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Abstract. A weighted linear regression model with impercise response and

p-real explanatory variables is analyzed. The LR fuzzy random variable is

introduced and a metric is suggested for coping with this kind of variables.

A least square solution for estimating the parameters of the model is derived.

The result are illustrated by the means of some case studies.
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1. Introduction

Classical regression analysis is helpful in ascertaining the probable form of the

relationship between variables, and usually the ultimate objective is to predict, or

estimate, the value of one variable corresponding to given values of other variables.

The method usually employed for obtaining the “regression surface” is known as

the method of least squares and the parameters are estimated by minimizing the

sum of squares of the difference between observed and predicted values.
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A fuzzy linear regression model(FLR) was first introduced by Tanaka et al. [18].

Their method, in which the observed data are crisp, has been developed in different

directions by several authors(see for example[4, 11, 17, 19]). Tanaka et al.’s approach

is essentially based on transforming the problem of fitting a fuzzy model on a data

set to a linear programming problem.

Another approach to fuzzy regression is introduced by Celmins [3] and Dia-

mond [6], using a generalized least squares method. In the fuzzy least squares

approach, the optimal model is usually derived based on a metric on the space of

fuzzy numbers. For more on this approach and some applications see, for example,

[1, 5, 15, 21]. Coppi et al. [5] have proposed a linear regression model with crisp

inputs and LR fuzzy response. The basic idea consists in modeling the centers of the

response variable by means of a classical regression model, and simultaneously mod-

eling the left and the right spreads of the response through simple linear regression

on its estimated center. The study in Coppi et al. [5] is mainly descriptive, and the

authors impose a non-negativity condition in the numerical minimization problem

to avoid negative estimated spreads. Ferraro et al.[9] proposed an alternative model

to overcome the non-negativity condition by means of modeling a transformation

of left and right spreads.

Different kinds of weighted fuzzy regression models were introduced in several

studies, see for instance, [2] and [19]. We modify Ferraro et al.[9] model for weighted

regression. Numerical examples shows that the modification result is lower standard

deviation errors.

This paper is organized as follows: in Section 2 modeling imprecise response

using LR fuzzy random variables is formalized and Ferraro et al. model [9] is briefly

discussed. In Section 3, a weighted linear regression model for imprecise response

in both simple and multiple case is proposed and the estimators of the parameters

are obtained. In Section 4, numerical examples are provided and compared with

Ferraro et al.[9] model. Finally, Section 5 provides a conclusion.

2. Modeling the imprecise data

2.1. Fuzzy sets

. Let X be a universal set. A fuzzy set A of X is defined by its membership function

A : X → [0, 1] In practice, there are experiments whose results can be described by
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means of fuzzy sets of a particular class, determined by three values: the center,

the left spread and the right spread. this type of fuzzy datum is called LR fuzzy

number and is defined as follows:

A(x) =

{
L(A

m−x
Al ) x ≤ Am

R(x−Am

Ar ) x ≥ Am,

where Am ∈ R is the center, Al ∈ R+ and Ar ∈ R+ are, respectively, the left

and the right spread and, L and R are functions such that L(0) = R(0) = 1 and

L(x) = R(x) = 0, ∀x ∈ R\[0, 1]. If Ar = Al the fuzzy number A is referred to as

symmetrical [9].

Remark 2.1. An interval I is a particular kind of LR fuzzy set that can be

characterized by means of the extremes [infI, supI] or, by means of midI =

[supI + infI]/2 and sprI = [supI − infI]/2 [9].

Definition 2.1. Yang and Ko [20] have defined a distance D2
LR between two LR

fuzzy numbers A,B ∈ FLR as follows:

D2
LR(A,B) = (Am −Bm)2 + ((Am − λAl)− (Bm − λBl))2 + ((Am + ρAr)− (Bm + ρBr))2

(1)

= 3(Am −Bm)2 + λ2(Al −Bl)2 + ρ2(Ar −Br)2 − 2λ(Am −Bm)(Al −Bl)

+ 2ρ(Am −Bm)(Ar −Br).

where FLR is the class of fuzzy numbers and λ =
∫ 1

0
L−1(ω)d(ω) and ρ =

∫ 1

0
R−1(ω)d(ω)

represent the influence of the shape of the membership function on the distance.

