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Abstract. In the following text for arbitrary X with at least two elements,

nonempty countable set Γ we make a comparative study on the collection of
generalized shift dynamical systems like (XΓ, σφ) where φ : Γ → Γ is an arbi-
trary self-map. We pay attention to sub-systems and combinations of general-
ized shifts with counterexamples regarding Devaney, exact Devaney, Li-Yorke,

e-chaoticity and P-chaoticity.
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1. Introduction

By a dynamical system (Z, f) we mean a compact metric space Z and continuous
map f : Z → Z. Different definitions of chaos have been assigned to a dynamical
system (Z, f), like Devaney chaos, Li-Yorke chaos, topological chaos etc. On the
other hand one-sided shift {1, . . . , k}N → {1, . . . , k}N

(xn)n≥1 7→(xn+1)n≥1

is one of the most famous dy-

namical systems. For nonempty set Γ, arbitrary set X with at least two elements
and self map φ : Γ → Γ the generalized shift σφ : XΓ → XΓ

(xα)α∈Γ 7→(xφ(α))α∈Γ

has been intro-

duced for the first time in [3] as a generalization of one-sided (and two-sided) shift.
For topological space X, equip XΓ with product (pointwise convergence) topology,
then σφ : XΓ → XΓ is continuous, also note to the fact XΓ is compact metrizable
if and only if X is compact metrizable and Γ is countable. So for finite discrete
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X and countable Γ we may consider generalized shift dynamical system (XΓ, σφ).
Different chaos have been studied in generalized shifts (e,g., [4]), the main aim of
this text is to study their interactions via diagram and counterexamples.
In details, in first section we have preliminaries and basic definitions, in section 2
we compare different mentioned entropies in generalized shift dynamical systems
via a diagram, in section 3 we continue our study for product and factors of gener-
alized shift dynamical systems and finally in section 4 we deal with composition of
generalized shift dynamical systems.
Let’s begin our investigations with recalling the definitions of Devaney chaos [11, 17],
exact Devaney chaos [12], distributional chaos [13], e-chaos [14], Li-Yorke chaos [10],
P-chaos [1], topological, and ω−chaos [15].

Convention 1.1. In the following text suppose (Z, f) is a dynamical system with
compact metric space (Z, d).

Convention 1.2. In the following text suppose X is a finite discrete space with at
least two elements, Γ is an infinite countable set, and self-map φ : Γ → Γ is arbitrary.
Equip XΓ with product topology and consider generalized shift σφ : XΓ → XΓ.

Devaney chaos. We say the dynamical system (Z, f) is Devaney chaotic if f :
Z → Z is sensitive to initial conditions (SIC) and [11, 17]:

TT. f : Z → Z is topological transitive, i.e. for all nonempty open subsets U, V
of Z there exists n ≥ 1 with fn(U) ∩ V ̸= ∅,

PP. the collection of all periodic points of f , Per(f), is dense in Z (where z ∈ Z
is a periodic point of f if there exists n ≥ 1 with fn(z) = z).

However according to [9], if Z does not have any isolated point, SIC is redundant
and TT+PP implies SIC.

Exact Devaney chaos. We say the dynamical system (Z, f) is exact Devaney
chaotic if it is locally eventually onto or leo (i.e., for all nonempty open subset U of
Z there exists n ≥ 1 with fn(U) = Z) and the collection of all periodic points of f ,
is dense in Z (hence exact Devaney chaotic means Devaney chaotic+leo) [12].

Li-Yorke chaos, distributional chaos, ω−chaos and topological chaos. In
the dynamical system (Z, f) we say x, y ∈ Z are:

• Li-Yorke scrambled if

lim sup
n→∞

d(fn(x), fn(y)) > 0 and lim inf
n→∞

d(fn(x), fn(y)) = 0,

• distributional scrambled if:

∃s > 0 lim inf
n→∞

|{i ∈ {0, . . . , n− 1} : d(f i(x), f i(y)) < s}|
n

= 0 ,

and

∀s > 0 lim sup
n→∞

|{i ∈ {0, . . . , n− 1} : d(f i(x), f i(y)) < s}|
n

= 1 ,

• ω−scrambled pair if (where ωf (x) = {z ∈ Z : there exists a strictly increas-
ing sequence (nk)k≥1 with lim

k→∞
fnk(x) = z}):
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– ωf (x) \ ωf (y) is uncountable,
– ωf (x) ∩ ωf (y) ̸= ∅,
– ωf (x) \ Per(f) ̸= ∅.

