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Abstract. This presentation outlines from a quantitative point of view,

the relationships between probability theory, possibility theory, and gen-

eralized uncertainty theory, and the role that fuzzy set theory plays in
the context of these theories. Fuzzy sets, possibility, and probability en-

tities are defined in terms of a function. In the case of fuzzy sets, it is

called a membership function, in the case of possibility it is called a
possibility measure, in the case of probability, it is called a proba-

bility distribution function. In each case, these three functions map

the domain to the interval [0,1]. However, each of these functions are de-
fined with different properties. There are generalizations associated with

these three theories that lead to intervals (sets of connected real numbers

bounded by two points) and interval functions (sets of functions that are
bounded by known upper and lower functions). An interval or interval

function encodes the fact that it is unknown which of the points or func-

tions is the point or function in questions, that is, the numerical value
or real-valued function is unknown, it is uncertain. For generalizations

given by pairs of numbers or functions, a case is made for a particu-
lar type of generalized uncertainty theory, interval-valued probability

measures, as a way to unify the generalizations of probability, possibility

theory, as well as other generalized probability theories via fuzzy intervals
and fuzzy interval functions. This presentation brings a new understand-

ing of quantitative fuzzy set theory, possibility theory, probability theory,

and generalized uncertainty and gleans from existing research with the
intent to organize and further clarify existing approaches.

Keywords: Possibility Theory, Probability Theory, Interval-Valued Prob-
ability Measures, Fuzzy Set Theory
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1. Introduction

Real-valued mathematical analysis of processes and systems that incorporate
uncertainty in its theory, has a history that dates back to at least Archimedes
(see [1] ) where the perimeter of a circle was approximated via outer and inner
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polygonal perimeters. These notes will outline newer methods for mathemati-
cal analyses inherently characterized by uncertainty of various types where this
presentation restricts itself to real-valued uncertainties. Consequently quanti-
tative real analysis is implied in what follows and “real” is dropped when the
context is clear.

Many of these notes draw heavily on the research done by Dubois and Prade
as well as Klir (see the bibliography) as well as on the author’s book [22]. Thus,
these notes are a synthesis of many ideas that have already been published.
This presentation assumes that the reader is familiar with the basics of set
theory and fuzzy set theory at the level of [25] and interval analysis at the level
of [26].

The types of uncertainties of interest to this presentation are those that are
represented by bounds, either as pairs of numbers (intervals) or pairs of func-
tions enclosing what is unknown, a real number or a real function respectively.
Loosely speaking, then, uncertainty will mean, for these sets of notes, the fact
that in the analysis it is not known which number or function is the number
or function that applies to the problem. However, it is always assumed that
at least one number or function is the one that is in fact the number or func-
tion in question. Moreover, it is assumed that the bounds are a-priori known
either given or readily computable and available. In the case of Archimedes’
outer/inner approximation of the perimeter, the circumference, of a circle ra-
dius 1, it is known with mathematical certainty that the circumference resides
in the interval [6.2832, 6.2833] since 6.2832 ≤ 2π ≤ 6.2833.

The definitions, properties, representations as mathematical entities, and
relationships of uncertainty types are presented. After an introduction to
fuzzy set theory where we will define fuzzy interval numbers as the entity of our
quantitative analysis, we continue with a discussion of the key theme of these
notes, which centers on three types of uncertainties that can be represented by
bounds: (1) probability and its generalizations, (2) possibility, and (3) interval-
valued probability measures (IVPMs). It will be shown that IVPMs are a type
of generalized uncertainty that unifies many types of uncertainties. Let us
start with an example.

Example 1.1. Consider five mutually disjoint states of an event, such that
X = S1∪S2∪S3∪S4∪S5. However, the probability of each event is not known
with certainty although the probabilities are know to be contained, with cer-
tainty, in the following intervals PrS1 ∈

[
5
16 ,

7
16

]
with the “best guess” PrS1 =

3
8 , PrS2 ∈

[
1
10 ,

3
10

]
with the “best guess” PrS2 = 1

5 , PrS3 ∈
[

1
10 ,

3
10

]
with the

“best guess” PrS3 = 1
5 , PrS4 ∈

[
1
16 ,

3
16

]
with the “best guess” PrS4 = 1

8 , and

S5 ∈
[

1
20 ,

3
20

]
with the “best guess” PrS5 = 1

10 . Note that for this example, the

sum of the best guess probabilities is 3
8 + 1

5 + 1
5 + 1

8 + 1
10 = 1. Suppose an

event, E1, is composed of two states, S1, S5, that is, E1 = {S1 ∪ S5}. And
suppose a second event, E2, is composed of three states, S2, S3, S4, that is,
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E2 = {S2 ∪ S3 ∪ S4}. Given the interval probability of set A, the upper proba-
bility needs to be the sum of the upper probabilities. However, it should be no
more than 1− lower(Pr(Ac), where AC is the complement of set A. Moreover,
the lower probability needs to be the sum of the lower probabilities but greater
than or equal to 1− upperPr(Ac). That is,

