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Abstract. In this paper, we study the properties of some classes of quo-

tient order-homomorphisms, as product stable in the category of topolog-

ical fuzzes. We define the concept of a bi-quotient order-homomorphism
and show that for Hausdorff topological fuzzes, a quotient order-homomorphism

f : L1 → L2 is product stable if and only if f is bi-quotient and L2 is a

core compact topological fuzz.
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1. Introduction

In 1992, Wang introduced the theory of topological molecular lattices as a
generalization of ordinary topological spaces, fuzzy topological spaces and L-
fuzzy topological spaces in terms of closed elements, molecules, remote neigh-
bourhoods and generalized order-homomorphisms [21]. Then, many authors
characterized some topological notions in such spaces, such as convergence the-
ories of molecular nets or ideals [3, 5], separation axioms [6, 10], generalized
topological molecular lattices [9, 20] and other notions.

Topological fuzzes are an important class of topological molecular lattices
for studying fuzzy topological spaces [12]. The category of all fuzzes with their
homomorphisms is denoted by Fuzz, and the category of all topological fuzzes
with their homomorphisms is denoted by TopFuzz. It is well known that these
categories are both complete and cocomplete, and some categorical structures
of them were introduced by many authors [4, 8, 12, 23]. The category Top of
all topological spaces, as a full subcategory of TopFuzz, is a reflective and
co-reflective subcategory, as stated in [15,16]. So TopFuzz is a large category
containing Top but it is not a cartesian closed category. Recall that an object
A of a category C with finite products is called exponentiable if the product
functor A × − : C → C has a right adjoint. If all the objects of C are
exponentiable, then C is called cartesian closed [1]. Some characterizations
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of the exponentiable objects in TopFuzz and the category of all topological
molecular lattices were introduced in [2, 14].

There are some characterizations of product stable quotient maps in Top.
In particular, a topological space X is exponentiable if and only if the identity
map idX : X → X is product stable, i.e., the product map idX × g is quotient
for every quotient map g [7, 11, 17, 18]. A quotient order-homomorphism f is
called product stable if the product order-homomorphism f ⊗ g is quotient
for every quotient order-homomorphism g. In this paper, we present some
characterizations of product stable quotient order-homomorphisms. We first
give some preliminaries. In section 3, we define the concept of a bi-quotient
order-homomorphism and show that for Hausdorff topological fuzzes, a quo-
tient order-homomorphism f : L1 → L2 is product stable if and only if f
is bi-quotient and L2 is a core compact topological fuzz in the sense of Ak-
barpour and Mirhosseinkhani [2]. In section 4, we introduce some notions as
core compact order-homomorphisms and locally compact topological fuzzes and
show that for locally compact Hausdorff topological fuzzes, a quotient order-
homomorphism f is product stable if and only if it is core compact. For general
categorical background we refer to [1].

2. Preliminaries

In this section, we recall some definitions and properties of fuzzes and topo-
logical fuzzes.

An element a of a lattice L is called coprime, if a ≤ b ∨ c implies a ≤ b or
a ≤ c, for every b, c ∈ L. We denote by M(L) the set of all non-zero coprime
elements of L. Non-zero coprime elements are also called molecules. If F is
a completely distributive complete lattice, then F is ∨-generated by the set
M(F ), i.e., every element of F is a join of some elements of M(F ). Thus, a
completely distributive complete lattice is called a molecular lattice [21].

Definition 2.1. [12] A fuzz is a pair (L, ′) consisting of a molecular lattice
L and order-reversing involution ′ : L→ L, that is, x ≤ y if and only if y′ ≤ x′
and x′′ = x for all x, y ∈ L.

Definition 2.2. [12] A topological fuzz is a triple (L, ′, τ) such that (L, ′) is
a fuzz and τ ⊆ L is a topology, i.e., it is closed under finite meets, arbitrary
joins and 0, 1 ∈ τ , where 0 and 1 are the smallest and the greatest elements of
L, respectively. Every element of a topology τ is called open and every element
of τ ′ is called closed, where τ ′ := {a′ | a ∈ τ}.

Let f : F → G be a mapping between complete lattices such that preserves

arbitrary joins. Then f has a right adjoint and denoted by f̂ . Moreover,

f̂(y) =
∨
{x ∈ F | f(x) ≤ y} for every y ∈ G.

Definition 2.3. [22] A mapping f : (L1,
′)→ (L2,

′) between fuzzes is called

an order-homomorphism, if f preserves arbitrary joins and f̂ preserves ′.
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Definition 2.4. [12] An order-homomorphism f : (L1,
′, τ) → (L2,

′, η) be-

tween topological fuzzes is said to be continuous if b ∈ η implies f̂(b) ∈ τ .

