analysis of

covariance can be used. Sometimes, in one-way analysis of covariance, the observed

value of test statistic is close to the quantiles of statistical distributions and there

is uncertainty with regard to accepting the null hypothesis H0. In this paper an

approach is presented to deal with this problem.

Buckley [2] introduced a method for estimating the parameters in statistical mod-

els. His method produces a fuzzy estimator using a set of confidence intervals for the

required parameter. Using this estimator, a fuzzy test statistic and, subsequently,

fuzzy critical values are produced. This fuzzy test statistic is used to perform the

statistical hypotheses test. This issue has been studied by several other authors in

different ways. In [3] an explicit and unique membership function has been derived

for fuzzy estimators. In [10] Buckley’s method is extended to the case where the

statistical hypotheses are fuzzy. In [4] it is shown that when the crisp test statis-

tic distribution is not symmetric, Buckley’s method results in producing a fuzzy

estimation where the membership degree for the point estimation of the required

parameter never equals one. A solution to overcome this weakness is provided in [4]

and another solution is presented in [1]. In [5] analysis of covariance is discussed by

considering solution presented in [4]. It has been shown that this solution reduces

to the Buckley’s method when crisp test statistic distribution is symmetric. In this

paper, by using [5], the data are fuzzy. It has been shown that this solution reduces

to the Buckley’s method when crisp test statistic distribution is symmetric. We
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having no interaction between X and treatment and this paper is a general case of

[5].

The rest of this paper is organized as follows. In section 2, the necessary concepts

of fuzzy sets theory are discussed and some basic concepts of LR fuzzy number, DLR

metric are described. In section 3, a brief review of one-way analysis of covariance is

presented. In section 4, fuzzy test statistics and fuzzy critical values are produced

and based on them decision rules are presented. In section 5, two examples are

provided to illustrate the method. Finally, a conclusion is provided in section 6.

2. Preliminaries

In this section, we study some concepts of LR fuzzy numbers, DLR metric and

Buckley’s method.

2.1. LR Fuzzy Numbers. A particular class of fuzzy sets very useful in practice

is determined by 3 values: the center, the left spread and the right spread. This

type of fuzzy data is the LR fuzzy number.

Definition 2.1. An LR fuzzy number Ã =
(
Am, Al, Ar

)
is characterized by the

following membership function

µÃ (x) =

{
L
(
Am−x

Al

)
x ≤ Am

R
(
x−Am

Ar

)
x ≥ Am,

whereAm ∈ R is the center, Al ∈ R+ and Ar ∈ R+ are, respectively, the left and

the right spread and, L and R are functions verifying the properties of the class of

fuzzy sets Fc(R), such that L(0) = R(0) = 1 and L(x) = R(x) = 0, ∀x ∈ R\[0, 1].
If Al = Ar the fuzzy number Ã is referred to as symmetrical. The most used LR

fuzzy numbers are the triangular ones, whose membership function is

µÃ (x) =


1− Am − x

Al
Am −Al ≤ x ≤ Am

1− x−Am

Ar
Am ≤ x ≤ Am +Ar,

Ãα = [Am − L−1(Al), Am +R−1(Al)].
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If Ã =
(
Am, Al, Ar

)
and B̃ =

(
Bm, Bl, Br

)
be LR fuzzy numbers, these operations

can be alternatively determined by considering the fuzzy set Ã+ B̃, we have

Ã+ B̃ = ((A+B)m, (A+B)l, (A+B)r),
(A+B)m = Am +Bm

(A+B)l = Al +Bl

(A+B)r = Ar +Br,

and ∀γ ∈ R, γÃ = ((γ(A))m, (γ(A))l, (γ(A))r), is the fuzzy set so that
(γ(A))m = γAm

(γ(A))l = γAl

(γ(A))r = γAr γ > 0,
(γ(A))m = γAm

(γ(A))l = γAr

(γ(A))r = γAl γ < 0.

2.2. DLRMetric. we define a distance between fuzzy numbers which will be used

later.

