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Abstract. One-way analysis of covariance is a popular and common statistical

method, wherein the equality of the means of several random variables which

have a linear relationship with a random mathematical variable, is tested. In

this study, a method is presented to improve the one-way analysis of covari-

ance when there is an uncertainty in accepting the statistical hypotheses. The

method deals with a fuzzy test statistic which is produced by a set of confidence

intervals. Finally an example is provided for illustration.
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1. Introduction and background

Analysis of variance is a common and popular method used in the analysis of

experimental designs. It has many applications in agricultural sciences and indus-

trial engineering. Many authors have studied this topic from various aspects for

fuzzy environments. For instance, in [1] one-way and two-way analysis of variance
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using a set of confidence intervals for the variance parameter has been carried out.

In [10] analysis of variance for fuzzy data is discussed by considering the α-cuts of

fuzzy data via introducing the pessimistic and optimistic degrees and solving an

optimization problem. One-way analysis of variance is presented in [6] to a case

where observed data are fuzzy observations.

One-way analysis of covariance is an extension of analysis of variance. In this

analysis, the equality of the means of several random variables are investigated

which have a linear relationship with a random mathematical variable. Sometimes,

in one-way analysis of covariance, the observed value of test statistic is close to

the quantiles of statistical distributions and there is uncertainty with regard to

accepting the null hypothesis H0. In this paper an approach is presented to deal

with this problem.

Buckley [2] introduced a method for estimating the parameters in statistical mod-

els. His method produces a fuzzy estimator using a set of confidence intervals for the

required parameter. Using this estimator, a fuzzy test statistic and, subsequently,

fuzzy critical values are produced. This fuzzy test statistic is used to perform the

statistical hypotheses test. This issue has been studied by several other authors in

different ways. In [3] an explicit and unique membership function has been derived

for fuzzy estimators. In [9] Buckley’s method is extended to the case where the

statistical hypotheses are fuzzy. In [4] it is shown that when the crisp test statis-

tic distribution is not symmetric, Buckley’s method results in producing a fuzzy

estimation where the membership degree for the point estimation of the required

parameter never equals one. A solution to overcome this weakness is provided in [4]

and another solution is presented in [1]. In this article we use the solution presented

in [4]. It has been shown that this solution reduces to the Buckley’s method when

crisp test statistic distribution is symmetric.

The rest of this paper is organized as follows. In section 2, the necessary concepts

of fuzzy sets theory are discussed. In section 3, a brief review of one-way analysis of

covariance is presented. In section 4, fuzzy test statistics and fuzzy critical values

are produced and based on them decision rules are presented. In section 5, an

example is provided to illustrate the method. Finally, a conclusion is provided in

section 6.
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2. Preliminaries

In this section we review some concepts of fuzzy sets theory. Let X be a universal

set and F (X) = {Ã|Ã : X → [0, 1]}. Any Ã ∈ F (X) is called a fuzzy set on X. The

α-cut of Ã is the crisp set Ã[α] = {x ∈ X|Ã(x) ≥ α}, for α ∈ (0, 1]. Moreover, Ã[0]

is separately defined [2] as the closure of the union of all the Ã[α] for 0 < α ≤ 1.

Ã ∈ F (R) is a fuzzy number if:

(i) there is a unique x0 ∈ R with Ã(x0) = 1,

(ii) the α-cuts of Ã are closed and bounded intervals on R for any α ∈ (0, 1],

where R is the set of all real numbers. In other words for every fuzzy number Ã, we

have Ã[α] = [a1(α), a2(α)] for all α which describes the closed, bounded, intervals

as function of α.

Buckley’s method results in producing a fuzzy number to estimate the required

parameter from a statistical distribution whose α-cuts are (1− α)100% confidence

intervals, α ∈ [0.01, 1]. The following definition is given, to clarify the discussion

that is presented in this paper.

Definition 2.1. A fuzzy number θ̃ is an unbiased fuzzy estimator for parameter θ

from a statistical distribution if:

(i) the α-cuts of θ̃ are (1−α)100% confidence intervals for θ, with α ∈ [0.01, 1]

and θ̃[α] = θ̃[0.01] for α ∈ [0, 0.01),

(ii) if θ̂ is an unbiased point estimator for θ then θ̃(θ̂) = 1.

Similar to conventional statistics, a fuzzy estimator is a rule for calculating a fuzzy

estimation of an unknown parameter based on observed data: thus the rule and its

result (the fuzzy estimation) are distinguished. For a fuzzy estimation an explicit

and unique membership function is given by the following theorem [3].