The (FLR, D
2
LR) is a metric space [9].

2.2. Fuzzy random variables

. Kwakernak [14], Puri and Ralescu [16] and Kelement et al. [13] have introduced

the concept of fuzzy random variable (FRV) as an extension of random variables as

well as random sets.

Let (Ω,A, P ) be a probability space. The mapping X : Ω → FLR is an FRV. In the

case of LR FRVs, this is equivalent to (Xm, X l, Xr) : Ω → (R × R+ × R+) beings

a random vector [9].
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2.3. A linear regression model for imprecise response

. Ferraro et al. [9] introduced a linear regression model for imprecise response.

Where they proposed using a transformation of left and right spreads to overcome

the non-negativity condition.

Consider a random experiment in which LR fuzzy observations on the vari-

ables Y,X1, X2, . . . , Xp on n statistical units are {Yi, Xi}i=1,...,n, where Xi =

(X1i, X2i, . . . , Xpi), or in compact form (Y ,X), where Y is the n × 1 vector of

observations Y and X is the n × p matrix of the observations on X. Then for two

invertible functions g : (0,∞) → R and h : (0,∞) → R:


Y m = X ′am + bm + ϵm

g(Y l) = X ′al + bl + ϵl

h(Y r) = X ′ar + br + ϵr.

(2)

where ϵm, ϵl and ϵr are real-valued random variables with E(ϵm|X) = E(ϵl|X) =

E(ϵr|X) = 0 and am = (am1, . . . , amp)
′
, al = (al1, . . . , alp)

′
and ar = (ar1, . . . , arp)

′

are (p × 1)-vectors of the parameters related to the vector X. The covariance

matrix of the vector of the explanatory variables X will be denoted by ΣX and

Σ will stand for the covariance matrix of (ϵm, ϵl, ϵr), whose variances are strictly

positive and finite. Since the expected value of ϵm, ϵl and ϵr given X are equal to

0, hence ϵm, ϵl and ϵr are uncorrelated with the explanatory variables [9].

Theorem 2.1. Under the assumptions of model (2), the LS-estimators of the model

are:

âm = (X̃
′
X̃)−1X̃

′
Ỹ m,

âl = (X̃
′
X̃)−1X̃

′
g̃(Y l),

âr = (X̃
′
X̃)−1X̃

′
h̃(Y r),

b̂m = Y m −X ′âm,

b̂l = g(Y l)−X ′âl,

b̂r = h(Y r)−X ′âr,
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where, as usual, Y
m
, g(Y l), h(Y r) and X are, respectively, the sample means of

Y m, g(Y l), h(Y r) and X

Ỹ m = Y m − 1Y m,

g̃(Y l) = g(Y l)− 1g(Y l),

h̃(Y r) = h(Y r)− 1h(Y r)

are the centered values of the response and

X̃ = X− 1X ′,

the centered matrix of the explanatory variables [9].

3. A weighted linear regression model for imprecise response

In this section we introduce a weighted linear regression model in both simple

and multiple case. This model is based on Ferraro et al. model [9].

Consider a random experiment in which an LR fuzzy response variable Y and a

real explanatory variable X observed on n statistical units are {Yi, Xi}i=1,...,n and

Y is determined by (Y m, Y l, Y r). Suppose g : (0,∞) → R and h : (0,∞) → R
are invertible, a weighted simple linear regression model can be represented in the

following way:

(3)


w

1
2
mY m = w

1
2
mamX + w

1
2
mbm + w

1
2
mεm

w
1
2

l g(Y
l) = w

1
2

l alX + w
1
2

l bl + w
1
2

l εl

w
1
2
r h(Y r) = w

1
2
r arX + w

1
2
r br + w

1
2
r εr

.

where wm,wl and wr are respectively, the weights of Y m, Y l and Y r. In order to

get the estimators of the regression parameters the least squares (LS) criterion will

be used.
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Theorem 3.1. The least square estimator of parameters for model (3) are