Definition 2.2. In [12] have defined a distanceDLR between two LR fuzzy numbers

Ã =
(
Am, Al, Ar

)
and B̃ =

(
Bm, Bl, Br

)
∈ FLR as follows

D2
LR(Ã, B̃) = (Am −Bm)

2
+
[(
Am − λAl

)
−
(
Bm − λBl

)]2
+ [(Am + ρAr)− (Bm + ρBr)]

2

= 3(Am −Bm)
2
+ λ2

(
Al −Bl

)2
+ ρ2(Ar −Br)

2

− 2λ (Am −Bm)
(
Al −Bl

)
+ 2ρ (Am −Bm) (Ar −Br) ,

where λ =
1∫
0

L−1 (ω) dω and ρ =
1∫
0

R−1 (ω) dω represent the influence of the shape

of the membership function on the distance. In particular, λ (or ρ) less than 0.5

represents an imprecision decreasing rapidly; λ (or ρ) equal to 0.5 represents an im-

precision decreasing linearly and λ (or ρ) greater than 0.5 represents an imprecision

decreasing slowly.

Proposition 2.1. Let Ã =
(
Am, Al, Ar

)
, B̃ =

(
Bm, Bl, Br

)
and be LR fuzzy

numbers, and γ > 0. Then

1. D2
LR(Ã, B̃) = D2

LR(B̃, Ã),

2. D2
LR(γÃ, γB̃) = γ2D2

LR(Ã, B̃).
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Proof. By means of define of DLR metric, it is easy to prove this proposition.

1. We have
D2

LR(Ã, B̃) = (Am −Bm)
2
+

[(
Am − λAl

)
−
(
Bm − λBl

)]2
+ [(Am + ρAr)− (Bm + ρBr)]

2

= (−(Bm −Am))
2
+

[
−
(
(Bm − λBl

)
−

(
Am − λAl)

)]2
+ [−((Bm + ρBr)− (Am + ρAr))]

2
= D2

LR(B̃, Ã),

2. Also, for γ > 0, we have

D2
LR(γÃ, γB̃) = ((γA)m − (γB)m)

2
+
[(
(γA)m − λ(γA)l

)
−
(
(γB)m − λ(γB)l

)]2
+ [((γA)m + ρ(γA)r)− ((γB)m + ρ(γB)r)]

2

= (γ(Am −Bm))
2
+
[
γ
(
(Am − λAl

)
−
(
Bm − λBl)

)]2
+ [γ((Am + ρAr)− (Bm + ρBr))]

2
= γ2D2

LR(Ã, B̃).

□

2.3. Buckley’s Method. Buckley’s method results in producing a fuzzy num-

ber to estimate the required param- eter from a statistical distribution whose α-cuts

are (1−α)100% confidence intervals, α

∈ [0.01, 1]. The following definition is given, to clarify the discussion that is pre-

sented in this paper.

Definition 2.3. A fuzzy number θ̃ is an unbiased fuzzy estimator for parameter θ

from a statistical distribution if:

(i) the α-cuts of θ̃ are (1−α)100% confidence intervals for θ, with α ∈ [0.01, 1]

and θ̃[α] = θ̃[0.01] for α ∈ [0, 0.01),

(ii) if θ̂ is an unbiased point estimator for θ then θ̃(θ̂) = 1.

Similar to conventional statistics, a fuzzy estimator is a rule for calculating a

fuzzy es-timation of an unknown parameter based on observed data: thus the rule

and it’s re- sult (the fuzzy estimation) are distinguished. For a fuzzy estimation

an explicit and uni- que membership function is given by the following theorem

[3].

Theorem 2.1. Suppose that X1, X2, . . . , Xn is a random sample of size n from a

distribution with unknown parameter θ. If, based on observation x1, x2, . . . , xn, we

consider [θ1(α), θ2(α)], as a (1 − α)100% confidence interval for θ, then the fuzzy

estimation of θ is a fuzzy set with the following unique membership function

θ̃(u) = min
{
θ−1
1 (u), [−θ2]

−1(−u), 1
}
.
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3. One-way Analysis of Covariance

In this section one-way analysis of covariance is briefly reviewed, for more details

see [7, 9]. For the linear model ỹij = µi + β(xij − x̄..) + ϵij , where ϵij ’s have

a normal distribution with a random variables which have a linear relationship

with ỹij ’s, x̄.. =
∑a

i=1

∑ni

j=1 xij/
∑a

i=1 ni, β and µi’s are unknown parameters, for

i = 1, 2, . . . , a and j = 1, 2, . . . , ni.