We say A ⊆ Z (with at least two elements) is an Li-Yorke scrambled set (resp. distri-
butional scrambled set, ω−scrambled set), if for all distinct points x, y ∈ A, x, y are
Li-Yorke scrambled pair (resp. distributional scrambled pair, ω−scrambled pair).
We say (Z, f) is Li-Yorke chaotic (resp. distributional chaotic, ω−chaotic) if it has
an uncountable Li-Yorke scrambled (resp. distributional scrambled, ω−scrambled)
set [10, 13, 15].
For open covers U ,V of Z let U ∨ V := {U ∩ V : U ∈ U , V ∈ V} and N(U) :=
min{|W| : W is a finite subcover of V}. In dynamical system (Z, f) the limit

enttop(f,U) := lim
n→∞

logN(U ∨ f−1(U) ∨ · · · ∨ f−(n−1)(U))
n

exists [16] and we call

enttop(f) := sup{enttop(f,W) : W is a finite open cover of Z} the topological entropy
of f . We say (Z, f) is topological chaotic if enttop(f) > 0.

P-chaos. In the dynamical system (Z, f) for δ, ε > 0 we say the sequence (xi)i≥0

is a δ−pseudo orbit, if for all i ≥ 0 we have d(f(xi), xi+1) < δ and we say x is an
ε−trace of (xi)i≥0 if for all i ≥ 0 we have d(f i(x), xi) < ε. We say (Z, f) has pseudo
orbit tracing property if for all ε > 0 there exists δ > 0 such that every δ−pseudo
orbit has an ε−trace. We say the system (Z, f) is P-chaotic if it has pseudo orbit
tracing property and the collection of periodic points of f , is dense in Z [1].

e-chaos. In the dynamical system (Z, f) for homeomorphism f : Z → Z is expan-
sive if there exists µ > 0 such that for all distinct x, y ∈ Z there exists n ∈ Z with
d(fn(x), fn(y)) > µ. We say the dynamical system (Z, f) is e-chaotic if f : Z → Z
is an expansive homeomorphism and the collection of all periodic points of f , is
dense in Z [14].

Remark 1.3. The generalized shift dynamical system (XΓ, σφ) is

• Devaney chaotic if and only if φ : Γ → Γ is one-to-one without periodic
points [4, Theorem 2.13],

• exact Devaney chaotic if and only if φ : Γ → Γ is one-to-one moreover
φ : Γ → Γ does not have periodic points nor infinite φ−anti orbit sequences
[4, Corollarey 3.5] (where (xn)n≥ infinite φ−anti orbit sequence if it is one-
to-one and for all n ≥ 1 we have φ(xn+1) = xn),

• Li-Yorke chaotic (resp. distributional chaotic, ω−chaotic, topological chaotic)
if and only if φ : Γ → Γ has at least a non-quasi-periodic point [2, 5, 6]
(where we say α ∈ Γ is a quasi-periodic point of φ if there exist n > m ≥ 1
with φn(α) = φm(α)),

• P-chaotic if and only if φ : Γ → Γ is one-to-one [7],
• e-chaotic if and only if φ : Γ → Γ is bijective and {{φi(α) : i ∈ Z} : α ∈ Γ}
is a finite partition of Γ [8].



88 F. AYATOLLAH ZADEH SHIRAZI, F. EBRAHIMIFAR, A. GHARAGOZLOU

2. A diagram and counterexamples

In this section we compare different mentioned entropies (in the collection of gen-
eralized shift dynamical systems with phase space XΓ) via a diagram.
Let’s consider the following classes of generalized shifts:

• C := {(XΓ, ση) : η ∈ ΓΓ},
• CLi−Yorke := {(XΓ, ση) ∈ C : (XΓ, ση) is Li-Yorke chaotic},
• CP := {(XΓ, ση) ∈ C : (XΓ, ση) is P-chaotic},
• Ce := {(XΓ, ση) ∈ C : (XΓ, ση) is e-chaotic},
• Cexact Devaney := {(XΓ, ση) ∈ C : (XΓ, ση) is exact Devaney chaotic},
• CDevaney := {(XΓ, ση) ∈ C : (XΓ, ση) is Devaney chaotic}.