âm =

∑n
i=1 wmiXiY

m
i −

∑n
i=1 wmiXi

∑n
i=1 wmiY

m
i∑n

i=1 wmi∑n
i=1 wmi(Xi −

∑n
i=1 wmiXi∑n
i=1 wmi

)2
, b̂m =

∑n
i=1 wmiY

m
i∑n

i=1 wmi
− âm

∑n
i=1 wmiXi∑n
i=1 wmi

âl =

∑n
i=1 wliXig(Y

l
i )−

∑n
i=1 wliXi

∑n
i=1 wlig(Y

l
i )∑n

i=1 wli∑n
i=1 wli(Xi −

∑n
i=1 wliXi∑n
i=1 wli

)2
, b̂l =

∑n
i=1 wlig(Y

l
i )∑n

i=1 wli
− âl

∑n
i=1 wliXi∑n
i=1 wli

âr =

∑n
i=1 wriXih(Y

r
i )−

∑n
i=1 wriXi

∑n
i=1 wrih(Y

r
i )∑n

i=1 wri∑n
i=1 wri(Xi −

∑n
i=1 wriXi∑n
i=1 wri

)2
, b̂r =

∑n
i=1 wrih(Y

r
i )∑n

i=1 wri
− âr

∑n
i=1 wriXi∑n
i=1 wri

.

Proof. For estimating âm, âl, âr, b̂m, b̂l and b̂r, we first minimize Yang-Ko metric

[20] as follows:

(4)

min∆2
λρ = min

n∑
i=1

D2
λρ((w

1
2
miY

m
i , w

1
2

lig(Y
l
i ), w

1
2
rih(Y

r
i )), (w

1
2
ri(Y

m
i )∗, w

1
2

lig
∗(Y l

i ), w
1
2
rih

∗(Y r
i ))

where w
1
2
mi(Y

m
i )∗ = w

1
2
miamXi+w

1
2
mibm, w

1
2

lig
∗(Y l

i ) = w
1
2

lialXi+w
1
2

libl and w
1
2
rih

∗(Y r
i ) =

w
1
2
riarXi + w

1
2
ribr are predicted values. The function to minimize becomes

∆2
λρ =

n∑
i=1

[3w
1
2
mi(Y

m
i − amXi − bm)2](5)

+
n∑

i=1

[λ2w
1
2

li (g(Y
l
i )− alXi − bl)

2 + ρ2w
1
2
ri(h(Y

r
i )− arXi − br)

2]

+

n∑
i=1

[−2λw
1
2
mi(Y

m
i − amXi − bm)w

1
2

li (g(Y
l
i )− alXi − bl)]

+
n∑

i=1

[+2ρw
1
2
mi(Y

m
i − amXi − bm)w

1
2
ri(h(Y

r
i )− arXi − br)].

To estimate bl and br, we equate the partial derivative of ∆2
λρ with respect to bl

and br, to zero. Hence:

∂∆2
λρ

∂bl
= 0 ⇐⇒ bl =

∑n
i=1 wlig(Y

l
i )∑n

i=1 wli
− al

∑n
i=1 wliXi∑n
i=1 wli

− 1

λ

∑n
i=1 wmiY

m
i∑n

i=1 wli

+
am
λ

∑n
i=1 wmiXi∑n

i=1 wli
+

bm
∑n

i=1 wmi

λ
∑n

i=1 wli
.(6)
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∂∆2
λρ

∂br
= 0 ⇐⇒ br =

∑n
i=1 wrih(Y

r
i )∑n

i=1 wri
− ar

∑n
i=1 wriXi∑n
i=1 wri

+
1

ρ

∑n
i=1 wmiY

m
i∑n

i=1 wri

− am
ρ

∑n
i=1 wmiXi∑n

i=1 wri
−

bm
∑n

i=1 wmi

ρ
∑n

i=1 wri
.(7)

To estimate bm we have to take in to account that bl and br obtained above are

expressed as function of bm. Thus, by substituting (6) and (7) in (5) and equating

to zero the partial derivative of ∆2
λρ with respect to bm we get

∂∆2
λρ

∂bm
= 0 ⇐⇒ bm =

∑n
i=1 wmiY

m
i∑n

i=1 wmi
− am

∑n
i=1 wmiXi∑n
i=1 wmi

.