An extra order � on a complete L is defined by a � b, if for every subset
S ⊆ L, b ≤ ∨S implies that there exists s ∈ S such that a ≤ s [15].

Theorem 2.5. [21] A complete lattice L is a molecular lattice if and only if
b = ∨� (b) = ∨(�(b) ∩M(L)) for every b ∈ L, where �(b) = {a ∈ L | a� b}.
Remark 2.6. [23] The binary product of two topological fuzzes (L1,

′, τ1) and
(L2,

′, τ2) is as follows: L1⊗L2 = {D ⊆ L1×L2 | D =
⋃

(x,y)∈D �(x)×�(y)},
D′ =

⋂
(x,y)∈D{(�(x′) × �(1)) ∪ (�(1) × �(y′))} for every D ∈ L1 ⊗ L2. The

topology of L1 ⊗ L2 is generated by the subbase {π̂1(x) | x ∈ τ1} ∪ {π̂2(y) |
y ∈ τ2}, where the projection order-homomorphisms π1 and π2 are defined by
π1(D) =

∨
{x ∈ L1 | ∃y ∈ L2, (x, y) ∈ D} and π2(D) =

∨
{y ∈ L2 | ∃x ∈

L1, (x, y) ∈ D}.
Let (L, ′, τ) be a topological fuzz. A binary relation � on L is defined by

a � b, if for every subset A ⊆ τ , b ≤ ∨A implies that there exists a finite
subset D of A such that a ≤ ∨D [2].

Definition 2.7. [2] A topological fuzz (L, ′, τ) is called core compact if b =∨
{a ∈ τ | a� b} for every b ∈ τ .

Theorem 2.8. [15] Top is a reflective and coreflective full subcategory of
TopFuzz via the embedding power functor ρ : Top → TopFuzz defined by
ρ(X, τ) = (ρ(X), τ), where ρ(X) is the power set of X and involution on ρ(X)
is the subset complement.

Remark 2.9. [11] A topological space X is exponentiable in Top if and only
if it is core compact, in the sense that any given neighbourhood V of a point
x of X contains an open neighbourhood U of x with the property that every
open cover of V has a finite subcover of U . Thus, a topological space X is core
compact if and only if ρ(X) is a core compact topological fuzz.

Definition 2.10. [12] An element a of a topological fuzz L is said to be
compact if a� a, and L is called compact if every its closed element is compact.

Definition 2.11. [13] A topological fuzz L is called T1 if the following condi-
tions hold:

(1) L is T0, i.e., every a ∈ L can be written in the form a =
∧
i∈I

∨
j∈Ji uij ,

where uij is open or closed for every i ∈ I and j ∈ Ji,
(2) L is R0, i.e., every open element of L is a supremum of closed elements.

Definition 2.12. [13] A topological fuzz L is called Hausdorff (T2) if the
following conditions hold:

(1) L is T0,
(2) L isR1, i.e., every a ∈ L can be written in the form a =

∧
i∈I

∨
j∈Ji uij =∧

i∈I
∨
j∈Ji ūij , where uij is open and ūij is the closure of uij for every

i ∈ I and j ∈ Ji.
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3. Product stability

In this section, we define the concept of a bi-quotient order-homomorphism
and give a characterization of product stable quotient order-homomorphisms
by this concept. Similar to topological maps, a surjective order-homomorphism

f : (L1,
′, τ1) → (L2,

′, τ2) is called quotient, if τ2 = {a ∈ L2 | f̂(a) ∈ τ1}. A
quotient order-homomorphism f : L1 → L2 is called product stable, if f ⊗ g is
quotient for every quotient order-homomorphism g.

Let (L, ′, τ) be a topological fuzz and a ∈ L. The interior of a is denoted
by int(a), where int(a) =

∨
{t ∈ τ | t ≤ a} . We say that a is a neighbourhood

of an element m ∈M(L), if m ∈ �(int(a)). Also, the element
∧
{t ∈ τ | a ≤ t}

is denoted by aF.

Theorem 3.1. Let f : (L1,
′, τ1) → (L2,

′, τ2) be a continuous surjective
order-homomorphism. Then the order-homomorphism f

⊗
idZ : L1

⊗
Z →

L2

⊗
Z is quotient for every identity order-homomorphism idZ if and only if

f is quotient and satisfies the following condition:
Given m ∈M(L2), a neighbourhood v of m, and an open covering {bα}α∈Λ of

f̂(v), there exists a finite set {α1, ..., αn} ⊂ Λ such that m ∈ int({f(bα1)∨ ...∨
f(bαn

)}F).