Using Remark 1.3 it’s evident that

Cexact Devaney ⊆ CDevaney ⊆ CP ⊆ C

also

CDevaney ⊆ CLi−Yorke ⊆ C ,

however if (XΓ, σφ) is e-chaotic, then φ : Γ → Γ is bijective and {{φi(α) : i ∈
Z} : α ∈ Γ} is a finite partition of Γ, since Γ is infinite, there exists α ∈ Γ such
that {φi(α) : i ∈ Z} is infinite and hence α is non-quasi-periodic. Thus (XΓ, σφ) is
Li-Yorke chaotic. Therefore

Ce ⊆ CLi−Yorke .

Now we have the following diagram:

Cexact Devaney

Ce

CDevaney

CLi−Yorke

CP

C

E1

E2

E3

E4

E5

E6

E7E8

where “Ei” means counterexample (XΓ, σηi) (below).
Since Γ is infinite countable, we may suppose Γ = {xn : n ∈ Z} with distinct xns.
For i = 1, . . . , 8 define ηi : Γ → Γ with ηi(xn) = xλi(n) (n ∈ Z) for λi : Z → Z
with (pm is the mth prime number, and {yn : n ∈ Z} = Z \ {±pkn : n, k ≥ 1} with
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yn < yn+1 for all n ∈ Z):

λ1(n) =

{
n+ 1 n ≥ 0 ,
n− 1 n < 0 ,

λ2(n) = n+ 1 (n ∈ Z) ,

λ3(n) =


n+ 1 n ≥ 1 ,
0 n = 0 ,
1 n = −1 ,
n+ 1 n < −1 ,

λ4(n) =

 −pk+1
m n = −pkm, k ≥ 1 ,

pk+1
m n = pkm, k ≥ 1 ,
yk+1 n = yk, k ∈ Z ,

λ5(n) =

{
n+ 2 2|n ,
n otherwise ,

λ6(n) = −n (n ∈ Z) ,

λ7(n) = n2 (n ∈ Z) , λ8(n) = |n| (n ∈ Z) .

3. Countable products and appropriate factors

In this section we study different entropies for product and (suitable) factors in gen-
eralized shift dynamical systems. Suppose {(Zα, fα) : α ∈ Λ} is a nonempty count-

able collection (Λ is countable) of dynamical systems, then
∏
α∈Λ

Zα with product

topology is a compact metrizable space and one may consider the dynamical sys-

tem (
∏
α∈Λ

Zα,
∏
α∈Λ

fα) with
∏
α∈Λ

fα((xα)α∈Λ) = (fα(xα))α∈Λ (for (xα)α∈Λ ∈
∏
α∈Λ

Zα).

Regarding product of generalized shifts we have the following table:

⋆ ϱ(⋆)

exact Devaney for all α ∈ Λ, (XΓα , σφα) is exact Devaney chaotic
Devaney for all α ∈ Λ, (XΓα , σφα) is Devaney chaotic
e- Λ is finite and for all α ∈ Λ, (XΓα , σφα) is e-chaotic
P- for all α ∈ Λ, (XΓα , σφα) is P-chaotic
Li-Yorke there exists α ∈ Λ, such that (XΓα , σφα) is Li-Yorke chaotic

In the above table suppose Λ is a nonempty countable set
and for each α ∈ Λ, Γα is an infinite countable set and φα : Γα → Γα is an

arbitrary self-map, so for corresponding case we have

“(
∏
α∈Λ

XΓα ,
∏
α∈Λ

σφα) is ⋆ chaotic if and only if ϱ(⋆)”.

First note that (
∏
α∈Λ

XΓα ,
∏
α∈Λ

σφα) is just (X
⊔
α∈Λ

Γα
, σ ⊔

α∈Λ
φα) now use Remark 1.3

to establish the above table.
For self-map η : Γ → Γ let:

• I(η) := {A ⊆ Γ : A ̸= ∅, η(A) ⊆ A},
• J (η) := {A ∈ I : η−1(A) ⊆ A},
• O(η) := {

∪
{ηn(α) : n ∈ Z} : α ∈ Γ},

• O+(η) := {{ηn(α) : n ≥ 0} : α ∈ Γ},
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then it’s evident that O(η) ⊆ J (η) ⊆ I(η) and O+(η) ⊆ I(η). Moreover for all
A ∈ I(η) one may consider the generalized shift dynamical system (XA, ση↾A) (note
that (XA, ση↾A) is a factor of (XΓ, ση), e.g. via conjugacy XΓ → XA

(xα)α∈Γ 7→(xα)α∈A
. Now

we have the following table:

⋆ ♢ K counterexample

exact Devaney ∀ I,J ,O D1
Devaney ∀ I,J ,O D1
e- ∀ I,J D2, D3
P- ∀ I,J ,O D1
Li-Yorke ∃ I,J ,O,O+ -

In the above table for the corresponding case, (XΓ, ση) is ⋆ chaotic if and only if
♢D ∈ K(η) ((XD, ση↾D ) is ⋆ chaotic)

moreover “Di” means counterexample “i” in the blow
(these counterexamples deal with column K).