As result we obtain the following solutions that depend on the parameters, am, al

and ar.

b̂m =

∑n
i=1 wmiY

m
i∑n

i=1 wmi
− âm

∑n
i=1 wmiXi∑n
i=1 wmi

,

b̂l =

∑n
i=1 wlig(Y

l
i )∑n

i=1 wli
− âl

∑n
i=1 wliXi∑n
i=1 wli

,

b̂r =

∑n
i=1 wrih(Y

r
i )∑n

i=1 wri
− âr

∑n
i=1 wriXi∑n
i=1 wri

,

the centered values of Xi based on weights of center and spreads are

X̃mi = Xi −
∑n

i=1 wmiXi∑n
i=1 wmi

,

X̃li = Xi −
∑n

i=1 wliXi∑n
i=1 wli

,

X̃ri = Xi −
∑n

i=1 wriXi∑n
i=1 wri

,



8 A.R. ARABPOUR AND M. AMINI

so the objective function can be written as follows

∆2
λρ =

n∑
i=1

[3(Ỹ m
i − amX̃mi)

2](8)

+
n∑

i=1

[λ2(g̃(Y l
i )− alX̃li)

2 + ρ2(h̃(Y r
i )− arX̃ri)

2]

+
n∑

i=1

[−2λ(Ỹ m
i − amX̃mi)(g̃(Y l

i )− alX̃ri)]

+
n∑

i=1

[+2ρ(Ỹ m
i − amX̃mi)(h̃(Y r

i )− arX̃ri)].

By equating to zero the partial derivative of ∆2
λρ with respect to al and ar we obtain

∂∆2
λρ

∂al
= 0 ⇐⇒ al =

∑n
i=1 wliX̃lig̃(Y l

i )∑n
i=1 wliX̃2

i

− 1

λ

∑n
i=1 wmiỸ m

i X̃mi∑n
i=1 wliX̃2

i

+

∑n
i=1 wmiX̃2

mi∑n
i=1 wliX̃2

li

am
λ

(9)

∂∆2
λρ

∂ar
= 0 ⇐⇒ ar =

∑n
i=1 wriX̃rih̃(Y r

i )∑n
i=1 wriX̃2

i

+
1

ρ

∑n
i=1 wmiỸ m

i X̃mi∑n
i=1 wriX̃2

i

−
∑n

i=1 wmiX̃2
mi∑n

i=1 wriX̃2
ri

am
ρ

,

(10)

where

Ỹ m
i = Y m

i −
∑n

i=1 wmiY
m
i∑n

i=1 wmi

g̃(Y l
i ) = g(Y l

i )−
∑n

i=1 wlig(Y
l
i )∑n

i=1 wli

h̃(Y r
i ) = h(Y r

i )−
∑n

i=1 wrih(Y
r
i )∑n

i=1 wri
.

Substituting (9) and (10) into (8) and by equating the partial derivative of ∆2
λρ

with respect to am to zero, we obtain the estimation of am as follows:

∂∆2
λρ

∂am
= 0 ⇐⇒ âm =

∑n
i=1 wmiXiY

m
i −

∑n
i=1 wmiXi

∑n
i=1 wmiY

m
i∑n

i=1 wmi∑n
i=1 wmi(Xi −

∑n
i=1 wmiXi∑n
i=1 wmi

)2
(11)

Finally, by substituting (11) into (9) and (10) the solutions of LS problem are

obtained. □
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Consider a random experiment in which LR fuzzy random variables Y,X1, X2, . . . , Xp

observed on n statistical units are {Yi, Xi}i=1,...,n, where Xi = (X1i, X2i, . . . , Xpi).