Proof. Let m ∈M(L2), m ∈ �(int(v)) and f̂(v) ≤
∨
α∈Λ bα. We may without

loss of generality suppose v to be open and bα = bα ∧ f̂(v), i.e., bα ≤ f̂(v).
Let Z = ρ(τ2) be the power set of τ2, and for each α ∈ Λ set hα = {W ∈ Z |
f(bα) ≤ w,∀w ∈ W}. Note that v ∈ hα for every α. Let C be the filter on Z
generated by all the hα for α ∈ Λ, and give Z a topology by taking q ∈ τZ if
and only if either v /∈ q or q ∈ C. In L1

⊗
Z consider the following subset:

S =
⋃
{�(p)× {a} | p ∈M(L1), a ∈ τ2, f(p) ∈ �(a)}.

We show that S is open in L1

⊗
Z. Let �(p) × {a} ≤ S for a ∈ τ2 and

p ∈M(L1). We consider two cases: a = v or not. First let a 6= v and set D =

{b | a ≤ b}−{v}. It is obvious that D ∈ τZ and �(p)×{a} ≤ π̂1(f̂(a))∧ π̂2(D).

On the other hand, if �(p′)×{a′} ≤ π̂1(f̂(a))∧π̂2(D) for a′ ∈ τ2 and p′ ∈M(L1)

then f(p′) ∈ �(a′) and so �(p′)× {a′} ≤ S. Therefore π̂1(f̂(a)) ∧ π̂2(D) ≤ S,
which shows that S is open.

Now, let a = v. Since f(p) ∈ �(a), there is α0 ∈ Λ such that p ≤ bα0 . Hence
{v} ∈ hα0 and �(p)×{v} ≤ π̂1(bα0)∧ π̂2(hα0) ≤ S. Thus S is open in L1

⊗
Z.

It is easy to check that S is the inverse image under f ⊗ idZ of the subset

T =
⋃
{�(y)× {a} | y ∈ �(a) ∩M(L2), a ∈ τ2}.

Thus T is open because f ⊗ idZ is quotient. Since �(m)× {v} ≤ T , there are

open sets O ∈ τ2 and
⋂i=n
i=1 hαi ∈ τz such that

�(m)× {v} ≤ π̂1(O)× π̂2(hα1 ∩ ... ∩ hαn) ≤ T.
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On the other hand, {O} ⊆
⋂i=n
i=1 hαi . In other word, if w ∈ τ2 and f(bα1) ∨

... ∨ f(bαn
) ≤ w, then {w} ∈ hα1

∩ ... ∩ hαn
and so m ≤ O ≤ w. Therefore

m ∈ int((f(bα1
) ∨ ... ∨ f(bαn

))F).

Conversely, Let B ⊆ L2⊗Z such that C = ( ̂f ⊗ idZ)(B) be open in L1⊗Z.
It is suffices to show that B is open. Suppose y ∈M(L2), z ∈M(Z), we prove
that there exists O ∈ τL2⊗Z such that �(y) × �(z) ≤ O ≤ B. For d ∈ M(Z)
we define

Cd :=
∨
{m ∈M(L1) | �(m)×�(d) ≤ C}

and

Bd :=
∨
{η ∈M(L2) | �(η)×�(d) ≤ B}.

It is easy to check that Cd = f̂(Bd). Then Cd is open because C is open, and
hence Bd is open because f is quotient. For each x ∈ Cz, �(x)×�(z) ≤ C, so
there are open sets tx ∈ τ1 and ux ∈ τ2 such that x ≤ tx, z ≤ ux, and

�(x)×�(z) ≤ π̂1(tx) ∧ π̂2(ux) ≤ C.

Then Cz = f̂(Bz) ≤
∨
x∈Cz

tx and y ≤ Bz. Thus by hypothesis there are

x1, ..., xn ∈ Cz such that y ∈ int((f(tx1) ∨ ... ∨ f(txn))F).
Set O = �(int((f(tx1) ∨ ... ∨ f(txn))F)) × �(ux1 ∧ ... ∧ uxn). If d ∈ �(ux1 ∧
... ∧ uxn

), then x ≤ txi
≤ Cd for 1 ≤ i ≤ n, and so f(txi

) ≤ f(Cd) =
Bd. Thus f(tx1

) ∨ ... ∨ f(txn
) ≤ Bd and since Bd is open, it follows that

int(((f(tx1
) ∨ ... ∨ f(txn

))F) ≤ Bd. Hence �(y) × �(z) ≤ O ≤ B, which
completes the proof. �

Theorem 3.2. [2] Let L be a topological fuzz. Then the following statements
are equivalent:

(1) L is exponentiable.
(2) L is core compact.
(3) f

⊗
idL : L1

⊗
L → L2

⊗
L is quotient for every quotient order-

homomorphism f : L1 → L2.