In the following items suppose Γ = {xn : n ∈ Z} with distinct xns.

(1) Consider η : Γ → Γ with

η(xn) =

{
x|n| n < 0 ,
xn+1 n ≥ 0 ,

then for all D ∈ O+, η ↾D is one-to-one without periodic points and infinite
anti orbit sequence thus (XD, ση↾D ) is exact Devaney, Devaney, and P-
chaotic, however η is not one-to-one and (XΓ, ση) is not none of exact
Devaney, Devaney, or P-chaotic.

(2) Consider η : Γ → Γ with η(xn) = xλ4(n) for λ4 : Z → Z as in the previous

section, then for all D ∈ O(η), (XD, ση↾D) is e-chaotic, however (X
Γ, ση) is

not e-chaotic.
(3) Consider η : Γ → Γ with η(xn) = x−n then O(η) = O+(η) and for all

D ∈ O(η), D is finite. For all D ∈ O(η) = O+(η), (X
D, ση↾D) is e-chaotic,

however (XΓ, ση) is not e-chaotic.

4. Iterations and compositions

In our last section we pay attention to different entropies in generalized shift dy-
namical systems. If (Z, f) and (Z, g) are dynamical systems, one may consider
dynamical system (Z, f ◦ g). In particular for all p ≥ 1, one may consider the
dynamical system (Z, fp), the following Note help us to improve our ideas on this
matter.

Note 4.1. For h : A→ A, t ∈ A, p ≥ 2, and sequence (xn)n≥1 in A we have:

1. Per(h) = Per(hp) (t is a periodic point of h : A → A if and only if it is a
periodic point of hp : A→ A),

2. t is a quasi-periodic point of h : A → A if and only if it is a quasi-periodic
point of hp : A→ A,
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3. h : A→ A is one-to-one (resp. onto) if and only if hp : A→ A is one-to-one
(resp. onto),

4. if (wn)n≥1 is an infinite h−anti orbit sequence, then (w1+np)n≥1 is an infi-
nite hp−anti orbit sequence,

5. if (wn)n≥1 is an infinite hp−anti orbit sequence, let

y1 := w1, y2 := hp−1(w2), . . . , yp = h(w2),
yp+1 := w2, yp+2 := hp−1(w3), . . . , y2p = h(w3),

...
ymp+1 := wm, ymp+2 := hp−1(wm+1), . . . , y(m+1)p = h(wm+1),

...

then (yn)n≥1 is an infinite h−anti orbit sequence,
6. consider (3) and suppose h, hp : A→ A, using {hi(t) : i ∈ Z} =

∪
{{hip(y) :

i ∈ Z} : y ∈ {t, h(t), . . . , hp−1(t)}}, the set Ξ1 := {{hi(x) : i ∈ Z} : x ∈ A}
is finite if and only if Ξp := {{hip(x) : i ∈ Z} : x ∈ A} is finite with
card(Ξp) ≤ card(Ξ1) ≤ pcard(Ξp).

Corollary 4.2. Using σpφ = σφp , Remark 1.3 and Note 4.1, for p ≥ 1, (XΓ, σφ) is

chaotic (all kinds of chaos in Remark 1.3) if and only if (XΓ, σpφ) is so.

Note 4.3. For one-to-one map h : Z → Z, the following statements are equivalent:

• there is not any infinite h−anti orbit sequence,
• for all α ∈ Z there exists n ≥ 1 such that h−n(α) = ∅ or α is a periodic
point of h.

Lemma 4.4. For ψ, η : Γ → Γ we have:

1. If (XΓ, ση ◦ σψ) is P-chaotic, then (XΓ, ση) is P-chaotic.
2. If (XΓ, ση) and (XΓ, σψ) are P-chaotic, then (XΓ, ση ◦ σψ) is P-chaotic.
3. For ψ ◦ η = η ◦ ψ, (XΓ, ση) and (XΓ, σψ) are P-chaotic if and only if

(XΓ, ση ◦ σψ) is P-chaotic.
4. Suppose ψ◦η = η◦ψ, ψ is one-to-one and (XΓ, ση) is exact Devaney chaotic,

then (XΓ, ση◦σψ) is exact Devaney chaotic. In particular if ψ◦η = η◦ψ, and
both dynamical systems (XΓ, ση) and (XΓ, σψ) are exact Devaney chaotic,
then (XΓ, ση ◦ σψ) is exact Devaney chaotic.

