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Abstract. We present an extension of Perron-Frobenius theory to the

higher-rank numerical range of real matrices. We define a new type of

the rank-k numerical radius for real matrices, i.e., the sign-real rank-
k numerical radius, and derive some properties of it. In addition, we

extend Issos’ results on the higher-rank numerical range of nonnegative

matrices to real matrices. Finally, we give some examples that are used
to illustrate our theoretical results.
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1. Introduction

For nonnegative matrices A, the well known Perron–Frobenius theory stud-
ies the spectral radius ρ(A). Perron–Frobenius theory has numerous applica-
tions in many branches of mathematics, various fields of science and technology
[2,11,13,18]. The main results of the Perron–Frobenius theory asserts that if a
nonnegative irreducible matrix has h maximal characteristic roots, then these
roots are equally spaced around a circle with center at the origin and one of the
roots locates on the positive real axis [6]. In [15] a new quantity for real ma-
trices, the sign-real spectral radius, is defined, which is a generalization of this
theory. Let Mn(R) be the set of n× n real matrices. For A ∈Mn(R), the real
spectral radius of A is defined by ρ0(A) = max {|λ| : λ a real eigenvalue of A}.
Note that ρ0 (A) := 0 if A has no real eigenvalues. A signature matrix is a
diagonal matrix with diagonal entries +1 or −1. Note that there are 2n signa-
ture matrices of dimension n. Let ϕ denote the set of signature matrices. The
sign-real spectral radius of a real matrix A is defined by

ρR (A) = max
S∈ϕ

ρ0(SA).
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It has also been applied to engineering problems (see, for example, [16,17] and
the references therein).

In [4], Choi et al. introduced the notion of the rank-k numerical range of
A ∈Mn defined and denoted by

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P },

where 1 ≤ k < n is a positive integer, and rank-k orthogonal projection P
is an orthogonal projection of Cn onto any k-dimensional subspace K of Cn.
Equivalently,

Λk(A) = {λ ∈ C : X∗AX = λIk for some X ∈Mn,k(C) with X∗X = Ik}.

When k = 1, then Λk(A) reduces to the classical numerical range defined and
denoted by

Λ1(A) = W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},
which is a useful concept in studying matrices and operators; see [8, Chapter
1]. It is clear that

W (A) = Λ1(A) ⊇ Λ2(A) ⊇ · · · ⊇ Λk(A).(1)

For k > 1, the sets Λk(A) are generally called higher-rank numerical range and
used in the study of quantum error correction; see [5]. The rank-k numerical
radius of A ∈Mn is defined as

ωk(A) = max{|α| : α ∈ Λk(A)}.

By convention [12], ωk(A) = −∞ if Λk(A) = ∅. Apparently, for k = 1, ωk(A)
yields the classical numerical radius of a matrix A, i.e., ω1(A) = ω(A) =
max{|z| : z ∈W (A)}.

The Perron-Frobenius theory has been extended to the numerical range of
a nonnegative matrix by Issos in his unpublished Ph.D. thesis [9]. The main
result of Issos [9, Theorem 7] asserts that for a nonnegative irreducible matrix
A, the set of points of W (A), with modulus ω(A) consists precisely of ω(A)
times all the h-th roots of unity. The main result of Issos for real matrices
is given in [19, 20]. In [1], Aretaki et al. extended some results of Issos on
the higher-rank numerical range of a nonnegative irreducible matrix A. In the
course of proving the main theorem of Issos on the higher-rank numerical range
of a real matrix A, the sign-real rank-k numerical radius occurs.

Definition 1.1. For A ∈ Mn(R) the sign-real rank-k numerical radius is de-
fined by

ωR
k (A) = max

S∈ϕ
ω0
k(SA),

where ω0
k (A) := max{ |z| : z ∈ Λk(A) ∩R }. By convention [12], ωR

k (A) = −∞
if Λk(SA) = ∅ for some S ∈ ϕ. When k = 1, we call ωR

k (A), the sign-real
numerical radius [19].
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Since the literature on higher-rank numerical range analogs of the Perron-
Frobenius theory is scanty, we also think it is worthwhile to offer a general
results for real matrices here. In Section 3, we obtain some properties of the
sign-real rank-k numerical radius. In Section 4, we show that under some
conditions on the matrix A, the set of points of Λk(SA), with modulus ωR

k (A)
for some S ∈ ϕ, consists precisely of ωR

k (A) times all the h-th roots of unity.