Taking into account the above linear model we are interested to test the following

statistical hypotheses: H0 : β = 0 and H0 : µ1 = µ2 = . . . = µa

To simplify the discussion we use the following notations.

Syy =
∑a

i=1

∑ni

j=1 D
2
LR(ỹij , ˜̄y..), Sxx =

∑a
i=1

∑ni

j=1 D
2
LR(xij , x̄..),

Eyy =
∑a

i=1

∑ni

j=1 D
2
LR(ỹij , ˜̄yi.), Exx =

∑a
i=1

∑ni

j=1 D
2
LR(xij , x̄i.),

and for α ∈ (0, 1)

Sxy =
∑a

i=1

∑ni

j=1(ỹij − ˜̄y..)α=1(xij − x̄..)α=1, SSE = Eyy − (E2
xy/Exx),

Exy =
∑a

i=1

∑ni

j=1(ỹij − ˜̄yi.)α=1(xij − x̄i.)α=1, SSE
′
= Syy − (S2

xy/Sxx).

Now the critical region based on generalized likelihood ratio (GLR) method [9] for

testing hypotheses in (1) is F1 ≥ k, where k is a real number and

F1 =
E2

xy/Exx

SSE/(N − a− 1)
,

where

N =

a∑
i=1

ni.

The pivotal quantity SSE/σ2 has the distribution χ2 with N − a − 1 degree of

freedom and E2
xy/(σ

2Exx), under the null hypothesis H0 in (1), has the distribution

χ2 with 1 degree of freedom. So both of these pivotal quantities can be used to

produce confidence intervals for σ2. It can be shown that, under the null hypothesis

H0 in (1), F1 has the distribution F with 1 and N − a− 1 degrees of freedom. The

null hypothesis H0 : β = 0 is rejected if the observed value of F1 statistic is equal

or greater than F1−γ,1,N−a−1, where F1−γ,1,N−a−1 is (1 − γ)’th quantile of the

distribution F with with 1 and N − a − 1 degrees of freedom and γ ∈ (0, 1) is the

significance level of testing.
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Also, the critical region based on GLR method for testing hypotheses in (2) is

F2 ≥ k, where k is a real number and

F2 =
(SSE

′ − SSE)/(a− 1)

SSE/(N − a− 1)
,

The mathematical term (SSE
′ −SSE)/σ2, under the null hypothesis H0 in (2), has

the distribution χ2 with a− 1 degree of freedom; and this pivotal quantity can be

used to produce the confidence intervals for the parameter σ2. It can be shown that,

under the hypothesis H0 in (2), F2 has the distribution F with a− 1 and N −a− 1

degrees of freedom and the null hypothesis H0 : µ1 = µ2 = . . . = µa is rejected if the

observed value of F2 statistic is equal or greater than F1−γ,a−1,N−a−1, (1 − γ)’th

quantile of the distribution F with a− 1 and N − a− 1 degrees of freedom.

Remark 3.1. Note that E2
xy/Exx, under the hypothesis H0 in (1), (SSE

′ −
SSE)/(a − 1), under the hypothesis H0 in (2) and SSE/(N − a − 1) are unbi-

ased point estimators of the parameter σ2.

4. One-way Analysis of Covariance based on Fuzzy Test Statistic

In this section we first consider the issue of testing the statistical hypotheses in

(1).

Theorem 4.1. In one-way analysis of covariance model, if we consider SSE/(N −
a − 1) as an unbiased point estimator for parameter σ2, then an unbiased fuzzy

estimator for σ2 is σ̃2 with α-cuts σ̃2[α], where

σ̃2[α] =


[
SSE/χ2

1−α+αp′,N−a−1, SSE/χ2
αp′,N−a−1

]
0.01 ≤ α ≤ 1

σ̃2[0.01] 0 ≤ α < 0.01,

and p′ is obtained from the relation χ2
p′,N−a−1 = N − a− 1.

Proof. Based on the pivotal quantity SSE/σ2, a (1 − α)100% confidence interval

for σ2 is
[
SSE/χ2

1−α+αp,N−a−1, SSE/χ2
αp,N−a−1

]
for any α ∈ (0, 1) and p ∈ (0, 1).