Or, in compact form (Y ,X), where Y is the n × 1 vector of observations of Y

and X is the n × p matrix of the observation of X. Suppose g : (0,∞) → R and

h : (0,∞) → R are invertible. The weighted multiple linear regression model is

introduced as follows:
W

1
2
mY m = W

1
2
mXam +W

1
2
m1bm +W

1
2
mϵm

W
1
2

l g(Y
l) = W

1
2

l Xal +W
1
2

l 1bl +W
1
2

l ϵl

W
1
2
r h(Y r) = W

1
2
r Xar +W

1
2
r 1br +W

1
2
r ϵr,

(12)

where ϵm, ϵL and ϵr are the (n×1) vectors of real-valued random variables and am,

al and ar are the (p × 1) vectors of the parameters related to X and Wm, Wl and

Wr are respectively, (n× n) diagonal matrices of related to center and spreads.

Theorem 3.2. The LS estimators of the parameters of model (12) are

âm = (X̃
′
mWmX̃m)−1X̃

′
mWmỸ m

âl = (X̃
′
lWlX̃l)

−1X̃
′
lWlg̃(Y l)

âr = (X̃
′
rWrX̃r)

−1X̃
′
rWrh̃(Y )r

b̂m = (1′Wm1)−1 ((1′WmY m)− (1′WmX)am)

b̂l = (1′Wl1)
−1

(
(1′Wlg(Y

l))− (1′WlX)al

)
b̂r = (1′Wr1)

−1 ((1′Wrh(Y
r))− (1′WrX)ar) ,

where

Ỹ m = (Y m − 1(1′Wm1)−11′WmY m)

g̃(Y l) = (g(Y l)− 1(1′Wl1)
−11′Wlg(Y

l))

h̃(Y r) = (h(Y r)− 1(1′Wr1)
−11′Wrh(Y

r)),

are the centered values of response and the centered values of X on the base of

weight matrices of center and spreads are

X̃m = (X− 1(1′Wm1)−11′WmX)

X̃l = (X− 1(1′Wl1)
−11′WlX)

X̃r = (X− 1(1′Wr1)
−11′WrX).
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Proof. In this case, using the Yang-Ko metric ∆2
λρ written in vector terms, the LS

problem consists in looking for âm, âl, âr, b̂m, b̂l and b̂r in the order to

min∆2
λρ = minD2

λρ((W
1
2
mY m,W

1
2

l g(Y
l),W

1
2
r h(Y

r)), (W
1
2
m(Y m)∗,W

1
2

l g
∗(Y l),W

1
2
r h

∗(Y r))

whereW
1
2
m(Y m)∗ = W

1
2
mXam+W

1
2
m1bm ,W

1
2

l g
∗(Y l) = W

1
2

l Xal+W
1
2

l 1bl andW
1
2
r h∗(Y r) =

W
1
2
r Xar+W

1
2
r 1br are n×1 vectors of the predicted values. The function to minimize

is

∆2
λρ =∥ W

1
2
mY m −W

1
2
m(Y m)∗ ∥2+ ∥ (W

1
2
mY m − λW

1
2

l g(Y
l))− (W

1
2
m(Y m)∗ − λW

1
2

l g
∗(Y l)) ∥2

+ ∥ (W
1
2
mY m + ρW

1
2
r h(Y

r))− (W
1
2
m(Y m)∗ + ρW

1
2
r h

∗(Y r)) ∥2

which becomes

∆2
λρ = 3(W

1
2
mY m −W

1
2
mXam −W

1
2
m1bm)′(W

1
2
mY m −W

1
2
mXam −W

1
2
m1bm)(13)

+ λ2(W
1
2

l g(Y
l)−W

1
2

l Xal −W
1
2

l 1bl)
′(W

1
2

l g(Y
l)−W

1
2

l Xal −W
1
2

l 1bl)

+ ρ2(W
1
2
r h(Y

r)−W
1
2
r Xar −W

1
2
r 1br)

′(W
1
2
r h(Y

r)−W
1
2
r Xar −W

1
2
r 1br)

− 2λ(W
1
2
mY m −W

1
2
mXam −W

1
2
m1bm)′(W

1
2

l g(Y
l)−W

1
2

l Xal −W
1
2

l 1bl)

+ 2ρ(W
1
2
mY m −W

1
2
mXam −W

1
2
m1bm)′(W

1
2
r h(Y

r)−W
1
2
r Xar −W

1
2
r 1br).