2. Preliminaries

We always use A = (aij) ∈ Mn(R) to denote an n × n real matrix. The
following notation will be adopted:

Rn+ the nonnegative orthant of Rn;
σ(A) the spectrum of A;
ρ(A) the spectral radius of A;
ρR(A) the sign-real spectral radius of real matrix A;
W (A) the (classical) numerical range of A;
ω(A) the numerical radius of A;
ωR
1 (A) the sign-real numerical radius of real matrix A;

Λk(A) the higher-rank numerical range of A;
ωk(A) the rank-k numerical radius of A;
ωR
k (A) the sign-real rank-k numerical radius of real matrix A;
At the transpose of A;
A∗ the conjugate transpose of A;
|A| the matrix (|ars|) for all r, s;
|x| the vector (|x1|, |x2|, . . . , |xn|)T ;

|A| ≤ |B| |ars| ≤ |brs| for all r, s;
arg(z) the argument of the complex number z.

For a vector x ∈ Cn, we denote by ‖x‖ the Euclidean norm of x, i.e., ‖x‖ =

(x∗x)
1/2

. For a matrix A ∈ Mn, we denote by ‖A‖ the operator norm of A,
i.e., ‖A‖ = max‖x‖=1 ‖Ax‖, where ‖ · ‖ is the vector norm.

We call a matrix A ∈ Mn irreducible if n = 1, or n ≥ 2 and there does not
exist a permutation matrix P such that

P tAP =

(
B C
0 D

)
,
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where B and D are nonempty square submatrices. We call a square matrix
h−cyclic (the super diagonal (n1, n2, . . . , nh)-block form) if it is permutation-
ally similar to a matrix of the form

(2)


0 A12 0 . . . 0 0
0 0 A23 . . . 0 0
...

...
. . .

...
0 0 0 . . . 0 Ah−1,h

Ah,1 0 0 . . . 0 0

 ,

where the block Ai,i+1 is ni×ni+1, i = 1, 2, . . . , h−1, and Ah,1 is nh×n1. The
largest positive integer h for which a matrix A is h−cyclic is called the cyclic
index of A. Throughout this paper, we assume that h ≥ 2.

Given A,B ∈ Mn, A is said to be diagonally similar to B if there exists a
nonsingular diagonal matrix D such that A = D−1BD; if, in addition, D can
be chosen to be unitary, then we say A is unitarily diagonally similar to B.

3. Perron-Frobenius theory for real matrices

Rump [15] has offered a way to generalize the Perron-Frobenius theory to
arbitrary real matrices. In this section, we generalize Wielandt’s lemma and
Perron- Frobenius theorem from nonnegative matrices to real matrices.

In the following lemma, we investigate some properties of the sign-real rank-
k numerical radius.

Lemma 3.1. Let A ∈Mn(R), signature matrices S1, S2, T ∈ ϕ, a real diagonal
matrix D, a real orthogonal matrix U and a permutation matrix P be given.
Then

(a) ω0
k (TA) = ω0

k(AT );
(b) ωR

k (A) = ωR
k (S1AS1) = ωR

k (S1AS2) = ωR
k

(
AT
)

= ωR
k (PTAP );

(c) ωR
k (αA) = |α|ωR

k (A) for all α ∈ R;
(d) ωR

k (UD) = ωR
k (DU);

(e) ωR
k (A) ≤ ‖A‖;

(f) if there exists a matrix C ∈Mn(R), rank(C) = 1 with cij = sign (aij)
if aij 6= 0, and cij ∈ {−1, 1} if aij = 0, then ωR

k (A) = ωR
k (|A|).

Proof. (a) For all T ∈ ϕ we have

Λk(TA) = {λ ∈ C : X∗TAX = λIk for some X ∈Mn,k(C) with X∗X = Ik}
= {λ ∈ C : X∗TATTX = λIk for some X ∈Mn,k(C) with X∗X = Ik}
= {λ ∈ C : Y ∗ATY = λIk for some Y ∈Mn,k(C) with Y ∗Y = Ik}
= Λk(AT ).