When α = 1 and p = p′, satisfying χ2
p′,N−a−1 = N−a−1, this interval becomes the

point SSE/(N − a− 1) the unbiased point estimator for σ2. Now fixing p = p′ and

varying α from 0.01 to 1 we obtain nested intervals which are the α-cuts of a fuzzy

number, say σ̃2. Finally, σ̃2[α] = σ̃2[0.01] for α ∈ [0, 0.01), we have the unbiased

fuzzy estimator σ̃2 for σ2. □
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Lemma 4.1. The membership function of fuzzy estimator σ̃2 in Theorem 4.1 is as

follows:

σ̃2(x) =



1−G(SSE/x)
1−p′

SSE
χ2
0.99+0.01p′,N−a−1

≤ x ≤ SSE
N−a−1

G(SSE/x)
p′

SSE
N−a−1 ≤ x ≤ SSE

χ2
0.01p′,N−a−1

0 otherwise,

where G is the cumulative distribution function of a χ2 variable with N − a − 1

degree of freedom.

Proof. By Theorem 4.1, we have θ1(α) = SSE/χ2
1−α+αp′,N−a−1 for α ∈ [0.01, 1].

Hence, θ−1
1 (x) = [1 − G(SSE

x )]/(1 − p′). Also θ2(α) = SSE/χ2
αp′,N−a−1, therefore

[−θ2]
−1(−x) = G(SSE

x )/p′. Based on Theorem 2.1, we have

σ̃2(x) = min{θ−1
1 (x), [−θ2]

−1(−x), 1}.

So,

σ̃2(x) =



1−G(SSE/x)
1−p′

SSE
χ2
0.99+0.01p′,N−a−1

≤ x ≤ SSE
N−a−1

G(SSE/x)
p′

SSE
N−a−1 ≤ x ≤ SSE

χ2
0.01p′,N−a−1

0 otherwise.

□

Theorem 4.2. Under the null hypothesis H0 : β = 0, if we consider E2
xy/Exx as

an unbiased point estimator for parameter σ2, then an unbiased fuzzy estimator for

σ2 is σ̃2
H01

with α-cuts σ̃2
H01

[α], where

σ̃2
H01

[α] =


[
E2

xy/(Exxχ
2
1−α+αp′′,1), E

2
xy/(Exxχ

2
αp′′,1)

]
0.01 ≤ α ≤ 1

σ̃2
H01

[0.01] 0 ≤ α < 0.01,

and p′′ is obtained from the relation χ2
p′′,1 = 1.

Proof. We use the pivotal quantity E2
xy/(Exxσ

2). The proof is now similar to that

of Theorem 4.1. □
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Theorem 4.3. The fuzzy test statistic for testing H0 : β = 0 against H1 : β ̸= 0 is

F̃1 with α-cuts

F̃1[α] =


[
(f1)1(α)F1, (f1)2(α)F1

]
0.01 ≤ α ≤ 1

F̃1[0.01] 0 ≤ α < 0.01,

(f1)1(α) = χ2
αp′,N−a−1

/ [
(N − a− 1)χ2

1−α+αp′′,1

]
,

(f1)2(α) = χ2
1−α+αp′,N−a−1

/ [
(N − a− 1)χ2

αp′′,1

]
.

Proof. Using the equality F̃1[α] = σ̃2
H01

[α]
/
σ̃2[α] and interval arithmetic, fuzzy test

statistic follows from Buckley’s method. □

Note 4.1. Since the test statistic is a fuzzy number, then critical value is also a

fuzzy number with α-cuts

C̃V 1[α] =


[
(cv1)1(α), (cv1)2(α)

]
0.01 ≤ α ≤ 1

C̃V1[0.01] 0 ≤ α < 0.01,

where

(cv1)1(α) = (f1)1(α)F1−γ,1,N−a−1,

is obtained from the relation P
[
(f1)1(α)F1 > (cv1)1(α)

]
= γ, where γ ∈ (0, 1) is the

significance level of the test. Similarly, we obtain (cv1)2(α) = (f1)2(α)F1−γ,1,N−a−1.

Decision rule 4.1. The decision rule is considered as follows. After observing the

data,

(i) if F1−γ,1,N−a−1 ≤ F1, then the hypothesis H0 : β = 0 is rejected.

(ii) if F1−γ,1,N−a−1 > F1, then the area A1 and also AT the total area under

the triangle F̃1 are calculated. If A1/AT ≤ ϕ, then the null hypothesis

H0 : β = 0 is accepted. Otherwise it is rejected, where ϕ ∈ [0, 1], which

depends on the decision maker desire. In this paper we set ϕ = 0.3.