Theorem 2.1. Suppose that X1, X2, . . . , Xn is a random sample of size n from a

distribution with unknown parameter θ. If, based on observation x1, x2, . . . , xn, we

consider [θ1(α), θ2(α)], as a (1 − α)100% confidence interval for θ, then the fuzzy

estimation of θ is a fuzzy set with the following unique membership function

θ̃(u) = min
{
θ−1
1 (u), [−θ2]−1(−u), 1

}
.
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3. One-way analysis of covariance

In this section one-way analysis of covariance is briefly reviewed, for more details

see [5, 8]. For the linear model yij = µi +β(xij− x̄..)+εij , where εij ’s have a normal

distribution with an unknown variance σ2 and mean 0, xij ’s are random variables

which have a linear relationship with yij ’s, x̄.. =
∑a

i=1

∑ni

j=1 xij/
∑a

i=1 ni, β and

µi’s are unknown parameters, for i = 1, 2, . . . , a and j = 1, 2, . . . , ni.

Taking into account the above linear model we are interested to test the following

statistical hypotheses:

(1)

{
H0 : β = 0

H1 : β 6= 0

and

(2)

{
H0 : µ1 = µ2 = . . . = µa

H1 : not all µi’s are equal.

To simplify the discussion we use the following notations.

Syy =
∑a

i=1

∑ni

j=1(yij − ȳ..)2, Sxx =
∑a

i=1

∑ni

j=1(xij − x̄..)2,

Eyy =
∑a

i=1

∑ni

j=1(yij − ȳi.)2, Exx =
∑a

i=1

∑ni

j=1(xij − x̄i.)2,

Sxy =
∑a

i=1

∑ni

j=1(yij − ȳ..)(xij − x̄..), SSE = Eyy − (E2
xy/Exx),

Exy =
∑a

i=1

∑ni

j=1(yij − ȳi.)(xij − x̄i.), SSE
′
= Syy − (S2

xy/Sxx)

and

N =
∑a

i=1 ni,

where “ . ” and “ − ” represent the mean on one or two subscripts, for instance

x̄i. =
∑ni

j=1 xij/ni.

Now the critical region based on generalized likelihood ratio (GLR) method [8]

for testing hypotheses in (1) is F1 ≥ k, where k is a real number and

F1 =
E2

xy/Exx

SSE/(N − a− 1)

The pivotal quantity SSE/σ2 has the distribution χ2 with N − a − 1 degree of

freedom and E2
xy/(σ2Exx), under the null hypothesis H0 in (1), has the distribution

χ2 with 1 degree of freedom. So both of these pivotal quantities can be used to
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produce confidence intervals for σ2. It can be shown that, under the null hypothesis

H0 in (1), F1 has the distribution F with 1 and N − a− 1 degrees of freedom. The

null hypothesis H0 : β = 0 is rejected if the observed value of F1 statistic is equal

or greater than F1−γ,1,N−a−1, where F1−γ,1,N−a−1 is (1 − γ)’th quantile of the

distribution F with with 1 and N − a − 1 degrees of freedom and γ ∈ (0, 1) is the

significance level of testing.

Also, the critical region based on GLR method for testing hypotheses in (2) is

F2 ≥ k, where k is a real number and

F2 =
(SSE

′ − SSE)/(a− 1)
SSE/(N − a− 1)

The mathematical term (SSE
′−SSE)/σ2, under the null hypothesis H0 in (2), has

the distribution χ2 with a − 1 degree of freedom; and this pivotal quantity can be

used to produce the confidence intervals for the parameter σ2. It can be shown that,

under the hypothesis H0 in (2), F2 has the distribution F with a− 1 and N −a− 1

degrees of freedom and the null hypothesis H0 : µ1 = µ2 = . . . = µa is rejected if the

observed value of F2 statistic is equal or greater than F1−γ,a−1,N−a−1, (1 − γ)’th

quantile of the distribution F with a− 1 and N − a− 1 degrees of freedom.

Remark 3.1. Note that E2
xy/Exx, under the hypothesis H0 in (1), (SSE

′ −
SSE)/(a − 1), under the hypothesis H0 in (2) and SSE/(N − a − 1) are unbi-

ased point estimators of the parameter σ2.

4. One-way analysis of covariance based on fuzzy test statistic

In this section we first consider the issue of testing the statistical hypotheses in

(1). Generally the symbols χ2
α,ν and Fα,ν1,ν2 will be used to represent the α’the

quantile of the distribution χ2 with ν degree of freedom and the distribution F with

ν1 and ν2 degrees of freedom, respectively.