Therefore ω0
k(TA) = ω0

k(AT ), and then, for all S1 ∈ ϕ,

(3) ω0
k (S1AS1) = ω0

k(A).
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(b) By using the equation (3), for all S1 ∈ ϕ, we see that

ωR
k (S1AS1) = ω0

k (T1S1AS1) = ω0
k (S1T1AS1) = ω0

k (T1A) ≤ ωR
k (A)

= ω0
k (T2A) = ω0

k (T2S1AS1) ≤ ωR
k (S1AS1),(4)

for some T1, T2 ∈ ϕ. Thus, ωR
k (A) = ωR

k (S1AS1) for all S1 ∈ ϕ. Again, by
using the equation (3), for all S1, S2 ∈ ϕ, we see that

ωR
k (A) = max

T∈ϕ
ω0
k (TA) = max

T∈ϕ
ω0
k (S2(S1S1TA)S2)

= max
T1∈ϕ

ω0
k (T1 (S1AS2)) = ωR

k (S1AS2).

Similar to part (a), for every unitary matrix W ∈Mn, we have

(5) Λk(AW ) = Λk(W (AW )W ∗) = Λk(WA).

Therefore, for every permutation matrix P, we have ω0
k(AP ) = ω0

k(PA). Since
PSPT is a signature matrix for every signature matrix S, and then by using the
same method in (4), we conclude that ωR

k (A) = ωR
k (PTAP ). Also, ωR

k

(
AT
)

=

ωR
k (A), since ω0

k(AT ) = ω0
k(A).

(c) It is trivial.
(d) In view of (5), we have ω0

k(AU) = ω0
k(UA), and thus we obtain

ωR
k (DU) = ω0

k(T1DU) = ω0
k(DT1U) = ω0

k(T1UD) ≤ ωR
k (UD)

= ω0
k(T2UD) = ω0

k(DT2U) = ω0
k(T2DU) ≤ ωR

k (DU),

for some T1, T2 ∈ ϕ. So ωR
k (UD) = ωR

k (DU).
(e) For any nonzero vector x ∈ Cn, we have |x∗Ax| ≤ ‖Ax‖ ‖x‖ (Cauchy-

Schwarz inequality), and by Definition 1.1, we obtain ω0
1(A) ≤ ‖A‖, and

hence ωR
1 (A) ≤ ‖SA‖ = ‖A‖ for any S ∈ ϕ. The inclusion (1) implies that

ωR
k (A) ≤ ωR

1 (A) for all k > 1. Therefore ωR
k (A) ≤ ‖A‖.

(f) rank(C) = 1 implies that there exists x, y ∈ Rn with |xi| = |yi| = 1
for all i = 1, 2, . . . , n such that C = xyT . Hence, Sx := diag (x) ∈ ϕ, Sy :=
diag (y) ∈ ϕ, and SxASy = |A| yield ωR

k (A) = ωR
k (SxASy) = ωR

k (|A|). �

The following lemma is an extension of the Wielandt’s lemma for real ma-
trices [20, Lemma 3.1]:

Lemma 3.2. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some
S1, S2 ∈ ϕ. Let C ∈ Mn(C) be such that |C| ≤ |A|. Then for every eigen-
value t of C we have |t| ≤ ρR(A). Furthermore |t| = ρR(A) if and only if
C = eiϕE|A|E−1, where t = eiϕρR(A), and |E| = I.

The next lemma will depend on the numerical radius that is an analog of
Wielandt’s lemma [ [20], Lemma 4.4].

Lemma 3.3. Let A,B ∈ Mn, and assume that A is a real irreducible matrix.
Let |A| = S1AS2 for some S1, S2 ∈ ϕ and |B| ≤ |A|. If ε is a unit complex
number such that εωR

1 (A) ∈ W (B), then εF |A|F−1 = B for some unitary
diagonal matrix F.
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To prove our main results in this section, we need the following theorem [20,
Theorem 3.2]:

Theorem 3.4. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some
S1, S2 ∈ ϕ. Let λ1, . . . , λh be the eigenvalues of SA of modulus ρR(A) for some
S ∈ ϕ, and let ρR(A) be one of them. Then λ1, . . . , λh are the distinct h-th
roots of (ρR(A))h.