To estimate bl and br, we equate the partial derivative of ∆2
λρ with respect to bl

and br to zero, that is

bl =(1′Wl1)
−1(1′Wlg(Y

l)− 1′WlXal − λ−11′WlY
m(14)

+ λ−11′WlXam + λ−11′Wl1bm),

br =(1′Wr1)
−1(1′Wrh(Y

r)− 1′WrXar + ρ−11′WrY
m(15)

− ρ−11′WrXam − ρ−11′Wr1bm).

Substituting (14) and (15) in (13) and equating the partial derivative of ∆2
λρ with

respect to bm to zero, we obtained

bm = (1′Wm1)−1
(
(1′WmY m)− (1′WmX)am

)
(16)
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Hence:

bm = (1′Wm1)−1
(
(1′WmY m)− (1′WmX)am

)
bl = (1′Wl1)

−1
(
(1′Wlg(Y

l))− (1′WlX)al

)
br = (1′Wr1)

−1 ((1′Wrh(Y
r))− (1′WrX)ar) ,

the centered values of X on the base of weight matrices of center and spreads are

X̃m = (X− 1(1′Wm1)−11′WmX)

X̃l = (X− 1(1′Wl1)
−11′WlX)

X̃r = (X− 1(1′Wr1)
−11′WrX).

So the objective function can be written as follows:

∆2
λρ =3(W

1
2
mỸ m −W

1
2
mX̃mam)′(W

1
2
mỸ m −W

1
2
mX̃mam)(17)

+ λ2(W
1
2

l g̃(Y )l −W
1
2

l X̃lal)
′(W

1
2

l g̃(Y )l −W
1
2

l X̃lal)

+ ρ2(W
1
2
r h̃(Y )r −W

1
2
r X̃lar)

′(W
1
2
r h̃(Y )r −W

1
2
r X̃rar)

− 2λ(W
1
2
mỸ m −W

1
2
mX̃mam)′(W

1
2

l g̃(Y )l −W
1
2

l X̃lal)

+ 2ρ(W
1
2
mỸ m −W

1
2
mX̃mam)′(W

1
2
r h̃(Y )r −W

1
2
r X̃rar).

Finally, by equating the partial derivative of (17) with respect to al and ar to zero,

by simple calculations substituting al and ar in (17) and equating to zero the partial

derivative of (17) with respect to am, we get

am = (X̃
′
mWmX̃m)−1X̃

′
mWmỸ m

al = (X̃
′
lWlX̃l)

−1X̃
′
lWlg̃(Y l)

ar = (X̃
′
rWrX̃r)

−1X̃
′
rWrh̃(Y )r.
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Hence, the LS estimators are as follows:

âm = (X̃
′
mWmX̃m)−1X̃

′
mWmỸ m

âl = (X̃
′
lWlX̃l)

−1X̃
′
lWlg̃(Y l)

âr = (X̃
′
rWrX̃r)

−1X̃
′
rWrh̃(Y )r

b̂m = (1′Wm1)−1 ((1′WmY m)− (1′WmX)am)

b̂l = (1′Wl1)
−1

(
(1′Wlg(Y

l))− (1′WlX)al

)
b̂r = (1′Wr1)

−1 ((1′Wrh(Y
r))− (1′WrX)ar) ,

where

Ỹ m = (Y m − 1(1′Wm1)−11′WmY m)

g̃(Y l) = (g(Y l)− 1(1′Wl1)
−11′Wlg(Y

l))

h̃(Y r) = (h(Y r)− 1(1′Wr1)
−11′Wrh(Y

r)).

□

Remark 3.1. [10] The prediction errors are weighted by dividing each predic-

tion error by a factor proportional to the corresponding subpopulations standard

deviation. This ensures that the method of estimation will give more weight to

observations from subpopulations with smaller standard deviations because these

observations are more reliable, and less weight will be given to observations from

subpopulation with larger standard deviations because these observations are less

reliable. So wi = ( 1
g(xi)

)2, where g(xi) is proportional to the corresponding subpop-

ulation standard deviation.

