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Abstract. In this paper, we study the eigenvalues of real tridiagonal

3-Toeplitz matrices of different order. When the order of a tridiagonal 3-
Toeplitz matrix is n = 3k+2, the eigenvalues were found explicitly. Here,

we consider the distribution of eigenvalues for a tridiagonal 3-Toeplitz ma-

trix of orders n = 3k and n = 3k + 1. We explain our method by finding
roots of a combination of Chebyshev polynomials of the second kind. This

distribution solves the eigenproblem for integer powers of such matrices.
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1. Introduction

The purpose of this paper is the spectral analysis of an n×n real tridiagonal
3-Toeplitz matrices, of the form

(1) An =



a1 b1
c1 a2 b2

c2 a3 b3
c3 a1 b1

c1 a2 b2
c2 a3 b3

. . .
. . .

. . .


∈ Rn×n.

k-Toeplitz matrices are tridiagonal matrices of the form A = [ai,j ]
n
i,j=1 (with

n ≥ k) such that ai+k,k+j = ai,j (i, j = 1, 2, ..., n − k), so that they are k-
periodic along the diagonals parallel to the main diagonal. A Toeplitz matrix
is a k-Toeplitz matrix when k = 1. The interest of the study of k-Toeplitz
matrices appears to be very important not only in linear algebra or numeri-
cal analysis, but also in applications such as solving the inverse of a matrix,
systems of linear equations, stability of difference approximations to differen-
tial equations, chain models in quantum physics, sound propagation problems,
etc [7, 12].
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In [13, 17, 20], some explicit expressions for eigenvalues of a tridiagonal 2 and
3-Toeplitz matrices were introduced.
In this paper, we extend those analysis for tridiagonal 3-Toeplitz matrices with
different ranks. Tridiagonal k-Toeplitz matrices have application in Applied
Mathematics, Orthogonal Polynomials and as well as in Quantum Physics,
hence we hope that our results would be useful for some researchers working
in these fields [2, 17,18]. This paper is organized as follows:
In the next section, we overview some preliminaries for tridiagonal 3-Toeplitz
matrices in the analysis of orders n = 3k + 2, n = 3k and n = 3k + 1.
Finally, we conclude some remarks on tridiagonal 3-Toeplitz matrices.

2. The main theorem in the analysis

In this section, we analysis and summary some main results that will be
useful throughout the work.

Theorem 2.1. (Marcella’n and Petronilho [17]). Let An, n = 3, 4, 5, ..., be the
irreducible tridiagonal 3-Toeplitz matrix given by (1), where b1, b2, b3, c1, c2
and c3 are positive numbers. Define the sequence {Sn}n≥0 of orthogonal poly-
nomials associated with the matrices An as

(2) S3k(x) = (b1b2b3)−k{Pk(π3(x)) + b3c3(x− a2)Pk−1(π3(x))},

(3) S3k+1(x) = b−11 (b1b2b3)−k{(x− a1)Pk(π3(x)) + b1c1b3c3Pk−1(π3(x))},

(4) S3k+2(x) = (b1b2)−1(b1b2b3)−k(x− ξ1)(x− ξ2)Pk(π3(x)), k = 0, 1, . . . ,

where ξ1 and ξ2 are the roots of the polynomial

(5) (x− a1)(x− a2)− b1c1,
and

(6) π3(x) :=

∣∣∣∣∣∣
x− a1 1 1
b1c1 x− a2 1
b3c3 b2c2 x− a3

∣∣∣∣∣∣ .
Then the eigenvalues λn,m of An are the zeros of Sn, and the corresponding
eigenvectors vn,m are given by

vn,m =


S0(λn,m)
S1(λn,m)

...
Sn−1(λn,m)

 , m = 1, 2, . . . , n.(7)

Define

(8) Pn(x) = (b1b2b3c1c2c3)n/2Un

(
x− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
, n = 0, 1, 2, . . . ,

where Un(x) is the Chebyshev polynomial of degree n of the second kind with
n ∈ N ∪ {−1, 0}.
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All Chebyshev polynomials, among them Un(x), satisfy the three-term recur-
rence relations [6, 14]:

Un+1(x) = 2xUn(x)− Un−1(x), (U−1(x) = 0, U0(x) = 1, U1(x) = 2x).