5. If ψ ◦ η = η ◦ ψ and (XΓ, ση ◦ σψ) is Li-Yorke chaotic, then either (XΓ, ση)
is Li-Yorke chaotic or (XΓ, σψ) is Li-Yorke chaotic.

Proof. Note that ση ◦ σψ = σψ◦η.
4) Suppose ψ◦η = η◦ψ, ψ is one-to-one and (XΓ, ση) is exact Devaney chaotic, then
η is one-to-one without any periodic point, moreover there is not any infinite η−anti
orbit sequence. Since η, ψ are one-to-one, ψ ◦η is one-to-one too. By Note 4.3, since
η is one-to-one without any periodic point and there is not any infinite η−anti
orbit sequence, for all α ∈ Γ there exists n ≥ 1 such that η−n(α) = ∅, thus
(ψ ◦ η)−n(α) = ψ−n(η−n(α)) = ∅ and Γ does not contain any infinite ψ ◦ η−anti
orbit sequence.
If α is a periodic point of ψ ◦ η, then for all n ≥ 1 there exists p ≥ 1 with α =
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(ψ ◦ η)p(α) = ηn(ηp−n(ψp(α))) and ηp−n(ψp(α)) ∈ η−n(α) which leads to the
contradiction η−n(α) ̸= ∅ for all n ≥ 1. Thus ψ ◦ η does not have any periodic
point.
5) Suppose ψ ◦ η = η ◦ ψ and both dynamical systems (XΓ, ση) and (XΓ, σψ)
are not Li-Yorke chaotic. Choose α ∈ Γ, since (XΓ, ση) is not Li-Yorke chaotic,
{ηn(α) : n ≥ 0} is finite, suppose {ηn(α) : n ≥ 0} = {β1, . . . , βp}. Since (XΓ, σψ)
is not Li-Yorke chaotic, for all i = 1, . . . , p, {ψn(βi) : n ≥ 0} is finite, hence
{ψn(βi) : n ≥ 0, 1 ≤ i ≤ p} is finite, using:

{(ψ ◦ η)n(α) : n ≥ 0} = {ψn(ηn(α)) : n ≥ 0}
⊆ {ψn(βi) : n ≥ 0, 1 ≤ i ≤ p}

the set {(ψ ◦ η)n(α) : n ≥ 0} is finite too (for all α ∈ Γ) and (XΓ, ση ◦ σψ) is not
Li-Yorke chaotic. □
Two tables. Regarding composition of generalized shifts we have the following
tables (use Lemma 4.4):

exact Devaney Devaney e- P- Li-Yorke ρ

C4, C5 C3, C2 C3, C2
⇒
C6

C3, C2 (XΓ, ση) or (XΓ, σψ)

(XΓ, ση ◦ σψ) C4, C5 C3, C2 C3, C2
⇒
C6

C3, C2 (XΓ, ση)

C1, C4 C3, C1 C3, C2 C6, C1 C3, C1 (XΓ, σψ)

C1, C4 C2, C3 C2, C3
⇐
C1

C2, C3 (XΓ, ση) and (XΓ, σψ)

For η, ψ : Γ → Γ we have the above table for studying
“if (XΓ, ση ◦ σψ) is ⋇ chaotic, then ρ is ⋇ chaotic”

and
“if ρ is ⋇ chaotic, then (XΓ, ση ◦ σψ) is ⋇ chaotic”

in the corresponding case, where “Ci” means counterexample “i” in the blow.

Also:
exact Devaney Devaney e- P- Li-Yorke

C9, C5 C3, C5 C3, C8
⇒
C6

⇒
C3

(XΓ, ση) or (XΓ, σψ)

(XΓ, ση ◦ σψ) C9, C7 C3, C7 C3, C7
⇒
C6

C3, C7 (XΓ, ση)

⇐
C7

C3, C7 C3, C7 ⇔ C3, C7 (XΓ, ση) and (XΓ, σψ)

For η, ψ : Γ → Γ with ψ ◦ η = η ◦ ψ we have the above table for studying
“if (XΓ, ση ◦ σψ) is ⋇ chaotic, then ρ is ⋇ chaotic”

and
“if ρ is ⋇ chaotic, then (XΓ, ση ◦ σψ) is ⋇ chaotic”

in the corresponding case, where “Ci” means counterexample “i” in the blow.