4. Numerical examples

To illustrate the application of the weighted regression model introduced in this

work we consider the following examples and compare them with Ferraro et al.

method. In this example we are interested in analyzing the dependence relation-

ship of the Retail Trade Sales (in millions of dollars) of the U.S. in 2002 by kind of

business on establishments (see http://www.census.gov/econ/www/). The Retail

Trade Sales are intervals in the period January 2002 through December 2002 (see

Table 1). For each interval we consider the center and the spreads and we apply the
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proposed weighted regression model in order to evaluate the dependence relation-

ship. We transform the spreads by means of the logarithmic transformation. We

consider weights of center and spreads, behaving as unif(0, 1) random variables.

The parameters are estimated by means of our method and Ferraro et al. method

and the accuracy of the estimators are evaluated by means of a bootstrap procedure

with 800 replications. As seen in table 2 in many cases the standard errors of our

method are less than Ferraro et al. standard error. We consider the exam-

Table 1. The retail trade sales and the number of employees of 22 kinds of

business in the U.S. in 2002.

Kind of business Retail trade sales Establishments

Automotive parts, acc., and tire stores (4638,5759) 57698

Furniture stores (4054,4685) 28244

Home furnishings stores (2983,5032) 36960

Household appliance stores (1035,1387) 10330

Computer and software stores (1301,1860) 10134

Building mat. and supplies dealers (14508,20727) 67190

Hardware stores (1097,1691) 15103

Beer, wine, and liquor stores (2121,3507) 28957

Pharmacies and drug stores (11964,14741) 40234

Gasoline stations (16763,23122) 121446

Means clothing stores (532,1120) 9437

Family clothing stores (3596,9391) 24539

Shoe stores (1464,2485) 28499

Jewelry stores (1304,5810) 28625

Sporting goods stores (1748,3404) 22239

Book stores (968,1973) 10860

Discount dept. stores (9226,17001) 5650

Department stores (5310,14057) 3705

Warehouse clubs and superstores (13162,22089) 2912

All other gen. merchandize stores (2376,4435) 28456

Miscellaneous store retailers (7862,10975) 129464

Fuel dealers (1306,3145) 11079
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Table 2. Estimation of the parameters of models and estimation of their

standard errors.

Estimated value Estimate of standard error

Estimator Ferraro et al. method Our method Ferraro et al. method Our method

âm 0.08216 0.1211 0.0536 0.0459

âl 7.4339e−6 2.0800e−6 7.5074e−6 6.06960e−6

âr 7.4339e−6 2.0800e−6 7.5074e−6 6.06960e−6

b̂m 3843 2177 1977 1853

b̂l 6.6717 6.9601 0.3611 0.3745

b̂r 6.6717 6.9601 0.3611 0.3745

ple of a dataset studied by Coppi et al. [5] having multivariate inputs and their

corresponding non-symetric triangular fuzzy outputs. This dataset consists of 21

observations of atmospheric concentration of carbon monoxide (CO) with six inde-

pendent meteorological variables: x1=temperature, x2=relative, x3=atmospheric

pressure, x4=rain, x5=radiation and x6=wind speed, observed in the city of Rome

(see table 3). For obtaining diagonal matrices of weight, we consider some groups

from close data of center and spreads then obtain the variance of each group and

means of X corresponding to the groups and fit lines between variances and means

by means of least square approach as follows

Ŝ2
Y m = 5.011 + 0.005X̄1 + 0.003X̄2 − 0.005X̄3 − 0.27X̄4 + 1.60X̄5 + 0.007X̄6

Ŝ2
g(Y l) = 8.72− 0.04X̄1 + 0.01X̄2 − 0.008X̄3 − 0.17X̄4 + 1.06X̄5 + 0.06X̄6

Ŝ2
h(Y r) = −6.40 + 0.033X̄1 + 0.012X̄2 + 0.006X̄3 + 0.15X̄4 − 3.13X̄5 + 0.067X̄6.