Remark 3.5. Notice that Theorem 3.4 is the fundamental theorem for the re-
sults of this paper. In [20, Example 3.3 and Example 3.4], it was shown that
Theorem 3.4 fails if the assumptions |A| = S1AS2 and ρR(A) ∈ σ(SA) for some
S ∈ ϕ, are dropped. In other word, these assumptions are necessary in this
theorem and the following results.

The next theorem gives some conditions under which a real irreducible ma-
trix is h-cyclic.

Theorem 3.6. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some
S1, S2 ∈ ϕ. Let λ1, . . . , λh be the eigenvalues of SA of modulus ρR(A) for some
S ∈ ϕ, and let ρR(A) be one of them. Then there exists some permutation
matrix P such that PAPT is in the form (2).

Proof. ρR(A) is an eigenvalue of SA for some S ∈ ϕ [15, Lemma 2.2] so by
applying Lemma 3.2 with C = SA, we have

(6) SA = E|A|E−1, |E| = I.

By Theorem 3.4, λ1 = ei2π/hρR(A) is an eigenvalue of SA for some S ∈ ϕ,
again by applying Lemma 3.2 with C = SA, we have

(7) SA = ei2π/hE1|A|E−11 , |E1| = I.

Hence, by (6) and (7), A = ei2π/hD1AD
−1
1 , where D1 = diag(α1, . . . , αn) and

|D1| = I. Let α1, . . . , αs be distinct among the α ,
i s, i = 1, 2, . . . , n. Then there

exists a permutation matrix P such that

PD1P
T =


α1I1 0 · · · 0

0 α2I2 · · · 0
...

...
. . .

...
0 0 · · · αsIs

 ,

where I1, I2, . . . , Is are identity matrices of appropriate sizes. Let

PAPT =


A11 A12 · · · A1s

A21 A22 · · · A2s

...
...

. . .
...

As1 As2 · · · Ass

 .

Clearly, s > 1 and we can assume that α1 = 1. Since PAPT = ei2π/h(PD1P
T )

(PAPT )(PD−11 PT ) hence Ajk = ei2π/hαjAjkα
−1
k . In particular, A11 = ei2π/h
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α1A11α
−1
1 = ei2π/hA11 and ei2π/h 6= 1 implies that A11 = 0. Also A12 =

ei2π/hα1A12α
−1
2 , . . . , A1s = ei2π/hα1A1sα

−1
s . Since A is irreducible, at least one

of A12, . . . , A1s is nonzero. Furthermore, ei2π/h/α2 = 1 or · · · or ei2π/h/αs =
1. Assuming that 0 = arg(α1) < arg(α2) < · · · < arg(αs), we can say that
ei2π/h/α2 = 1. Thus A13, . . . , A1s are all zero blocks. Similarly, we can show
that A21, A22, A24, . . . , A2s are zero, and so on. Finally, Asj = 0 for all j =
2, . . . , s. Therefore, by s = h, the proof is complete. �

We illustrate the Theorem 3.6 with an example.

Example 3.7. Consider the real matrix A given in [20, Example 3.3] as fol-
lows:

A =



0 0 −2 0 0 −6 0 0
−1 0 0 0 0 0 −7 0
0 0 0 2 3 0 0 4
0 −3 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 0 4 0 0 0 2
0 0 1 0 0 3 0 0
0 −9 0 0 0 0 0 0


.

It was shown that there signature matrices S1 = diag(−1,−1, 1, 1,−1, 1, 1, 1),
and S2 = diag(1,−1, 1, 1, 1, 1, 1, 1) such that |A| = S1AS2. Also, there exist
signature matrices

T1 = diag(+1,+1,+1,−1,+1,+1,−1,−1),

T2 = diag(−1,+1,−1,−1,+1,−1,+1,−1),

T3 = diag(−1,−1,+1,−1,+1,+1,+1,−1),

T4 = diag(−1,+1,+1,+1,−1,+1,+1,+1),

such that λ1 = −5.9685, λ2 = −5.9685i, λ3 = 5.9685i, λ4 = 5.9685 are the
eigenvalues of TjA of modulus ρR(A) = 5.9685 for j = 1, . . . , 4. By Theorem
3.6 there exists a permutation matrix P, whose entries are as follows:

P =



0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0


,
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such that B = PAPT is in the form (2), i.e., B is a 4−cyclic matrix.