In the sequel we consider testing the statistical hypotheses in (2) based on a

fuzzy test statistic.
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Theorem 4.4. Under the null hypothesis H0 : µ1 = µ2 = . . . = µa, If we consider

(SSE
′ − SSE)/(a − 1) as an unbiased point estimator for parameter σ2, then an

unbiased fuzzy estimator for σ2 is σ̃2
H02

with α-cuts σ̃2
H02

[α], where

σ̃2
H02

[α] =


[

SSE
′
−SSE

χ2
1−α+αp′′′,a−1

, SSE
′
−SSE

χ2
αp′′′,a−1

]
0.01 ≤ α ≤ 1

σ̃2
H02

[0.01] 0 ≤ α < 0.01,

and p′′′ is obtained from the relation χ2
p′′′,a−1 = a− 1.

Proof. We use pivotal quantity (SSE
′ −SSE)/σ2. The proof is now similar to that

of Theorem 4.1. □

Theorem 4.5. The fuzzy test statistic for testing H0 : µ1 = µ2 = . . . = µa against

H1 : not all µi’s are equal, is F̃2 with α-cuts

F̃2[α] =


[
(f2)1(α)F2, (f2)2(α)F2

]
0.01 ≤ α ≤ 1

F̃2[0.01] 0 ≤ α < 0.01,

(f2)1(α) =
[
(a− 1)χ2

αp′,N−a−1

] / [
(N − a− 1)χ2

1−α+αp′′′,a−1

]
,

(f2)2(α) =
[
(a− 1)χ2

1−α+αp′,N−a−1

] / [
(N − a− 1)χ2

αp′′′,a−1

]
.

Proof. Using the equality F̃2[α] = σ̃2
H02

[α]
/
σ̃2[α] and interval arithmetic, fuzzy test

statistic follows from Buckley’s method. □

Note 4.2. Similar to Note 4.1, the critical value is a fuzzy number with α-cuts

C̃V 2[α] =


[
(f2)1(α)F1−γ,a−1,N−a−1, (f2)2(α)F1−γ,a−1,N−a−1

]
0.01 ≤ α ≤ 1

C̃V 2[0.01] 0 ≤ α < 0.01.

Decision rule 4.2. The final decision about accepting or rejecting H0 : µ1 = µ2 =

. . . = µa is considered as follows. After observing data,

(i) if F1−γ,a−1,N−a−1 ≤ F2, then the hypothesis H0 is rejected.

(ii) if F1−γ,a−1,N−a−1 > F2, then the area A1 and also the total area AT under

the graph F̃2 are calculated. Now, if A1/AT ≤ ϕ then the null hypothesis

H0 is accepted. Otherwise it is rejected, where ϕ = 0.3.
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5. Numerical Example

In this section, we analyze two data set and use mentioned method about accepting

or rejecting hypothesis H0 in hypotheses testing (1) and (2).

Example 5.1. An example is quoted from [7] that includes an experiment per-

formed to determine if there is a difference in the breaking strength of a monofila-

ment fiber produced by three different machines for a textile company. Clearly the

strength of the fiber is also affected by its thickness. However the strength of a fiber

is related to its diameter, with thicker fibers being generally stronger than thinner

ones. A random sample of five fiber specimens is selected from each machine. The

fiber strength (y) and the corresponding diameter (x) for each specimen are shown

in Table 1, unlike the previous research ([7]), in this paper, we concider y values as

the fuzzy data (ỹ). The one-way analysis of covariance model is as follows:

ỹij = µi + β(xij − x̄..) + εij , for i = 1, 2, 3 and j = 1, 2, . . . , 5.

Table 1. Breaking Strength Data ( ỹ =strength in pounds and

x = diameter in 10−3 inches)

Machine 1 Machine 2 Machine 3

(ym yl yr) x (ym yl yr) x (ym yl yr) x

(36 34 37) 20 (40 39 43) 22 (35 34 36) 21

(41 40 43) 25 (48 47 49) 28 (37 35 38) 23

(39 39 42) 24 (39 36 41) 22 (42 39 45) 26

(42 41 44) 25 (45 45 45) 30 (34 31 35) 21

(49 47 50) 32 (44 42 46) 28 (32 31 36) 15

Here, we have F1 = 60.378 and F2 = 2.314. Since, F0.9,1,11 = 3.23 for γ = 0.1.