By substituting explanatory variables in the equations, the estimation of variances

are obtained. The diagonal matrix of inverse of these values are considered as weight

matrices. The parameters are estimated by means of our method and Ferraro et al.

method and the accuracy of the estimators are evaluated by means of a bootstrap

procedure with 800 replications. As seen in table 4 in almost all cases, the standard

errors of our method are less than Ferraro et al.xz[9].
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Table 3. Numerical data of example 4.2.

x1 x2 x3 x4 x5 x6 Y m Y l Y r

19.04 82.27 1009.90 0.90 0.15 2.87 1.15 0.84 0.60

17.66 88.70 1017.50 0.90 016 1.12 2.98 2.83 2.02

18.15 82.51 1025.60 0.02 0.14 0.85 3.92 1.97 1.97

18.43 79.46 1032.10 0.00 0.16 0.45 4.65 1.89 2.24

20.67 68.85 1027.10 0.00 0.22 0.91 3.98 2.13 2.13

21.64 79.39 1020 0.02 0.29 1.07 3.35 2.63 1.58

18.85 88.87 1018.20 1.30 0.24 0.69 3.13 2.39 1.71

16.16 88.92 1020.90 0.09 0.16 0.40 4.15 2.41 2.41

17.02 83.52 1028 0.00 0.13 0.83 3.96 2.48 2.10

14.72 87.51 1025.30 0.05 0.04 2.09 4.07 2.01 2.38

15.89 86.04 1018.50 0.04 0.04 0.90 3.30 2.16 1.83

17.83 91.77 1015.60 0.93 0.06 1.22 4.02 2.35 2.78

20.96 83.62 1012.30 0.02 0.13 3 2.06 3.19 1.59

17.07 73.10 1020.40 0.02 0.13 1.75 1.37 0.66 0.66

14.71 80.38 1028.60 0.09 0.01 0.73 3.35 1.73 1.73

20.41 87.98 1026.40 0.24 0.11 1.87 1.45 1.15 0.97

20.13 90.13 1023.10 0.02 0.17 2.39 2.74 1.41 1.41

15.64 64.95 1022.40 0.00 0.08 1.25 2.44 1.95 1.39

13.22 80.16 1021.60 0.01 0.00 1.02 2.79 2.23 1.59

12.98 86.14 1023.40 0.44 0.00 0.70 3.31 1.73 1.24

13.10 89.12 1028.60 0.01 0.00 1.17 4.02 2.96 2.11

5. Conclusion

In this paper we have introduced a weighted linear regression model for imprecise

response based on Ferraro et al. method. This method is especially attractive since

the standard errors of estimators are obtained are lower than Ferraro et al. standard

errors. So better regression lines are fitted by using of proposed method.
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Table 4. Estimation the parameters of models and estimation of their stan-

dard errors.

Estimator Estimated value Estimate of standard error

Estimator Ferraro et al. method Our method Ferraro et al. method Our method

âm1 −0.0257 0.0247 0.2648 0.2626

âm2 0.0515 0.0620 0.03244 0.03361

âm3 0.0334 0.0277 0.06702 0.06443

âm4 −0.5573 −0.4754 0.8316 0.6667

âm5 1.919 0.3823 7.6451 7.5998

âm6 −0.7615 −0.7598 0.5221 0.4857

âl1 0.008072 0.0023 0.1826 0.1801

âl2 0.0353 0.03288 0.03556 0.03113

âl3 −0.0522 −0.0537 0.05627 0.05315

âl4 −0.6688 −0.6552 0.8328 0.6946

âl5 0.6760 0.9807 5.2489 4.89022

âl6 −0.4564 −0.4749 0.4153 0.4095

âr1 0.0525 0.07588 0.1736 0.1643

âr2 0.0331 0.02794 0.02393 0.02229

âr3 −0.0021 0.0050 0.04322 0.04005

âr4 −0.2814 −0.2170 0.5323 0.5202

âr5 −1.0500 −1.7336 5.07622 4.6291

âr6 −0.4540 −0.4826 0.3690 0.3479

b̂m −33.98 −29.7787 69.2177 66.3558

b̂l 53.037 54.8956 56.8805 55.7944

b̂r 1.3221 −6.1468 44.1435 40.8383
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