Note that since the sequence {Sk}k is an orthogonal polynomial sequence
corresponding to a positive definite case, then the zeros are simple and interlace
[1, 2], i.e., if {xk,j}kj=1 denotes the zeros of the polynomial Sk, then
xk,j < xk−1,j < xk,j+1, j = 1, 2, ..., k − 1. Using this fact, we obtain bounds
for the eigenvalues of the corresponding matrices.

2.1. Tridiagonal 3-Toeplitz matrix of order n = 3k + 2. In particular,
when n = 3k + 2, from Equation (4), the eigenvalues λ3k+2,m of A3k+2 (m =
1, 2, ..., 3k + 2) are λ3k+2,1 = ξ1, λ3k+2,2 = ξ2 in the solutions of the cubic
equations
(9)

Q(λ) := π3(λ)−
[
b1c1 + b2c2 + b3c3 + 2

√
b1b2b3c1c2c3 cos

iπ

k + 1

]
= 0, i = 1, . . . , k.

From (6)

π3(λ) = (λ− a1)(λ− a2)(λ− a2)− (b1c1 + b2c2 + b3c3)(λ− a3)

+b2c2(a1 − a3) + b3c3(a2 − a3) + b1c1 + b2c2 + b3c3,(10)

and from Shengjin formulas are given in [22], we compute the roots of the cubic
Equation (9).
Denote the coefficients Q(λ) of Equation (9) with

q1 = 1, q2 = −(a1 + a2 + a3), q3 = a1a2 + a2a3 + a1a3 − b1c1 − b2c2 − b3c3,
q4 = a3b1c1 + a1b2c2 + a2b3c3 − a1a2a3 − 2

√
b1b2b3c1c2c3 cos iπ

k+1 .

Let

∆1 = q22 − 3q1q3, ∆2 = q2q3 − 9q1q4, ∆3 = q23 − 3q2q4, ∆4 = ∆2
2 − 4∆1∆3.

Then we have

(1) If ∆1 = ∆2 = 0, Q(λ) has only one real triple root;
(2) If ∆ > 0, Q(λ) has one real root and a pair of conjugate imaginary roots;
(3) If ∆ = 0, Q(λ) has three real roots: one simple and the other double;
(4) If ∆ < 0, Q(λ) has three different real roots.

The corresponding eigenvectors vn,m are given by (7).

2.2. Tridiagonal 3-Toeplitz matrix of order n = 3k+1. When n = 3k+1,
in Equation (3), the eigenvalues λ3k+1,m of A3k+1
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(m = 1, 2, ..., 3k + 1) are the roots x of S3k+1(x) satisfy the equation

(11) b−11 (b1b2b3)−k{(x− a1)Pk(π3(x)) + b1c1b3c3Pk−1(π3(x))} = 0.

With following (8) in Equation (11), we have s =
√
b1b3c1c3√
b2c2

.

If x is not a common root of Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
and a1 − x, then we

conclude

(12)
Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

) =
s

a1 − x
.

Note 1. Let η0 < ξ1 < η1 < ξ2 < . . . < ηi−1 < ξi < ηi < ξi+1 < . . . < ηn−1 <
ξn < ηn with η0 = −∞, ηn =∞, where ξ1, ξ2, . . . , ξn are the roots of Un(x),
and η1, η2, . . . , ηn−1 are the roots of Un−1(x) in Equation (12).

Figure 1. pn,n−1(x)

Figure 2. pn,n−1(x)
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Let Un(x)/Un−1(x) = pn,n−1(x), n ≥ 1 and p0,−1(x) = 1.

Next we denote g(x) = s/(a1 − x) that here s =
√
b1b3c1c3√
b2c2

.

The graph of pn,n−1(x) is shown in Fig. 1. Also Fig. 2 shows pn,n−1(x)
in the interval (ξj−1, ξj).
Under the above notations, we have the following theorem:

Theorem 2.2. If s > 0, for some i in Equation (12) and Note 1, then there
are precisely two additional roots, exactly one lying in each of the intervals

(ηi−1, a1) and (a1, ηi).