upperPr(A) = (1− Pr(Ac)) ≤ 1−min lowerPr(Ac)

lowerPr(A) = (1− Pr(Ac)) ≥ 1−maxupperPr(Ac),

Thus,

upper(Pr(E1)) =

= min {{max Pr(S1) + max Pr(S5)}, 1− {min Pr (S2) + min Pr(S4)}}

= min

{{
7

16
+

3

20

}
,

{
1− (

1

10
+

1

10
+

1

16

}}
= min {0.5875, 7375} = 0.5875

and

upper(Pr(E2)) =

= min {{max Pr(S2) + max Pr(S3) + max Pr(S4)} , 1− {min Pr(S1) + min Pr(S5)}}

= min

{{
3

10
+

3

10
+

3

16

}
, 1−

{
5

16
+

1

20

}}
= min {0.7875, 6375} = 0.6375.

On the other hand,

lower(Pr(E1)) =

= max {{min Pr(S1) + min Pr(S5)} , 1−max {Pr(S2) + Pr(S3) + Pr(S4)}}

= max

{{
5

16
+

1

20

}
, 1−

{
3

10
+

3

10
+

3

16

}}
= max {0.3625, 2125} = 0.3625

and

lower(Pr(E2)) =

= max {{min Pr(S2) + min Pr(S3) + Pr(S4)} , 1− {max Pr(S1) + max Pr(S5)}}

= max

{{
1

10
+

1

10
+

1

16

}
, 1−

{
7

16
+

3

20

}}
= max {0.2625, 0.4125} = 0.4125.

Thus,

PrE1 = [0.3625, 0.5875],

Pr(E2) = [0.4125, 0.6375]
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and since X = E1 ∪ E2

Pr(X) = 1 ∈ [lowerPr(X), upperPr(X)] = [0.775, 1.225] ,

that is,

0.775 ≤ Pr(X) = 1 ≤ 1.225.

Without using the property that

Pr(A) + Pr(AC) = 1,

upper(E2) = 0.7875, low(E1) = 0.2625,

where the upper/lower probabilities for E1 remain the same. That is, there are
potential reductions to upper/lower bounds given that the entities obey the laws
of probabilities.

Remark 1.2. Example 1.1 highlights that when there is only partial information
(of the interval in which the probability lies) available, a different approach to
classical probabilistic analysis is important to consider. One such approach is
possibility theory. Another more general and unifying theory is IVPM, where
this latter theory encompasses many generalized uncertainty theories including
probability and possibility theory.

Remark 1.3. To obtain more precise results, more information would need to
be obtained. For example, given the axiom (definition) of probability that the
sum of disjoint probabilities whose union is the entire set is captured by,

(1) x1 + x2 + x3 + x4 + x5 = 1,

such that,

xi ∈ [lowerPr(Si), upperPr(Si)] , i = 1, ..., 5.

Even with this one constraint (1), there are an uncountably infinite number
of solutions. With more information about the nature of the problem, more
constraints would result in more precise results. It is noted that Example 1.1
used the fact that Pr(A) + Pr(AC) = 1.

The word “uncertainty” and phrase “incomplete information” have been
used above. These words for these notes will have a restricted meaning that
is articulated next.

Definition 1.4. (Moderately modified from [11]) Uncertainty in the context
of a quantitative entity is the state of not knowing the exact (crisp, determinis-
tic) real-value of the entity. That is, a piece of information or data of or about
a quantitative entity is said to be uncertain when its value is an unknown real-
number or real-valued function, contained in a set of two or more numbers or
functions prescribing its possible values.

Definition 1.5. (Moderately modified from [11]) A piece of information or
data is said to be incomplete (or imprecise, not completely specified, lacks
information) in the context of quantitative entities, if it is not sufficient to allow
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for the quantitative entity to be determined as a single real number or a single
real-valued function (as a unique fuzzy membership function or as a unique
probability distribution).

Functions over sets of real numbers are needed for our exposition. Recall
that set-valued functions are functions whose domains are sets, often not sin-
gleton sets. As will be seen, generalized uncertainty types of interest begin
with set-valued functions. Regardless, the domain of set-valued functions are
sets of real numbers, which require an underlying set structure that will allow
the construction of these entities of interest and its measure, that is, sets of
numbers (intervals) or upper/lower bounding distribution functions. Mathe-
matical analyses (such as integration, optimization, differential equations) often
require measures of such functions. These are defined as needed. Moreover,
for applications in the context of mathematical analyses one needs a way to
account for entities that are pairs of numbers and/or functions and a way to
operate on these pairs.