So by decision rule 4.1, the null hypothesis H0 : β = 0 is rejected.

Since F0.9,2,11 = 2.86, the values of F1−γ,a−1,N−a−1 and F2, for γ = 0.1, are close to

each other and in conventional statistics we are uncertain to accept the hypothesis

H0 : µ1 = µ2 = µ3. Therefore, we use the method presented in this paper for

testing the statistical hypotheses in (2) based on a fuzzy test statistic.
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We have SSE
′
= 143.277 and SSE = 100.842. Therefore, based on Theorem 4.1

an unbiased fuzzy estimation for σ2 is a fuzzy number with α-cuts

σ̃2[α] =


[
100.842/χ2

1−α+α0.557,11, 100.842/χ
2
α0.557,11

]
0.01 ≤ α ≤ 1

σ̃2[0.01] 0 ≤ α < 0.01,

and p′ = 0.557 is obtained from the relation χ2
p′,11 = 11.

So, by Lemma 4.1, the membership function of the unbiased fuzzy estimator is

given as follows:

σ̃2(x) =



1−G(100.842/x)
1−0.557

100.842
χ2
0.99+0.01(0.557),11

≤ x ≤ 100.842
11

G(100.842/x)
0.557

100.842
11 ≤ x ≤ 100.842

χ2
0.01(0.557),11

0 otherwise,

where G is the cumulative distribution function of the distribution χ2 with 11 degree

of freedom. Also, an unbiased fuzzy estimator for σ2 based on Theorem 4.4, under

the null hypothesis H0 : µ1 = µ2 = µ3, is a fuzzy number with α-cuts as follows:

σ̃2
H02

[α] =


[
42.435/χ2

1−α+α0.632,2, 42.435/χ
2
α0.632,2

]
0.01 ≤ α ≤ 1

σ̃2
H02

[0.01] 0 ≤ α < 0.01,

and p′′′ = 0.632 is obtained from the relation χ2
p′′′,2 = 2.

By Theorem 4.5 and Note 4.2, the fuzzy test statistic F̃2 and the fuzzy critical value

C̃V 2, with γ = 0.1 and F2 = 2.314, are fuzzy numbers with the following α-cuts:

F̃2[α] =


[

χ2
α0.557,11

χ2
1−α+α0.632,2

0.420,
χ2
1−α+α0.557,11

χ2
α0.632,2

0.420
]

0.01 ≤ α ≤ 1

F̃2[0.01] 0 ≤ α < 0.01,

and

C̃V 2[α] =


[

χ2
α0.557,11

χ2
1−α+α0.632,2

0.52,
χ2
1−α+α0.557,11

χ2
α0.632,2

0.52
]

0.01 ≤ α ≤ 1

C̃V 2[0.01] 0 ≤ α < 0.01.

The intersection between the vertical line F0.9,2,11 = 2.86 and the right-hand

side F̃2 is obtained as a point α∗ = (2.86, 0.904). The area A1 ≃ 25.852 for
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α ∈ [0.01, 0.904] and AT ≃ 27.596 for α ∈ [0.01, 1](for more details see [5]). Hence,

A1/AT ≃ 0.936. Since A1/AT > ϕ = 0.3, the hypothesis H0 is certainly rejected.

Example 5.2 [6] Table 5.2 presents the raw data illustrating sleep quqlity per-

ception scores (y), according to levels of exercise frequency (x) (with three levels:

frequent, infrequent and none). The table also shows data for the age of each

participant this will be the covariate.In this paper, the fuzzy data (ỹ) have been

concidered as y values. The one-way analysis of covariance model is as follows:

ỹij = µi + β(xij − x̄..) + εij , for i = 1, 2, 3 and j = 1, 2, . . . , 10.

we have F1 = 10.116. Since, F0.9,1,26 = 2.91 for γ = 0.1. So by decision rule

Table 2. Sleep quqlity scores (SQ), in respect of exercise fre-

quency (adjusted for age)