If s < 0, then one or two additional roots of Equation (12) can be zero, in the
interval (ηi−1, ηi).
Finally, the next elseif s = 0, the problem is solved easily by finding roots of
Un(x).

Proof. If a1 coincides with one of the ηi’s, it is a root of (11). Otherwise, we
call the interval (ηi−1, ηi) the distinguished interval if ηi−1 < a1 < ηi for some
i,
there is exactly one root of (12) in each of the n− 1 intervals (ηj−1, ηj) where
j 6= i, 1 ≤ j ≤ n.
Let δ1 be the part of the graph of g(x) for x < a1 and δ2 be the part of the graph
of g(x) for x > a1. We observe that if ηi−1 < a1 < ηi, from Fig. 1 and s > 0,
then we see that δ1 meets each component of the graph y = Un(x)/Un−1(x)
once in the i−2 intervals on the left of (ηi−1, η1), and δ2 meets each component
in n− i+ 1 intervals once on the right of (ηi, ηn), producing n−1 roots of (12).
This holds, if s > 0, then y = g(x) is decreasing on each interval (−∞, a1) and
(a1,∞) as depicted in Fig. 3;

If s < 0, then y = g(x) is increasing on each interval (−∞, a1) and (a1,∞)
as depicted in Fig. 4 and the component of the graph of y = Un(x)/Un−1(x)
in the distinguished interval (ηi−1, ηi), meets both δ1 and δ2, and we have two
additional roots of (12). Namely for s < 0, the graph of y = g(x) is increasing
on (−∞, a1) and (a1,∞), with a1 fixed, s < 0 and each of the three illustrations
in Fig. 4.
Elseif s = 0 then it is sufficient to find roots of Un(x), but here is impossible,
because we let the irreducible tridiagonal 3-Toeplitz matrix in (1). �

Note that, here s > 0. Then by the results of Theorem 2.2, the function
(12) has the same roots as
(13)

h(x) ≡ (a1−x)Un

(
π3(x)− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
−sUn−1

(
π3(x)− b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)
,
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Figure 3. pn,n−1(x)

Figure 4. Intersections when s < 0.

for more details see [16].
Therefore, we can compute the roots of the following function by to approx-
imate function h(x) by Chebyshev interpolation for every interval (ηi−1, ηi),
i = 1, . . . , n, then apply Chebyshev companion matrix to find roots.
To increase the accuracy, we can increase the degree of the Chebyshev approx-
imation. Namely, if we need already very accurate roots, it is preferable to
polish the zeros by Newton’s iteration or the secant iteration. The first ap-
proximated root for starting can be selected by ξi−1 ∈ (ηi−1, ηi).
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From Equation (13), we have a polynomial with degree 3n+1 that numerically
computed roots found by Chebfun. Chebfun finds roots with a global rootfind-
ing capability by a method that shows in [8]. In Chebfun, if the degree greater
than about 50, it is broken into smaller pieces recursively then the zeros are
found as eigenvalues of the analogue for Chebyshev polynomials of a companion
matrix for monomials on each small piece [6].

2.3. Tridiagonal 3-Toeplitz matrix of order n = 3k. When n = 3k, from
Equation (2), the eigenvalues λ3k,m of A3k (m = 1, 2, ..., 3k) are the roots x of
S3k(x) satisfy the equation

(14) (b1b2b3)−k{Pk(π3(x)) + b3c3(x− a2)Pk−1(π3(x))} = 0.

If x is not a common root of Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
and a2 − x, then we

conclude

(15)
Un−1

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

)
Un

(
π3(x)−b1c1−b2c2−b3c3

2
√
b1b2b3c1c2c3

) =

√
b1b2c1c2√

b3c3(a2 − x)
.

Here, suppose Un−1(x)/Un(x) = pn−1,n(x), n ≥ 1 and g(x) = s/(a2 − x) that

s =
√
b1b2c1c2√
b3c3

.