It is clear from Example 1.1, that a more general uncertainty theory than
classical probability is necessary. The mathematics of uncertainty has, ar-
guably, been the domain of probability until 1978 when Zadeh’s (see [31])
article on possibility theory appeared. Zadeh’s motivation was to quantify
systems described by linguistic descriptions. We note that toward this aim
of quantified systems described by linguistic variables, an application, radia-
tion therapy of tumors, [19,21], incorporates linguistic entities in an “industrial
strength” mathematical analysis (possibilistic optimization). That is, what is
presented herein has applications beyond illustrative examples.

Fuzzy sets, possibility entities, and probability are defined as functions.
That is, fuzzy theory is developed from the properties of its membership func-
tion. Then, possibility is defined as a function with properties different from
fuzzy membership functions. It is shown that fuzzy intervals can be used
to construct possibility entities. Next probability theory, as a function with
properties different from fuzzy membership functions, and possibility measures,
is defined. Generalizations to probability leading to generalized uncertainty
theory ensues. This is followed by a discussion of the relationships between
possibility theory and probability theory. The penultimate section proposes
a unifying approach to uncertainty theory. The last section contains some
conclusions.

2. Fuzzy Sets

Fuzzy set theory is a generalization of classical set theory. Mathematically,
therefore, fuzzy set theory sits “above” set theory, that is, it is in the realm of
set theory. The “fuzzy” generalization is that classical set theory is charac-
terized by entities we call sets whose elements are deterministically known to
exclusively belong or not belong. That is, given an entity, say A, called set,
in a universe, say X, elements of the universal set x ∈ X either belong to A or
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do not belong to A. Fuzzy sets can be approached from a set function point
of view, which is presented next.

One of the most general set-valued functions, also a measure since the range
is a subset of R+, is

(2) g : A ⊆ X → [0, 1], A ⊆ X ⊆ Power set of R,
together with a structure of the subsets of X. Denote the power set of R
by PS(R). Some requirements on g to be associated with fuzzy sets are the
following:

g(∅) = 0, and g(X) = 1(3)

A ⊆ B ⇒ g(A) ≤ g(B).(4)

The assumptions (2), (3) and (4) define a fuzzy measure, a set function. The
use of the word “measure” is because the range of the function is a subset of
the non-negative real numbers. A consequence of (3) and (4) is:

g(A ∪B) ≥ max {g(A), g(B)} .(5)

g(A ∩B) ≤ min {g(A), g(B)}(6)

For X consisting of a finite set of elements, (2), (3), and (4) suffice. For infinite
universal sets X endowed with a sigma algebra (defined below), σX , M. Sugeno
(see [29]) adds two more axioms. If, A1 ⊂ A2 ⊂ ...,then

(7) g

( ∞⋃
n=1

An

)
= lim
n→∞

g(An).

If A1 ⊃ A2 ⊃ ...,

(8) g

(∞⋂
n

An

)
= lim
n→∞

g(An).

Formally, we have the following definition.

Definition 2.1. A function that satisfies (2), (3), (4), (7), and (8), is a fuzzy
measure.

The case where the sets of the domain are points, singletons (individual
real numbers in the quantitative case), the set function is called a distribution
function or in the context of fuzzy set theory, it is called a fuzzy membership
function denoted µ(x). A classical set A of real numbers from a distribution
function point of view can be defined as follows.

Definition 2.2. A classical set A, which resides in a universal set X, is
characterized by a (unique) membership function µA(x) such that for any x
belonging to the universal set X,

µA(x) =

{
1, x ∈ A
0, x /∈ A , x ∈ X,

that is, µA(x) ∈ {0, 1} .
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Note that a classical set defined via the membership function (the characteristic
function) satisfies the conditions of being a fuzzy measure.

Definition 2.3. A fuzzy set A, which resides in a universal set X, is charac-
terized by a (unique) membership function µA(x) such that for any x belonging
to the universal set X,

µA(x) ∈ [0, 1],(9)

µ(x) = 0, x /∈ A,µ(x) = 1, x ∈ A,(10)

0 < µ(x) < 1 otherwise.(11)

Our main interest are in the case of real-valued domains.

Proposition 2.4. A fuzzy set defined by a membership function g : X ⊂ R→
[0, 1] that satisfies (9), (10), and (11), also satisfies (2), (3), (4), (7), and (8).

Proof. Let a membership function g be defined by (9), (10), and (11).
1) g : A ⊆ X → [0, 1], A ⊆ X ⊆ PS(R), by (9) and thus (2) is satisfied.
2) g(∅) = 0 since no x ∈ X belongs to {∅} and g(X) = 1 since all x ∈ X and
therefore (3) is satisfied.
3) Let A ⊆ B. From (10)

gA(x) = 0, x ∈ B −A.