Note that ση ◦ σψ = σψ◦η. In the following counterexamples once more since Γ is
infinite countable, we suppose Γ = {xn : n ∈ Z} with distinct xns.

(1) Consider θ, µ : Γ → Γ with θ(xn) = x2n and µ(x2n) = x2n, µ(x2n+1) =
x|2n+1|) for n ∈ Z, then µ ◦ θ = θ : Γ → Γ is one-to-one without periodic

points and infinite anti orbit sequences, so (XΓ, σθ)(= (XΓ, σθ◦σµ)) is exact
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Devaney, Devaney, Li-Yorke and P-chaotic but µ is not one-to-one and all
points of Γ are quasi periodic points of µ, thus (XΓ, σµ) is not chaotic in
any of the above senses.

(2) Consider θ, µ : Γ → Γ with θ = · · · (x−3 x−2)(x−1 x0)(x1 x2)(x3 x4) · · · and
µ = · · · (x−2 x−1)(x0 x1)(x2 x3) · · · , then neither (XΓ, σθ) nor (XΓ, σµ) is
Li-Yorke chaotic (resp. Devaney chaotic, e-chaotic) but (XΓ, σθ ◦ σµ) is.

(3) Consider θ, µ : Γ → Γ with θ(xn) = xn+1 (n ∈ Z) and µ = θ−1, then
(XΓ, σθ) and (XΓ, σµ) are Devaney, Li-Yorke and e-chaotic, but (XΓ, σθ ◦
σµ) is not.

(4) Consider θ, µ : Γ → Γ with µ = (x0 x1 x−1 x2 x−2 x3 · · · ) and θ =
(x0 x−1 x1 x−2 x2 x−3 · · · ), then (XΓ, σθ) and (XΓ, σµ) are exact Devaney,
however −1 is a fix point of µ ◦ θ, thus (XΓ, σµ◦θ) = (XΓ, σθ ◦ σµ) is not
exact Devaney chaotic.

(5) Consider θ, µ : Γ → Γ with

θ(xn) =

{
xn+1 n ≥ 0 ,
xn n < 0 ,

µ(xn) =

{
xn n ≥ 0 ,
xn−1 n < 0 ,

θ ◦ µ(xn) = µ ◦ θ(xn) =
{
xn+1 n ≥ 0 ,
xn−1 n < 0 ,

then θ and µ have fix points, so neither (XΓ, σθ) nor (XΓ, σµ) are exact
Devaney chaotic, however (XΓ, σθ ◦ σµ) is exact Devaney chaotic.

(6) Consider θ, µ : Γ → Γ with µ(xn) = x0 for all n ∈ Z and

θ(xn) =

 xn+1 n ̸= −1, 0 ,
x0 n = 0 ,
x1 n = −1 ,

then θ ◦ µ = µ ◦ θ constant map. Hence (XΓ, σθ) is Li-Yorke chaotic, e-
chaotic and P-chaotic, however (XΓ, σθ ◦ σµ) is not chaotic in any of the
above senses.

(7) Consider η : Γ → Γ such that (XΓ, ση) is exact Devaney (resp. Devaney, Li-
Yorke) chaotic, then η◦idΓ = idΓ◦η, moreover (XΓ, ση) = (XΓ, ση ◦σidΓ) =
(XΓ, σidΓ ◦ ση) is exact Devaney (resp. Devaney, Li-Yorke, e-) chaotic, but
(XΓ, σidΓ) is not exact Devaney (resp. Devaney, Li-Yorke, e-) chaotic.

(8) Consider θ, µ : Γ → Γ with:

θ(xn) =

{
xn n is odd ,
xn+2 n is even ,

µ(xn) =

{
xn+2 n is odd ,
xn n is even ,

then neither (XΓ, σθ) nor (XΓ, σµ) are e-chaotic, however (XΓ, σθ◦µ) is e-
chaotic.

(9) Consider θ, µ : Γ → Γ with:

θ(xn) =

{
xn+1 n ≥ 0 ,
xn−1 n < 0,

µ(xn) =

{
x−n−1 n ≥ 0,
xn n < 0,

then (XΓ, σθ) is exact Devaney chaotic and θ ◦ µ = µ ◦ θ however neither
(XΓ, σµ) nor (X

Γ, σθ ◦ σµ) is exact Devaney chaotic.
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