Theorem 4.1. In one-way analysis of covariance model, if we consider SSE/(N −
a − 1) as an unbiased point estimator for parameter σ2, then an unbiased fuzzy

estimator for σ2 is σ̃2 with α-cuts σ̃2[α], where

σ̃2[α] =


[
SSE/χ2

1−α+αp′,N−a−1, SSE/χ2
αp′,N−a−1

]
0.01 ≤ α ≤ 1

σ̃2[0.01] 0 ≤ α < 0.01
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and p′ is obtained from the relation χ2
p′,N−a−1 = N − a− 1.

Proof. Based on the pivotal quantity SSE/σ2, a (1 − α)100% confidence interval

for σ2 is
[
SSE/χ2

1−α+αp,N−a−1, SSE/χ2
αp,N−a−1

]
for any α ∈ (0, 1) and p ∈ (0, 1).

When α = 1 and p = p′, satisfying χ2
p′,N−a−1 = N−a−1, this interval becomes the

point SSE/(N − a− 1) the unbiased point estimator for σ2. Now fixing p = p′ and

varying α from 0.01 to 1 we obtain nested intervals which are the α-cuts of a fuzzy

number, say σ̃2. Finally, σ̃2[α] = σ̃2[0.01] for α ∈ [0, 0.01), we have the unbiased

fuzzy estimator σ̃2 for σ2. �

Lemma 4.1. The membership function of fuzzy estimator σ̃2 in Theorem 4.1 is as

follows:

σ̃2(x) =



1−G(SSE/x)
1−p′

SSE
χ2

0.99+0.01p′,N−a−1
≤ x ≤ SSE

N−a−1

G(SSE/x)
p′

SSE
N−a−1 ≤ x ≤ SSE

χ2
0.01p′,N−a−1

0 otherwise,

where G is the cumulative distribution function of a χ2 variable with N − a − 1

degree of freedom.

Proof. By Theorem 4.1, we have θ1(α) = SSE/χ2
1−α+αp′,N−a−1 for α ∈ [0.01, 1].

Hence, θ−1
1 (x) = [1 − G(SSE

x )]/(1 − p′). Also θ2(α) = SSE/χ2
αp′,N−a−1, therefore

[−θ2]−1(−x) = G(SSE
x )/p′. Based on Theorem 2.1, we have σ̃2(x) = min{θ−1

1 (x), [−θ2]−1(−x), 1}.
So,

σ̃2(x) =



1−G(SSE/x)
1−p′

SSE
χ2

0.99+0.01p′,N−a−1
≤ x ≤ SSE

N−a−1

G(SSE/x)
p′

SSE
N−a−1 ≤ x ≤ SSE

χ2
0.01p′,N−a−1

0 otherwise,

�

Theorem 4.2. Under the null hypothesis H0 : β = 0, if we consider E2
xy/Exx as

an unbiased point estimator for parameter σ2, then an unbiased fuzzy estimator for
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σ2 is σ̃2
H01

with α-cuts σ̃2
H01

[α], where

σ̃2
H01

[α] =


[
E2

xy/(Exxχ2
1−α+αp′′,1), E

2
xy/(Exxχ2

αp′′,1)
]

0.01 ≤ α ≤ 1

σ̃2
H01

[0.01] 0 ≤ α < 0.01

and p′′ is obtained from the relation χ2
p′′,1 = 1.

Proof. We use the pivotal quantity E2
xy/(Exxσ2). The proof is now similar to that

of Theorem 4.1. �

Theorem 4.3. The fuzzy test statistic for testing H0 : β = 0 against H1 : β 6= 0 is

F̃1 with α-cuts

F̃1[α] =


[
(f1)1(α)F1, (f1)2(α)F1

]
0.01 ≤ α ≤ 1

F̃1[0.01] 0 ≤ α < 0.01

where

(f1)1(α) = χ2
αp′,N−a−1

/ [
(N − a− 1)χ2

1−α+αp′′,1

]
and

(f1)2(α) = χ2
1−α+αp′,N−a−1

/ [
(N − a− 1)χ2

αp′′,1

]
Proof. Using the equality F̃1[α] = σ̃2

H01
[α]

/
σ̃2[α] and interval arithmetic, fuzzy test

statistic follows from Buckley’s method. �

Note 4.1. Since the test statistic is a fuzzy number, then critical value is also a

fuzzy number with α-cuts

C̃V 1[α] =


[
(cv1)1(α), (cv1)2(α)