This means that

gA(x) = gB(x), x ∈ A ∩B
gA(x) = 0 ≤ gB(x) ∈ [0, 1], x ∈ B −A.

Thus

g(A) ≤ g(B)

and (4) is satisfied.

4) Property (7) follows from the fact that A =

∞⋃
n=1

An = limn→∞An.

5) Property (8) follows from the fact that A =

∞⋂
n=1

An = limn→∞An. �

Remark 2.5. Recall that the semantic of a fuzzy set is that it is a set whose
elements transitionally belong to the set of interest, such that, if the member-
ship function value of an element is zero, this means that the element definitely
does not belong to the set. If the membership function value of an element
is one, this means that the element definitely does belong to the set. Values
between zero and one indicate the grade to which an element belongs. More-
over, if one thinks of set “belonging”, ∈, as an operation, then fuzzy set theory
“relaxes” or generalizes the set belonging operation from a binary value to a
value lying in the interval [0, 1].
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Example 2.6. Suppose a fuzzy set is “middle age person”, where if the person
is between zero years old and 29 years old, the person is definitely not “middle
aged” and if the person is older than 50 years, the person is definitely not
“middle aged”. But between 29 and 50 years, the belonging has the following
distribution.

Middle Age

Measure is one of the key concepts in mathematical analysis. Measure
is the mapping from a subset of an entity to a subset of the non-negative
real numbers and evaluates the “extent” of the entity as a number or in the
case of uncertainty, an interval of numbers. Let us restate fuzzy measure
using notation that Puri/Ralescu employ since it will be used to show that
a fuzzy measure is not a possibility measure except in the trivial case when
the function is identically zero. The Puri/Ralescu characterization of fuzzy
measure is simply the function defined by (2), (3), (4), (7), and (8.

Definition 2.7. (See [27]) Let X be a classical set and let = be a σ−algebra
(sigma algebra - see definition 4.1 below) of the subsets of X. A fuzzy mea-
sure, using Puri/Ralescu’s notation, is the set function µ : = → [0, 1] with the
following properties.
(FM1) µ {∅} = 0, and 0 < µ(A) ≤ 1, for A 6= {∅} ,
(FM2) A ⊂ B ⇒ µ(A) ≤ µ(B),

(FM3) A1 ⊂ A2 ⊂ ...⇒ µ(

∞⋃
n=1

An) = limn→∞ µ(An),

(FM4) A1 ⊃ A2 ⊃ ...⇒ µ(

∞⋂
n=1

An) = limn→∞ µ(An).
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The operations associated with quantitative fuzzy set theory are generaliza-
tions of the operations on sets and can be found in [25]. These operations can
be thought of as set “aggregation” operations. When the set is what is called a
fuzzy number, the operations are those of traditional interval analysis (see [26])
applied to fuzzy sets and are called fuzzy interval arithmetic (see [18]).

Operations generate algebraic spaces. In the case of traditional fuzzy inter-
val arithmetic, the space is the fuzzy interval space. Newer representations of
intervals than traditional interval representation have been used to endow fuzzy
interval spaces with a more ample set of algebraic properties. The traditional
approach to fuzzy interval arithmetic does not have additive or multiplicative
inverses whereas changing the interval representation to what is called con-
straint intervals does (see [20,22]).

A real fuzzy interval is uniquely defined by its alpha levels and therefore its
arithmetic is defined via these alpha levels where the alpha levels are closed
and bounded intervals. What is crucial to understand is that given the rep-
resentation of a real fuzzy interval, the associated mathematical analyses are
intimately related to those of interval analysis.

3. Possibility

We begin the discussion of possibility theory with a concrete example, which
is an application of possibility theory (see [19]).

Example 3.1. An example of uncertainty that is not captured by conventional
probability theory is the uncertainty associated with “the minimum radiation
dosage that will kill a cancer cell”, as a unique real number, located at a par-
ticular voxel of a particular type of cancer of a particular person’s computed
tomography (CT ) image. It is clear that there exists a radiation that will not
kill a cancer tumor cell, zero units. And there exists a radiation level that
will kill the cancer tumor cell (and kill the patient). So, one posits that there
exists a minimal radiation, but what this value is as a unique real number is
unknown. Now, suppose a radiation oncologist represents his/her knowledge
about the minimum radiation dosage as a distribution of preferred values (see
Figure 1, the trapezoid 58/59/61/62) where less than 58 units of radiation def-
initely does not kill a cancer tumor cell while 62 units of radiation is definitely
more radiation than required to kill a tumor cell, with the range 59 to 61 being
the most preferred and is the interval that is certain to contain the minimum
radiation dosage to kill a cancerous cell. Here 58/59/61/62 (Figure 1) en-
codes what is known about the minimal radiation level that will kill a cancer
cell. Note that this distribution is not a probability distribution since the area
under the curve of the trapezoid, 58/59/61/62, is not 1 but 3. Clearly, a
probability distribution could be used to describe “minimal tumorcidal dose for
a cancer cell”, though it is clear that to obtain a value for “minimum dose that
will kill a cancer cell” is hard if not impossible to obtain as a single unique real
number.
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Figure 1. Minimal Tumorcidal Dose