Theorem 3.3. A quotient order-homomorphism f : L1 → L2 is product stable
if and only if L2 is core compact and the product map f

⊗
idZ is quotient for

every identity order-homomorphism idZ .

Proof. Let f : L1 → L2 be a product stable quotient order-homomorphism.
Then idL2

⊗
f is quotient and so L2 is core compact by Theorem 3.2. Con-

versely, for every quotient order-homomorphism g : Z → Y , f
⊗
g = (idL2

⊗
g) ◦ (f ⊗ idZ). Since L2 is core compact, by Theorem 3.2, idL2

⊗ g is quotient.
On the other hand, by hypothesis f

⊗
idZ is quotient. Thus f

⊗
g is quotient

for every quotient order-homomorphism g. �

By Theorems 3.1, 3.2 and 3.3, we have the following result.

Corollary 3.4. A quotient order-homomorphism f : L1 → L2 is product stable
if and only if the following statements hold:
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(1) L2 is core compact.
(2) For every y ∈ M(L2), every neighbourhood v of y, and every open

covering {ui}i∈I of f̂(v), there exists a finite subset F of I such that
y ∈ int((

∨
i∈F f(ui))

F).

Definition 3.5. Let f : L1 → L2 be a continuous surjective order-homomorphism.
Then f is called bi-quotient, if for every m ∈ M(L2) and each open cov-

ering {ui}i∈I of f̂(m) there exists a finite subset F of I such that m ∈
int(

∨
i∈F f(ui)).

If L is a T1 topological fuzz, then aF = a for every a ∈ L. Thus, by Corollary
3.4 and Definition 3.5, we have the following result.

Corollary 3.6. Let f : L1 → L2 be an order-homomorphism such that L2

be a Hausdorff topological fuzz. Then f is product stable if and only if f is
bi-quotient and L2 is core compact.

4. Compactness and product stability

In this section, we present some notions as f -relatively compactness, core
compact order-homomorphism which are a generalization of the notions intro-
duced in [18,19]. We give some characterizations of product stability by these
concepts.

Definition 4.1. Let f : L1 → L2 be an order-homomorphism, a ∈ L2 and
b ∈ L1. We say that a is f -relatively compact in b, written a �f b, if for
every open covering {ui}i∈I of b, there exists a finite subset F of I such that
a ≤

∨
i∈F f(ui).

Definition 4.2. Let f : (L1, τ1)→ (L2, τ2) be a surjective order-homomorphism.
We say that f is a core compact order-homomorphism, if b =

∨
{a ∈ τ2 | a�f

f̂(b)} for every b ∈ τ2.

It is easy to check that if f : L1 → L2 is a core compact order-homomorphism,
then L2 is a core compact topological fuzz. For every open order-homomorphism

f , we have a � b in L2 if and only if a �f f̂(b). Thus, an open order-
homomorphism f is core compact if and only if L2 is a core compact topolog-
ical fuzz. In particular, an identity order-homomorphism idL : L → L is core
compact if and only if L is a core compact topological fuzz.

Theorem 4.3. Every core compact quotient order-homomorphism is product
stable.

Proof. Let f : (L1, τ1)→ (L2, τ2) be a core compact quotient order-homomorphism,

m ∈ �(b) ∩ M(L2) and b ∈ τ2. Then b =
∨
{a ∈ τ2 | a �f f̂(b)}. If

f̂(b) ≤
∨
i∈I ui, then there exists a finite subset F of I such that m ≤ a ≤∨

i∈F f(ui) ≤ (
∨
i∈F f(ui))

F. Thus by Theorem 3.1, the result follows. �
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Now, we define the concept of locally compact topological fuzzes and show
that the converse of Theorem 4.3, is also true for locally compact Hausdorff
topological fuzzes.

Definition 4.4. A topological fuzz L is said to be locally compact, if for each
b ∈ τ and each compact element m ∈ M(L) ∩ �(b), there exists a compact
neighbourhood c of m such that c ≤ b.

Clearly, if X is a locally compact (compact) topological space, then ρ(X)
is a locally compact (compact) topological fuzz. If a ≤ c ≤ b such that c is
compact, then a� b. This implies that every locally compact topological fuzz
is core compact.

Lemma 4.5. Every compact Hausdorff topological fuzz is locally compact.