Where ξ1 < η1 < ξ2 < . . . < ηi−1 < ξi < ηi < ξi+1 < . . . < ηn−1 < ξn.
ξ1, ξ2, . . . , ξn are the roots of Un(x) and η1, η2, . . . , ηn−1 are the roots of
Un−1(x).
Here, we use of Theorem 2.2 for finding eigenvalues of matrix (1) when n = 3k.

We want to emphasize another way to the problem concerning the study of
the eigenvalues of the sequences of matrices dened by (1), based on some re-
sults in [3, 5, 9, 10]. We will consider the case when the order n = 3k of the
matrix An in (1). Then An is the block Toeplitz matrix

An =



B0 B1

B−1 B0 B1

B−1 B0 B1

. . .
. . .

. . .

. . .
. . . B1

B−1 B0


,

generated by the 3× 3 matrix valued polynomial

f(x) := B0 +B1e
ix +B−1e

−ix
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with

B0 =

 a1 b1 0
c1 a2 b2
0 c2 a3

 , B1 =

 0 0 0
0 0 0
b3 0 0

 , B−1 =

 0 0 c3
0 0 0
0 0 0

 .

Since, f(x) is not hermitian generally then not very much can be said on the
eigenvalues. However, from Theorem 2.1, we know b1, b2, b3, c1, c2 and c3
are positive numbers and so it is well-known that, under such conditions, An
is similar to the block Toeplitz matrix Ân by diagonal transformations, that is
generated by the 3× 3 matrix valued polynomial

f̂(x) := B̂0 + B̂1e
ix + B̂−1e

−ix

with

B̂0 =


a1

√
b1c1 0

√
b1c1 a2

√
b2c2

0
√
b2c2 a3

 , B̂1 =


0 0 0

0 0 0
√
b3c3 0 0

 , B̂−1 =


0 0

√
b3c3

0 0 0

0 0 0

 .

Similar considerations remain true for the generalized case of a tridiagonal k-
Toeplitz matrix, because the result holding for n = tk can be deduce from a
tridiagonal t− block × t− block matrix that every block is a k × k matrix.
There are some papers for the Evaluation of the Eigenvalues of a Banded
Toeplitz Block Matrix, for more details see [3, 4, 15,21].
The subject for future work involve, the result holding for n = 3k can be ex-
tended to the cases n = 3k + 1; 3k + 2 by using the Theorem 4.3 in [19].
We end this section by observing that Theorem 4.3 can be extended to se-
quences of non-Hermitian matrices and related sequences of principal subma-
trices, when replacing the eigenvalue distribution with the singular value one.
See the following Definition 2.6 and Corollary 4.4 of [19].

3. Some Results

In this paper, analysis reviews is devoted to reviewing recent works for a
tridiagonal 3-Toeplitz matrix for the cases n = 3k + 2, n = 3k + 1 and n = 3k
with some details on (explicitly or implicitly) ways.
In order to find the eigenvalues of a n× n tridiagonal 3-Toeplitz matrices (if

any order by the results of the last sections), we deduce matrix V is defined by

V = [vn,1 vn,2 . . . vn,n],

that

vn,m =


S0(λn,m)
S1(λn,m)

...
Sn−1(λn,m)

 , m = 1, 2, . . . , n.
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Then by inverse of matrix V , we have

(16) (An)l = V J lV −1, l ∈ N,

that λn,k, 1 ≤ k ≤ n are the eigenvalues ofAn and J = diag(λn,1, λn,2, . . . , λn,n)
is the Jordan form of the matrix An.
Therefore, we deduce Proposition 3.1 of [20] that works well for the tridiagonal
3-Toeplitz matrix of every order An in (1). Namely, if f(x) is any function
defined on spectrum of An, then

f(An) = V diag(f(λn,1), . . . , f(λn,n))V −1.

The expressions that we derived can be applied for computing negative integer
powers in Equation (16), when all eigenvalues of An are non zero. Namely the
condition of non singularity of the matrix is satisfied.
When An in (1) is Hermitian tridiagonal 3-Toeplitz matrix, we may generalize
the results in [9, 11], in this special case.
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