B =



0 −7 −1 0 0 0 0 0
0 0 0 1 3 0 0 0
0 0 0 −2 −6 0 0 0
0 0 0 0 0 2 4 3
0 0 0 0 0 4 2 0
−3 0 0 0 0 0 0 0
−9 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0


.

4. The Issos’ result on Λk(A) for matrices with irreducible
Hermitian part

In this section, we obtain the main theorem of Issos on the higher-rank
numerical range of real matrices. The method of proof is based on Theorem
3.6. After proving some results, we extend the main theorem of Issos from
irreducible matrices to matrices with irreducible Hermitian part. Throughout
this section, we let the sign-real rank-k numerical radius be positive.

By considering the number of maximal elements in Λk(SA) for some S ∈ ϕ
and their location in the complex plane, we have the following theorem.

Theorem 4.1. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some
S1, S2 ∈ ϕ. Let λ1, . . . , λh be the eigenvalues of SA of modulus ρR(A) for some
S ∈ ϕ, and let ρR(A) be one of them. Then there exists some T ∈ ϕ such that

(8)
{
z ∈ Λj(TA) : |z| = ωR

j (A)
}

=
{
ωR
j (A)ei(θj+2πt/h) : t = 0, 1, . . . , h− 1

}
,

for every j = 1, . . . , k with θj = 0 or θj = π/h.

Proof. By Theorem 3.6, there is a permutation matrix P such that B := PAPT

is of the form (2). Let θ = 2πt/h, for t = 0, 1, . . . , h−1. By the proof of Theorem
6 in [9], we have

(9) D−1BD = eiθB, i.e., D−1(PTAP )D = eiθ(PTAP ),

where D := diag(D1, D2, . . . , Dh) is unitary diagonal with Dj := diag(ei(j−1)θ,

ei(j−1)θ . . . , ei(j−1)θ) and Dj is a square matrix having the same dimension as
Bjj for j = 1, 2, . . . , h. Let θj ∈ [0, 2π) be the principal argument such that
ωR
j (A) ∈ Λj(e

−iθjTA) for some T ∈ ϕ, and for j = 1, . . . , k. Therefore, (9)

implies that ωR
j (A)ei(θj+2πt/h) ∈ Λj(TA) for t = 0, 1, . . . , h−1, and j = 1, . . . , k.

Hence, for any j = 1, . . . , k, we have

{ωR
j (A)ei(θj+2πt/h) : t = 0, 1, . . . , h− 1} ⊆ {z ∈ Λj(TA) : |z| = ωR

j (A)}.
Again by (9), h is equal to the largest positive integer such that matrix A is
unitarily diagonally similar to the matrix ei2πt/hA for t = 0, 1, . . . , h − 1.
So, there does not exist υ = 2π/p < 2π/h such that Λj(A) = Λj(e

iυA) for
j = 1, 2, . . . , k. Hence, for every j = 1, 2, . . . , k we have (8). Since A ∈Mn(R),
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so Λj(A) is symmetric with respect to the real axis. If we consider θj 6= 0,
we obtain 2π − θj = θj + 2π(h − 1)/h. Hence θj = π/h, and the proof is
complete. �

Note that [20, Theorem 4.7 ] is special case of Theorem 4.1 (j = 1).
We are going to extend Theorem 4.1 to the case when A is a real matrix with
irreducible Hermitian part. For this purpose we need the following lemmas.

Lemma 4.2. Let A ∈ Mn(R), and |A| = S1AS2 for some S1, S2 ∈ ϕ. Let

H(A) =
A+A∗

2
be irreducible and there exists θj ∈ [0, 2π) such that ωR

j (A) ∈
Λj(e

−iθjSA) for some S ∈ ϕ and for every j = 1, . . . , k. If there exists a real
number α such that ωR

1 (A)eiα ∈ W (TA) for some T ∈ ϕ, then ωR
j (A)eiα ∈

Λj
(
e−iθjSA

)
for every j = 1, . . . , k.