This fuzzy interval, the trapezoid 58/59/61/62, associated with “minimal
radiation dosage that will kill the cancer cell”, is a possibility distribution from
which upper and lower bounding possibility measures can be constructed and
used in mathematical analysis, for example, in optimization (kill the tumor
cells while minimizing the negative effects of radiation to the body). The
trapezoidal distribution function is the encoding of what the current state of
the partial and incomplete knowledge is. It is noted that the trapezoid itself
models the fact that it is not known which distribution is the one which will be
the one to be “the” minimal to kill the tumor cell and so we have an uncertainty.
In this context, various distributions could be used to represent the uncertainty
information encoded in the trapezoid 58/59/61/62:

µtrap(x) =


0 for x < 58, x > 62
x− 58 for 58 ≤ x ≤ 59

1 for 59 < x < 61
−x+ 62 for 61 ≤ x ≤ 62

;
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pos(x) =

 0 for x < 58
x− 58 for 58 ≤ x ≤ 59

1 for x > 59
;

nec(x) =

 0 for x < 61
x− 61 for 61 ≤ x ≤ 62

1 for x > 62
;

uni(x) =

 0 for x < 58
1
4x− 14.5 for 58 ≤ x ≤ 62

1 for x > 62
.

Remark 3.2. Note that pos(x) and nec(x) (also uni(x)) are cumulative distri-
butions.

The distributions pos(x) and nec(x), where nec(x) is the dual of pos(x)
called the necessity, are both possibilities. Moreover, the functions pos(x), and
nec(x) are cumulative distributions that enclose all cumulative distributions
whose uncertainty is described by the uncertainty as modeled by the trapezoid
µtrap(x). Of course, it is assumed that the trapezoid µtrap(x) is the correct
and complete uncertainty information associated with the minimal tumorcidal
dose, that is, no dose below 58 units has the ability to kill a tumor cell and doses
above 62 units are always more than the minimal. Between these two values
there is a radiation level that will kill the tumor cell. The function can vary
depending on the tumor (type, aggressiveness, stage, location, etc.), research
results, oncologists’s experience, and the particular patient characteristics.

Remark 3.3. Any distribution like µtrap(x) generates three principle distribu-
tions - (1) itself, (2) its associated possibility, and (3) its associated necessity.
From a mathematical analysis point of view, generalized uncertainties are char-
acterized by: (1) A distribution that represents the state of partial knowledge,
in our example, µtrap(x); and (2) A pair of distributions that enclose the pos-
sible distributions that can describe the actual situation, pos(x) and nec(x) in
our example. This is the salient characteristic of what we call generalized
uncertainty, which is formally defined subsequently. There are a variety
of theories in which the uncertainty is defined by extremal functions such as
Dempster-Shafer theory [28], P-Boxes [15] to name two such theories that are
discussed below.

Possibility theory was first proposed by L. Zadeh [31] and also articulated
by D. Dubois and H. Prade [8]. Necessity was first developed by D. Dubois
and H. Prade [8]. Possibility is easier to use than probability as is, perhaps,
apparent from Example 3.1. The trapezoid, in fact, was developed from a
30 minute conversation with a radiation oncologist. Additionally, Dubois [3]
states:

“Limited (minimal) specificity can be modeled in a natural way
by possibility theory. The mathematical structure of possibility
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theory equips fuzzy sets with set functions, conditioning tools,
notions of independence and dependence, decision-making ca-
pabilities [lattices]. Lack [deficiency] of information or lack of
specificity means we do not have ‘the negation of a proposition
is improbable if and only if the proposition is probable.’ In
the setting of lack of specificity, ‘the negation of a proposition
is impossible if and only if the proposition is necessarily true.’
Hence, in possibility theory pairs of possibility and necessity
are used to capture the notions of plausibility [possibility] and
certainty [necessity]. When pairs of functions are used we may
be able to capture or model lack of information. A membership
function is a possibility only when the domain of a fuzzy set is
decomposable into mutually exclusive elements. A second dif-
ference [between probability and possibility besides possessing
a dual necessity] lies in the underlying assumption regarding
a probability distribution; namely, all values of positive prob-
ability are mutually exclusive. A fuzzy set is a conjunction of
elements. For instance, in image processing, imprecise regions
are often modeled by fuzzy sets. However, the pixels in the
region are not mutually exclusive although they do not over-
lap. Namely the region contains several pixels, not a single
unknown one. When the assumption of mutual exclusion of el-
ements of a fuzzy set is explicitly made, then, and only then,
the membership function is interpreted as a possibility distribu-
tion; this is the case of fuzzy intervals describing the ill-located
unique value of a parameter .”(here, the braces, [ ], indicate the
authors’ comments not in the original and the italics are the
authors’ emphases)

Moreover, possibility is normalized since the semantics of possibility is tied
to existential entities. That is, models that use possibility are of existen-
tial entities. It is crucial to distinguish gradualness, fuzzy sets, from lack of
information, possibility.