Proof. Let (L, ′, τ) be a compact Hausdorff topological fuzz, b ∈ τ and m ∈
�(b) ∩M(L). Since � satisfies the interpolation property [14], it follows that
there exists d ∈ L such that m� d� b. By assumption, d =

∧
i∈I

∨
j∈Ji uij =∧

i∈I
∨
j∈Ji ūij , where uij is open. For each i ∈ I, d ≤

∨
j∈Ji uij ≤

∨
j∈Ji ūij .

Thus m ≤ vi ≤ v̄i ≤
∨
j∈Ji ūij , where vi = uij for some j ∈ Ji. Then

m ≤
∧
i∈I vi ≤

∧
i∈I v̄i ≤ d ≤ b. Hence b′ ≤

∨
i∈I v̄

′
i. By compactness, there

exists a finite subset F of I such that
∧
i∈F v̄i ≤ b. Let a =

∧
i∈F vi. Then

a ∈ τ and m ≤ a ≤ ā ≤ b. �

Theorem 4.6. Let f : (L1, τ1) → (L2, τ2) be a quotient order-homomorphism
and L2 be a locally compact Hausdorff topological fuzz. Then f is core compact
if and only if it is product stable.

Proof. By Theorem 4.3, every core compact quotient order-homomorphism is
product stable. Conversely, let b ∈ τ2 and y ∈ �(b) ∩M(L2). Since L2 is a
core compact topological fuzz, b =

∨
{a ∈ τ2 | a � b}. It is enough to show

that a �f f̂(b). Let {ui}i∈I be an open covering of f̂(b). Every Hausdorff
topological fuzz is T1, by Theorem 3.1, for every y ∈ �(b)∩M(L2), there exist
a finite subset Fy of I and uy ∈ τ2 such that y ≤ uy ≤

∨
i∈Fy

f(ui). Thus

there exists a finite subset S of �(b) ∩M(L2) such that a ≤
∨
y∈S uy. Hence

a ≤
∨
y∈S

∨
i∈Fy

f(uyi). �

In the following, we give some characterizations of product stable quotient
order-homomorphisms by the notion of f -relatively compactness.

Definition 4.7. Let f : L1 → L2 be an order-homomorphism. We say that f
reflects relative compactness to f -relatively compactness, if a� b in L2 implies

a�f f̂(b).

Theorem 4.8. Let f : (L1, τ1)→ (L2, τ2) be a bi-quotient order-homomorphism.
Then f reflects relative compactness to f -relative compactness between arbitrary
elements.
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Proof. Let a� b in L2 and f̂(b) ≤
∨
i∈I ui. For every y ∈ �(b)∩M(L2), there

exist a finite subset Fy of I and uy ∈ τ2 such that y ≤ uy ≤
∨
i∈Fy

f(ui). Thus

there exists a finite subset S of �(b) ∩M(L2) such that a ≤
∨
y∈S uy. Hence

a ≤
∨
y∈S

∨
i∈Fy

f(uyi). �

Theorem 4.9. Let f : (L1, τ1)→ (L2, τ2) be a surjective order-homomorphism
and L2 be a locally compact topological fuzz. Then the following statements are
equivalent:

(1) f is core compact.
(2) f reflects relative compactness to f -relative compactness between open

sets.

Proof. The implication (1)⇒ (2) is clear. Conversely, since every locally com-
pact topological fuzz is core compact, it follows that b =

∨
{a ∈ τ2 | a� b} for

every b ∈ τ2. By assumption, b =
∨
{a ∈ τ2 | a�f f̂(b)}. Thus, (1) holds. �

By Theorems 4.9 and 4.6, we have the following main result.

Corollary 4.10. Let f : L1 → L2 be a quotient order-homomorphism and L2

be a locally compact Hausdorff topological fuzz. Then the following statements
are equivalent:

(1) f is product stable.
(2) f is core compact.
(3) f reflects relative compactness to f -relative compactness between open

sets.

5. Conclusion

It is well known that the category TopFuzz of topological fuzzes with their
homomorphisms is both complete and cocomplete, and some categorical prop-
erties of it were introduced by many authors. In this paper, we have presented
some characterizations of product stable quotient order-homomorphisms. We
have defined the concept of a bi-quotient order-homomorphism and shown that
for Hausdorff topological fuzzes, a quotient order-homomorphism f : L1 → L2

is product stable if and only if f is bi-quotient and L2 is a core compact
topological fuzz. Also, we have introduced the concepts of core compact order-
homomorphisms and locally compact topological fuzzes and shown that for
locally compact Hausdorff topological fuzzes, a quotient order-homomorphism
f is product stable if and only if it is core compact.
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