Proof. By [20, Lemma 4.10], we have eiαA = D−1AD for some unitary di-
agonal matrix D, i.e., A is diagonally similar to eiαA. Therefore for every
j = 1, . . . , k, we have ωR

j (A) ∈ Λj(e
−iθjSA) = Λj(e

−i(θj+α)SA) for some S ∈ ϕ.
Hence, ωR

j (A)eiα ∈ Λj
(
e−iθjSA

)
for every j = 1, . . . , k. �

Lemma 4.3. Let A ∈ Mn(R), and |A| = S1AS2 for some S1, S2 ∈ ϕ. Let
H(A) be irreducible and λ1, . . . , λh be the eigenvalues of SA of modulus ρR(A)
for some S ∈ ϕ, and let ρR(A) be one of them.

(i) For any unit complex number ξ, there exists some T ∈ ϕ such that the
following conditions are equivalent:
(a) ξTA is diagonally similar to TA.
(b) ξW (TA) = W (TA).
(c) ξωR

1 (A) ∈W (TA).
(ii) There exists some T ∈ ϕ such that exactly one of the two following

statements is true.
(a) W (TA) is a circular disk with center at the origin for some T ∈ ϕ.
(b) {z ∈W (TA) : |z| = ωR

1 (A)} = {ωR
1 (A)ei(θ+2πt/h) : t = 0, 1, . . . , h−

1}, where h is the largest positive integer such that A is diagonally
similar to e2πi/hA, and θ = 0 or θ = π/h.

Proof. (i) For any A ∈Mn, and T1 ∈ ϕ, the set

G = {ξ ∈ C : |ξ| = 1, ξT1A is (unitarily) diagonally similar to T1A},
forms a subgroup of the group of all unit complex numbers, and furthermore
it is included in the set L = {ξ ∈ C : |ξ| = 1, ξW (T1A) = W (T1A)}. Since
A is a real matrix, therefore ωR

1 (A) ∈W (TA) for some T ∈ ϕ (see [19, Lemma
2.1 ]), the latter set, in turn, is included in M = {ξ ∈ C : |ξ| = 1, ξωR

1 (A) ∈
W (TA)}. Then, in view of [20, Lemma 4.10 ], the three sets are all equal.

(ii) The group G may be infinite or finite. If G is infinite (has more than n
elements), then the numerical range of TA contains more than n points with
modulus equal to ωR

1 (A). In this case, by [3, Theorem 2.2], W (TA) is equal
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to the circular disk with center at the origin and radius ωR
1 (A). Hence, G is

precisely the group of all unit complex numbers. On the other hand, if G is
a finite group, say, with order h(≤ n), then by Lagrange’s theorem in group
theory, for any ξ ∈ G, we have ξh = 1, i.e., each element of G is an h-th root
of unity. But the cardinality of G is h, so it follows that G is precisely the
group of all h-th roots of unity. The proof that θ = 0 or θ = π/h, is similar to
Theorem 4.1. �

In view of Lemma 4.2 and Lemma 4.3, we can now extend Theorem 4.1 as
follows:

Theorem 4.4. Let A ∈ Mn(R) and |A| = S1AS2 for some S1, S2 ∈ ϕ. Let
H(A) be irreducible and λ1, . . . , λh be the eigenvalues of SA of modulus ρR(A)
for some S ∈ ϕ, and let ρR(A) be one of them. Then there exists some T ∈ ϕ
such that for every j = 1, . . . , k, exactly one of the two following statements is
true.

(i) Wj(A) := {z ∈ Λj(TA) : |z| = ωR
j (A)} is a circular disk centered at

the origin with radius ωR
j (A).

(ii) Wj(A) =
{
ωR
j (A)ei(θj+2πt/h) : t = 0, 1, . . . , h− 1

}
, where h is the largest

positive integer such that A is diagonally similar to the matrix ei2π/hA,
and θj = 0 or θj = π/h.