3.1. Possibility Theory From a Function Point of View. There are sev-
eral ways that quantitative possibility measures/distribution are derived, de-
fined. This presentation highlights two: (1) Possibility generated via fuzzy
sets, which is the way that L. Zadeh [31] introduced the theory, (2) Possibility
stated as a function/measure via defining properties that we call definitional
or axiomatic possibility theory. However, we develop possibility and necessity
theory from the function/measure point of view. A detailed development can
be found in [8] and [25].

A quantitative possibility measure is a set-valued map Pos(A),

(12) Pos(A) : A ⊆ X ⊆ PS(R)→ [0, 1],
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which is precisely (2) for fuzzy measures and also how the general initial part
of the definition of a probability distribution. When singletons are in the
algebraic structure of sets of the domain, X, as is true of the power set, there
is a possibility distribution, pos(x), that can be defined from the possibility
measure, Pos(A). That is,

pos(x) = Pos({x}).

On the other hand, if a possibility distribution pos(x), x ∈ X is known, the
possibility measure Pos(A), A ⊆ X, can be derived as follows:

Pos(A) = sup
x∈A

pos(x).

We next add properties to (12). It is these properties that distinguish fuzzy set
membership functions from possibility measures from probability distribution
functions. Then we will show how to construct possibility functions from fuzzy
interval (membership) functions.

Figure 1 illustrated how a possibility could be constructed from a fuzzy
interval, but this will be more formally done after developing the definitional
or axiomatic approach to possibility. The definitions of possibility measures
(functions) are the following.

Definition 3.4. A possibility measure/function obeys (2), (3), (4) and
(5), where (5) is satisfied with equality. In particular, given a universal set
X, and its power set P (X), following [31], a possibility measure Pos(A),
satisfies the following:

Pos(A) : A ⊆ X → [0, 1], A ⊆ X,(13)

Pos(∅) = 0, and Pos(X) = 1,(14)

A ⊆ B ⇒ Pos(A) ≤ Pos(B),(15)

Pos(A ∪B) = max {Pos(A), Pos(B)} ,(16)

The infinite case,

(17) Pos

( ∞⋃
i=1

Ai

)
= sup
i=1,2,...

Pos (Ai) .

And when the universal set X is uncountable, and indexing set I is used so
that

(18) Pos

(⋃
i∈I
Ai

)
= sup

i∈I
Pos(Ai).

However, we restrict ourselves to the infinite countable case (16).

Note that (16) is (5) where ≥ is replace with equality. Next, we define a
dual measure to Pos, the necessity measure, via functions.
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Definition 3.5. A necessity measure obeys (2), (3), (4) and (6), where (6) is
satisfied with equality. That is, a necessity measure satisfies the following:

Nec(A) : A ⊆ X → [0, 1], A ⊆ X,(19)

Nec(∅) = 0, and Nec(X) = 1(20)

A ⊆ B ⇒ Nec(A) ≤ Nec(B)(21)

Nec(A ∩B) = min{Nec(A), Nec(B)}.(22)

The infinite case for necessity is

(23) Nec

(⋂
i∈I
Ai

)
= inf
i∈I

Nec(Ai).

Remark 3.6. Given a possibility measure Pos(A), a dual necessity measure
can also be defined (see Dubois/Prade [8]) as

(24) Nec(A) = 1− Pos(AC).

Proposition 3.7. Necessity defined by (24) satisfies (19), (20), (21), and (22)
for the finite case.

Proof. (1) To see (19)

0 ≤ 1− Pos(AC) = Nec(A) ≤ 1

since 0 ≤ Pos(AC) ≤ 1.
(2) To see (20),

Nec(∅) = 1− Pos(∅C) = 1− Pos(X) = 1− 1 = 0

(3) To see (21), let A ⊆ B. This means that BC ⊆ AC which means Pos(AC) ≥
Pos(BC). Thus

Nec(A) = 1− Pos(AC) ≤ 1− Pos(BC) = Nec(B).