]
0.01 ≤ α ≤ 1

C̃V1[0.01] 0 ≤ α < 0.01

where

(cv1)1(α) = (f1)1(α)F1−γ,1,N−a−1

is obtained from the relation P
[
(f1)1(α)F1 > (cv1)1(α)

]
= γ, where γ ∈ (0, 1) is the

significance level of the test. Similarly, we obtain (cv1)2(α) = (f1)2(α)F1−γ,1,N−a−1.
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Decision rule 4.1. The decision rule is considered as follows. After observing the

data,

(i) if F1−γ,1,N−a−1 ≤ F1, then the hypothesis H0 : β = 0 is rejected,

(ii) if F1−γ,1,N−a−1 > F1, then the area A1 (shown in Figure 1) and also AT

the total area under the triangle F̃1 are calculated. If A1/AT ≤ φ, then

the null hypothesis H0 : β = 0 is accepted. Otherwise it is rejected, where

φ ∈ [0, 1], which depends on the decision maker desire. In this paper we set

φ = 0.3. Note that Figure 1 is not drawn to scale and only illustrates our

decision rule.

Figure 1. F̃1, C̃V 1 and area A1

In the sequel we consider testing the statistical hypotheses in (2) based on a fuzzy

test statistic.

Theorem 4.4. Under the null hypothesis H0 : µ1 = µ2 = . . . = µa, If we consider

(SSE
′ − SSE)/(a − 1) as an unbiased point estimator for parameter σ2, then an

unbiased fuzzy estimator for σ2 is σ̃2
H02

with α-cuts σ̃2
H02

[α], where

σ̃2
H02

[α] =


[

SSE
′
−SSE

χ2
1−α+αp′′′,a−1

, SSE
′
−SSE

χ2
αp′′′,a−1

]
0.01 ≤ α ≤ 1

σ̃2
H02

[0.01] 0 ≤ α < 0.01
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and p′′′ is obtained from the relation χ2
p′′′,a−1 = a− 1.

Proof. We use pivotal quantity (SSE
′−SSE)/σ2. The proof is now similar to that

of Theorem 4.1. �

Theorem 4.5. The fuzzy test statistic for testing H0 : µ1 = µ2 = . . . = µa against

H1 : not all µi’s are equal, is F̃2 with α-cuts

F̃2[α] =


[
(f2)1(α)F2, (f2)2(α)F2

]
0.01 ≤ α ≤ 1

F̃2[0.01] 0 ≤ α < 0.01

where

(f2)1(α) =
[
(a− 1)χ2

αp′,N−a−1

] / [
(N − a− 1)χ2

1−α+αp′′′,a−1

]
and

(f2)2(α) =
[
(a− 1)χ2

1−α+αp′,N−a−1

] / [
(N − a− 1)χ2

αp′′′,a−1

]
Proof. Using the equality F̃2[α] = σ̃2

H02
[α]

/
σ̃2[α] and interval arithmetic, fuzzy test

statistic follows from Buckley’s method. �

Note 4.2. Similar to Note 4.1, the critical value is a fuzzy number with α-cuts

C̃V 2[α] =


[
(f2)1(α)F1−γ,a−1,N−a−1, (f2)2(α)F1−γ,a−1,N−a−1

]
0.01 ≤ α ≤ 1

C̃V 2[0.01] 0 ≤ α < 0.01

Decision rule 4.2. The final decision about accepting or rejecting H0 : µ1 = µ2 =

. . . = µa is considered as follows. After observing data,

(i) if F1−γ,a−1,N−a−1 ≤ F2, then the hypothesis H0 is rejected.

(ii) if F1−γ,a−1,N−a−1 > F2, then the area A1 (similar to A1 in Figure 1 for De-

cision rule 4.1) and also the total area AT under the graph F̃2 are calculated.

Now, if A1/AT ≤ φ then the null hypothesis H0 is accepted. Otherwise it

is rejected, where φ = 0.3.

The example presented in the next section is an appropriate example to illustrate

this discussion, which is quoted from [5]. The software R is used to perform the

calculation [7].
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5. A numerical example

An example is quoted from [5] that includes an experiment performed to de-

termine if there is a difference in the breaking strength of a monofilament fiber

produced by three different machines for a textile company. Clearly the strength of

the fiber is also affected by its thickness. However the strength of a fiber is related

to its diameter, with thicker fibers being generally stronger than thinner ones. A

random sample of five fiber specimens is selected from each machine. The fiber

strength (y) and the corresponding diameter (x) for each specimen are shown in

Table 1. The one-way analysis of covariance model is as follows:

yij = µi + β(xij − x̄..) + εij , for i = 1, 2, 3 and j = 1, 2, . . . , 5.