Proof. Let θj ∈ [0, 2π) be the argument such that ωR
j (A) ∈ Λj(e

−iθjTA) for
some T ∈ ϕ, and for every j = 1, . . . , k. By Lemma 4.3, either W1(A) is a circu-
lar disk centered at the origin with radius ωR

1 (A) orW1(A) = {ωR
1 (A)ei(θ1+2πt/h)

: t = 0, 1, . . . , h−1}, where h is the largest positive integer such that A is diag-
onally similar to the matrix ei2π/hA. IfW1(A) is a circular disk centered at the
origin with radius ωR

1 (A), so there exists T1 ∈ ϕ such that ωR
1 (A)eiα ∈W (T1A)

for every angle α ∈ R. Thus by Lemma 4.2, Wj(A) is a circular disk cen-
tered at the origin with radius ωR

j (A) for every j = 1, . . . , k. On the other

hand, let ωR
1 (A)ei2πt/h ∈W (T1A), and so agian by Lemma 4.2, ωR

j (A)ei2πt/h ∈
Λj(e

−iθjTA) for j = 1, · · · , k, and t = 0, . . . , h− 1. Thus we have

{ωR
j (A)ei(θj+2πt/h) : t = 0, 1, . . . , h− 1} ⊆ Wj(A).

The equality of the sets is established similarly as in the proof of Theorem
4.1. �

In the following examples, we illustrate Theorem 4.1.

Example 4.5. Consider the real matrix A given in Example 3.7. Indeed, as
shown in Example 3.7, the conditions of Theorem 4.1 is satisfied and thus there
exists some S ∈ ϕ such that the maximal elements in Λ2(SA) are equally spaced
around a circle with center at the origin and radius ωR

2 (A) = 4.5867. For exam-
ple, for the signature matrix S = diag(−1, 1,−1, 1 ,−1,−1,−1,−1), we obtain
ωR
2 (A) = ω0

2(SA) = 4.5867, and the relation (8) holds with θ = 0. The graph on
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the left of Figure 1, shows the boundary of Λ2(SA) such that the absolute value
of ωR

2 (A), i.e., the numbers ωR
2 (A), eiπ/2ωR

2 (A), eiπωR
2 (A) and ei3π/2ωR

2 (A) are
marked by ”*”. For the signature matrix T = diag(1,−1, 1, 1, 1, 1, 1,−1), we
have also the relation (8) with θ = π/4. The graph on the right of Figure 1,
shows the boundary of Λ2(TA) and the numbers eiπ/4ωR

2 (A), ei3π/4ωR
2 (A), ei5π/4ωR

2 (A)
and ei7π/4ωR

2 (A) are marked by ”+”.

Figure 1. The left panel shows the boundary of Λ2(SA), and
the one on the right shows the boundary of Λ2(TA).

Example 4.6. Consider the 5−cyclic matrix

A =


0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1
1 0 0 0 0

 .

For the signature matrix S = I the relation (8) holds with θ = 0, and for the sig-
nature matrix T = diag(1, 1, 1, 1,−1) the relation (8) holds with θ = π/5. The
graph on the left of Figure 2, shows the boundary of Λ3(SA) such that the num-
bers ωR

3 (A), ei2π/5ωR
3 (A), ei4π/5ωR

1 (A), ei6π/5ωR
3 (A) ei8π/5ωR

3 (A) are belong to
Λ3(SA), with modulus ωR

3 (A) = 1. The graph on the right, shows the boundary
of Λ3(TA) such that the numbers eiπ/5ωR

3 (A), ei3π/5ωR
3 (A), eiπωR

3 (A), ei7π/5ωR
3 (A)

ei9π/5ωR
3 (A) are belong to Λ3(TA), with modulus ωR

3 (A) = 1.

5. Conclusions

In this paper, we have generalized a number of theoretical results obtained
by Aretaki et al. [1] for real matrices. We propose a new definition of the rank-k
numerical radius for real matrices, called the sign-real rank-k numerical radius.
The main theorem of this paper show that for a real irreducible matrix A with
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Figure 2. The left panel shows the boundary of Λ3(SA), and
the one on the right shows the boundary of Λ3(TA).

some conditions, the set of points of Λj(A) with modulus ωR
j (A) consists pre-

cisely of ωR
j (A) times all the h−th roots of unity (Theorem 4.1). Furthermore,

a number of examples and figures are included in the paper to illustrate the
type of results which is obtained.