(4) To see (22), (A ∩B)
C

= AC ∪BC . Therefore,

Nec(A ∩B) = 1− Pos((A ∩B)
C

)

= 1− Pos(AC ∪BC)

= 1− sup
{
Pos(AC), Pos(BC)

}
= inf

{(
1− Pos(AC

)
,
(
1− Pos(BC

)}
= inf {Nec(A), Nec(B)} .

The case of arbitrary number of intersection is done using finite induction. For
the infinite countable case the definition of infimum is used. �
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3.2. Fuzzy and Possibility Measures are Different. We end this section
by showing that a possibility measure is not a fuzzy measure except in the
trivial case. This result, to the best of our knowledge, was first observed by
Puri/Ralescu (see [27]). Thus, there not only is the semantic difference between
possibility and fuzzy, there is also an underlying measure theoretical difference.
It should be noted that the domain space X ⊆ R to which these examples and
theorems refer are infinite.

Note that a possibility measure Π can be uniquely defined by any function

f : X → [0, 1]

via

(25) Π(A) = sup
x∈A

f(x), A ⊆ X.

On the other hand, given a possibility measure Π(A), A ⊆ X, where X con-
tains singleton elements (as in the power set of X) a function, its possibility
distribution, can be generated as follows.

(26) π(x) = f(x) = Π({x}), x ∈ X.
That is, given a function, f , we can generate a possibility measure, as Zadeh
did [31]. In Zadeh’s case, the function f that maps X ⊆ R into [0, 1], was
the membership function. Given a possibility measure, Π, we can generate a
possibility distribution function, π(x). Bearing this in mind, Puri/Ralescu [27]
use the following example to show that fuzzy and possibility measures are
distinct except when the associated with the trivial distribution π(x) = f(x) =
0,∀x ∈ X. The example is the following, where Puri/Ralescu use f rather than
π. However, we will keep both for clarity.

Example 3.8. ( [27]) Let X = R, π(x) = f(x) = 1. Define a possibility
measure, Π, as

Π(A) = sup
x∈A

f(x).

Let An = (n,∞). We have Π

( ∞⋂
n=1

An

)
= Π(∅) = 0. However

lim
n→∞

Π(An) = 1.

Thus, Π is not a fuzzy measure since it violates property FM4.

Example 3.9. ( [27]) Let X = [0, 1],

π(x) = f(x) = 1, x ∈ [0, 1)

π(1) = f(1) = 0.

Let An = [1− 1
n , 1]. Therefore

Π

( ∞⋂
n=1

An

)
= Π(1) = π(1) = 0.
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However
lim
n→∞

Π (An) = sup
x∈An

π(x) = 1.

Puri/Ralescu go on to prove the following theorem.

Theorem 3.10. ( [27], page 312). Given

π(x) = f(x) : Rk → [0, 1]

with
Π(A) = sup

x∈A
π(x) = sup

x∈A
f(x), A ⊆ Rk,

its associated measure. If Π is a fuzzy measure, then π(x) = f(x) = 0 at every
point of the continuity of π, f.

Corollary 3.11. ( [27], page 312). Let Π be a possibility measure with contin-
uous “density” (distribution) function π. If Π is a fuzzy measure, then π = 0.

Remark 3.12. What the examples, theorem, and corollary mean is that when
fuzzy measures are possibility measures, then the corresponding possibility dis-
tribution is the zero function. Thus, fuzzy measures and possibility measures
are the same only for the “trivial” case.

3.3. Possibility Theory From Fuzzy Sets. The original work by L. Zadeh
[31] on possibility theory started with a possibility distribution derived from a
fuzzy set. Let µA(x) be a membership function of a given fuzzy set A.

Definition 3.13. The possibility distribution associated with the fuzzy set A,
as defined by Zadeh [31], is

(27) posA(x) = µA(x).

Remark 3.14. Zadeh’s definition of possibility (27) can be, and indeed is, con-
fusing since it appears that there is no difference between fuzzy and possibility.

Klir and Yuan [25] state the following:

“A fuzzy set F defines the degree to which x belongs to F ,
not the degree to which evidence supports the fact that x is F.
A possibility measure is one that assigns a degree of certainty
that an element is F. It is the degree to which the evidence
supports that x is F .”

Remark 3.15. For the example “Middle Age” (see Figure 2.6) as a fuzzy set, x
is precise age and µMidAge(x) is the degree to which the age x belongs to the set
“Middle Age”. On the other hand, “Middle Age” as a possibility, posMidAge(x)
is the degree of certainty, our ranking, that the age x is “Middle Age”.

A possibility measure defined via a fuzzy membership function satisfies the
properties of possibility measure (13), (14), (15), and (16). This is proved
next.
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Proposition 3.16. Given Pos(A) defined via fuzzy sets according to [31], it
satisfies (13), (14), (15), and (16) for the finite union case. Recall that, for
possibility, the domain X is always assumed to contain a point that definitely
exists, that is, has possibility value 1.