Here, we have F1 = 69.969 and F2 = 2.611. Since, F0.9,1,11 = 3.225 for γ = 0.1.

So by Decision rule 4.1, the null hypothesis H0 : β = 0 is rejected.

Since F0.9,2,11 = 2.860, the values of F1−γ,a−1,N−a−1 and F2, for γ = 0.1, are

close to each other and in conventional statistics we are uncertain to accept the

hypothesis H0 : µ1 = µ2 = µ3. Therefore, we use the method presented in this

paper for testing the statistical hypotheses in (2) based on a fuzzy test statistic.

We have SSE
′
= 41.270 and SSE = 27.986. Therefore, based on Theorem 4.1

an unbiased fuzzy estimation for σ2 is a fuzzy number with α-cuts

σ̃2[α] =


[
27.986/χ2

1−α+α0.557,11, 27.986/χ2
α0.557,11

]
0.01 ≤ α ≤ 1

σ̃2[0.01] 0 ≤ α < 0.01

and p′ = 0.557 is obtained from the relation χ2
p′,11 = 11.

So, by Lemma 4.1, the membership function of the unbiased fuzzy estimator is given

as follows:

σ̃2(x) =



1−G(27.986/x)
1−0.557

27.986
χ2

0.99+0.01(0.557),11
≤ x ≤ 27.986

11

G(27.986/x)
0.557

27.986
11 ≤ x ≤ 27.986

χ2
0.01(0.557),11

0 otherwise,

where G is the cumulative distribution function of the distribution χ2 with 11 degree

of freedom as depicted in Figure 2.
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Table 1. Breaking Strength Data ( y =strength in pounds and

x = diameter in 10−3 inches)

Machine 1 Machine 2 Machine 1

y x y x y x

36 20 40 22 35 21

41 25 48 28 37 23

39 24 39 22 42 26

42 25 45 30 34 21

49 32 44 28 32 15

Also, an unbiased fuzzy estimator for σ2 based on Theorem 4.4, under the null

hypothesis H0 : µ1 = µ2 = µ3, is a fuzzy number with α-cuts as follows:

σ̃2
H02

[α] =


[
13.284/χ2

1−α+α0.632,2, 13.284/χ2
α0.632,2

]
0.01 ≤ α ≤ 1

σ̃2
H02

[0.01] 0 ≤ α < 0.01

and p′′′ = 0.632 is obtained from the relation χ2
p′′′,2 = 2.

By Theorem 4.5 and Note 4.2, the fuzzy test statistic F̃2 and the fuzzy critical

value C̃V 2, with γ = 0.1 and F2 = 2.611, are fuzzy numbers with the following

α-cuts:

F̃2[α] =


[

χ2
α0.557,11

χ2
1−α+α0.632,2

0.475,
χ2

1−α+α0.557,11

χ2
α0.632,2

0.475
]

0.01 ≤ α ≤ 1

F̃2[0.01] 0 ≤ α < 0.01

and

C̃V 2[α] =


[

χ2
α0.557,11

χ2
1−α+α0.632,2

0.52,
χ2

1−α+α0.557,11

χ2
α0.632,2

0.52
]

0.01 ≤ α ≤ 1

C̃V 2[0.01] 0 ≤ α < 0.01

The graphs of these fuzzy numbers are shown in Figure 3.

The intersection between the vertical line F0.9,2,11 = 2.860 and the right-hand

side F̃2 is obtained as a point α∗ = (2.86, 0.959) as shown in Figure 3. The area

A1 ' 29.5208 for α ∈ [0.01, 0.959] and AT ' 31.15 for α ∈ [0.01, 1]. Hence,

A1/AT ' 0.9478. Since A1/AT > φ = 0.3, the hypothesis H0 is certainly rejected.
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Figure 2. Fuzzy estimation for σ2. Figure 3: F̃2, C̃V 2 and

point α∗

6. Conclusions

In this paper Buckley’s method is applied to a one-way analysis of covariance and

used for testing the statistical hypotheses when there is an uncertainty in accepting

or rejecting the hypotheses.

This method can be used for other linear models; and an interesting topic for

research is the study of this method on one-way analysis of covariance when the

hypotheses are fuzzy.
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