Frequent Infrequent None

Age SQ Age SQ Age SQ

(ym yl yr) x (ym yl yr) x (ym yl yr) x

(67 66 68) 40 (44 43 45) 18 (52 50 54) 25

(80 78 81) 47 (44 42 46) 24 (46 45 47) 14

(74 74 75) 27 (62 61 62) 31 (62 60 64) 22

(37 36 38) 27 (39 38 40) 21 (46 45 47) 22

(80 79 82) 44 (49 47 51) 28 (52 51 53) 39

(62 61 63) 30 (39 39 40) 21 (52 52 52) 34

(37 35 39) 30 (33 32 34) 24 (46 45 48) 34

(83 83 83) 49 (56 55 57) 24 (36 35 38) 25

(55 54 56) 34 (56 55 58) 37 (20 20 21) 22

(86 85 88) 37 (39 37 40) 24 (26 25 28) 25

4.1, the null hypothesis H0 : β = 0 is rejected. Also, we have F2 = 1.683. Since,

F0.9,2,26 = 2.52, that F1−γ,a−1,N−a−1 > F2, for γ = 0.1. Therefore, we use the

method presented in this paper for testing the statistical hypotheses in (2) based on

a fuzzy test statistic. We have SSE
′
= 13730.13 and SSE = 12156.11. Therefore,

based on Theorem 4.1 an unbiased fuzzy estimation for σ2 is a fuzzy number with
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α-cuts

σ̃2[α] =


[
12156.11/χ2

1−α+α0.537,26, 12156.11/χ
2
α0.537,26

]
0.01 ≤ α ≤ 1

σ̃2[0.01] 0 ≤ α < 0.01,

and p′ = 0.537 is obtained from the relation χ2
p′,26 = 26.

So, by Lemma 4.1, the membership function of the unbiased fuzzy estimator is

given as follows:

σ̃2(x) =



1−G(12156.11/x)
1−0.537

12156.11
χ2
0.99+0.01(0.537),26

≤ x ≤ 12156.11
26

G(12156.11/x)
0.537

12156.11
26 ≤ x ≤ 12156.11

χ2
0.01(0.537),26

0 otherwise,

where G is the cumulative distribution function of the distribution χ2 with 11 degree

of freedom. Also, an unbiased fuzzy estimator for σ2 based on Theorem 4.4, under

the null hypothesis H0 : µ1 = µ2 = µ3, is a fuzzy number with α-cuts as follows:

σ̃2
H02

[α] =


[
1574.025/χ2

1−α+α0.632,2, 1574.025/χ
2
α0.632,2

]
0.01 ≤ α ≤ 1

σ̃2
H02

[0.01] 0 ≤ α < 0.01,

and p′′′ = 0.632 is obtained from the relation χ2
p′′′,2 = 2. By Theorem 4.5 and Note

4.2, the fuzzy test statistic F̃2 and the fuzzy critical value C̃V 2, with γ = 0.1 and

F2 = 1.6834, are fuzzy numbers with the following α-cuts:

F̃2[α] =


[

χ2
α0.537,26

χ2
1−α+α0.632,2

0.129,
χ2
1−α+α0.537,26

χ2
α0.632,2

0.129
]

0.01 ≤ α ≤ 1

F̃2[0.01] 0 ≤ α < 0.01,

and

C̃V 2[α] =


[

χ2
α0.537,26

χ2
1−α+α0.632,2

0.193,
χ2
1−α+α0.537,26

χ2
α0.632,2

0.193
]

0.01 ≤ α ≤ 1

C̃V 2[0.01] 0 ≤ α < 0.01.

The intersection between the vertical line F0.9,2,26 = 2.52 and the right-hand

side F̃2 is obtained as a point α∗ = (2.56, 0.806). The area A1 ≃ 14.741 for
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α ∈ [0.01, 0.806] and AT ≃ 16.301 for α ∈ [0.01, 1]. Hence, A1/AT ≃ 0.9043. Since

A1/AT > ϕ = 0.3, the hypothesis H0 is certainly rejected.

6. Conclusions

In this paper, by using DLR metric, Buckley’s method is applied to a one-way

analysis of covariance and used for testing the statistical hypotheses when there

is an uncertainty in accepting or rejecting the hypotheses. This method can be

used for other linear models, and an interesting topic for research is the study of

this method on one-way analysis of covariance when the hypotheses are fuzzy. An

interesting topic for further research to examine the performance of the method

presented in this study to test the hypothesis test using fuzzy linear compared to

conventional methods.
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