6. Aknowledgement

We would like to thank Aikaterini Aretaki for providing us with a Matlab
code which is used for drawing the figures in this paper. Furthermore, we would
like to thank the reviewers for their thoughtful comments and efforts towards
improving our manuscript.

References

[1] A. Aretaki and J. Maroulas, The higher rank numerical range of nonnegative matrices,

Cent. Eur. J. Math., vol. 11, no.3(2013), 435–446.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
vol. 9, SIAM, Philadelphia, 1994.

[3] M.T. Chien and H. Nakazato, Boundary generating curves of the c-numerical range,

Linear Algebra Appl., vol. 294, no. 1-3(1999), 67–84.
[4] M.D. Choi, D.W. Kribs and K. Zyczkowski, Higher-rank numerical ranges and compres-

sion problems, Linear Algebra Appl., vol. 418 no. 2-3(2006), 828–839.

[5] M.D. Choi, D.W. Kribs and K. Zyczkowski, Quantum error correcting codes from the
compression formalism, Rep. Math. Phys., vol. 58, no. 1(2006), 77–86.

[6] G. Frobenius, Uber Matrizen aus nichtnegativen Elementen, Math. Nat. K1., (1912),
456–477.

[7] R.A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cam-

bridge, 1985.
[8] R.A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

Cambridge, 1991.

[9] J.N. Issos, The field of values of non-negative irreducible matrices, Ph.D. Thesis,
Auburn University, 1966.

[10] C.K. Li, B.-S. Tam and P.Y. Wu, The numerical range of a nonnegative matrix, Linear
Algebra Appl., vol. 350, no. 1-3(2002), 1–23.



Perron-Frobenius theory on the higher-rank numerical range – JMMRC Vol. 10, No. 2 (2021) 61

[11] C.K. Li and H. Schneider, Applications of the Perron–Frobenius theory to population
dynamics, J. Math. Biol., vol. 44, no. 5(2002), 250–262.

[12] C.K. Li, Y.T. Poon and N.S. Sze, Condition for the higher rank numerical range to be

non-empty, Linear Multilinear Algebra, vol. 57, no. 4(2009), 365–368.
[13] M.-H. Matcovschi and O. Pastravanu, Perron–Frobenius theorem and invariant sets in

linear systems dynamics , in Proceedings of the 15th IEEE Mediterranean Conference

on Control and Automation (MED07), Athens, Greece, 2007.
[14] H. Mink, Nonnegative Matrices, Wiley, New York, 1988.

[15] S.M. Rump., Theorems of Perron-Frobenius type for matrices without sign restrictions,

Linear Algebra Appl., vol. 266(1997), 1–42.
[16] S. M. Rump, Conservatism of the Circle Criterion Solution of a Problem posed by A.

Megretski, IEEE Trans. Autom. Control, vol. 46, no. 10(2001), 1605–1608.
[17] S. M. Rump, conditioned Matrices are componentwise near to singularity, SIAM Rev.,

vol. 41, no. 1(1999), 102–112.

[18] B. Shafai, J. Chen and M. Kothandaraman, Explicit formulas for stability of nonnegative
and Metzlerian matrices, IEEE Transactions on Automatic Control, vol. 42, no. 2(1997),

265–270.

[19] M. Zangiabadi and H. R. Afshin, A new concept for numerical radius: the sign-real
numerical radius, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., vol.

76, no. 3(2014), 91–98.

[20] M. Zangiabadi and H. R. Afshin, Perron–Frobenius theory on the numerical range for
some classes of real matrices, J. Mahani Math. Res. Cent., vol. 2, no. 2(2013), 1–15.

Mostafa Zangiabadi
Orcid number: 0000-0003-4472-3609

Department of Mathematics

University of Hormozgan
Bandar Abbas, Iran

E-mail address: zangiabadi1@gmail.com

Hamidreza Afshin
Orcid number: 0000-0002-5149-8326

Department of Mathematics
Vali-e-Asr University of Rafsanjan

Rafsanjan, Iran

E-mail address: afshin@vru.ac.ir