Proof. Given pos(x) = µA(x), then

Pos(A) = sup
x∈A

pos(x) = sup
x∈A

µA(x) : A ⊆ X → [0, 1], A ⊆ X

Pos(∅) = sup
x∈∅

µ∅(x) = 0 by convention

Pos(X) = sup
x∈X

µX(x) = 1.

Given two sets A ⊆ B

Pos(A) = sup
x∈A

µA(x) ≤ sup
x∈B

µB(x) = Pos(B).

Pos(A ∪B) = sup
x∈A∪B

µA∪B(x) = sup
x∈A

µA(x) or sup
x∈B

µB(x)

= max
x∈A∪B

{
sup
x∈A

µA(x), sup
x∈B

µB(x)

}
.

The finite case is done by finite induction. For the countable case the definition
of supremum is used. �

The Zadeh definition of possibility satisfies the conditions of a possibility
measure. That is, an arbitrary fuzzy membership function µ(x) generates a
possibility measure pos(x). A fuzzy interval is a particular case of a mem-
bership function. Thus, it generates a possibility and therefore a necessity
distribution. This is formalized next.

Definition 3.17. A fuzzy interval A is a fuzzy set over the real numbers, R,
such that the membership function µA has the following properties:

µA(x) ∈ [0, 1],∀x ∈ R,
{x | µA(x) > 0} = (a, b) ,−∞ < a ≤ b <∞,

∃x ∈ [c, d] ⊂ [a, b], µA(x) = 1, c ≤ d,
if x ∈ [a, c], µA(x) is continuous nondecreasing,

if x ∈ [d.b], µA(x) is continuous nonincreasing.,

x ∈ (−∞, a] or x ∈ [b,∞), µA(x) = 0

There are more general ways to define a fuzzy interval, but the above is
sufficient for our purposes. Note that since a fuzzy interval is a membership
function, its possibility is directly defined as the membership functions. The
possibility and necessity associated with a fuzzy interval as presented next was
introduced by Dubois (for a more recent exposition, see [5]).
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Figure 2. Fuzzy Interval: Trapezoid 1/2/4/6 - Possibility, Necessity

A fuzzy interval 1/2/4/6 28, like the trapezoid depicted in Figure 2, is given
by

(28) Trap1/2/4/6(x) =


0 x ≤ 1

x− 1 1 < x ≤ 2
1 2 < x ≤ 4

− 1
2x+ 3, 4 ≤ x ≤ 6

0, x > 6

.

As previously mentioned, a fuzzy interval like (28) can be viewed as encoding
a family of cumulative probability distributions. Both upper possibility and
lower necessity, respectively, the magenta and light red distributions of Figure
2, are cumulative probability distribution functions. Therefore, given a fuzzy
interval as a piece of incomplete information, it generates a family of CDFs
bounded by a upper possibility and lower necessity pair as depicted in Figure
2. A possibility description of the value of a parameter (or entity) which en-
capsulates what is known about the possible values of that parameter or entity,
generally uses a (single) fuzzy interval as its distribution function, for example,
the trapezoid in Figure 2.

Let us next show that the upper function depicted in Figure 2 is indeed a
possibility whereas the lower function, depicted in the same figure, is indeed
its corresponding dual necessity. Without loss of generality, we assume that
our fuzzy interval is a trapezoidal fuzzy interval.
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Proposition 3.18. Given a trapezoidal fuzzy interval a/b/c/d, witha < b <
c < d ∈ R and

(29) postrap(x) =


0 if x < a, x > d

1
b−ax−

a
b−a if a ≤ x ≤ b

1 if b ≤ x ≤ c
− 1
d−cx+ d

d−c if c ≤ x ≤ d

.

Define the upper function

(30) postrap(x) =


0 if x < a

1
b−ax−

a
b−a if a ≤ x ≤ b

1 if x > b
.

Both 29 and 30 are possibility distributions.

Proof. Let

Pos(A) = sup
x∈A⊆R

postrap(x).

(1) Pos(A) ∈ [0, 1] by construction.
(2) Pos(∅) = sup

x∈∅
postrap(∅) = 0, and Pos(X) = sup

x∈X
postrap(x) = 1.

(3) Pos(A ∪B) = sup
x∈A∪B

postrap(x) = sup

{
sup
x∈A

postrap(x), sup
x∈B

postrap(x)

}
�

Proposition 3.19. Given a trapezoidal fuzzy interval a/b/c/d, with a < b <
c < d ∈ R and postrap(x) given by distribution (29), the lower function

(31) pos
trap

(x) = nectrap(x) =


0 if x < c

1
d−cx−

c
d−c if c ≤ x ≤ d

1 if x > d

is the dual necessity distribution with respect to the possibility Equation (29).
Moreover, Equation (31) is also a possibility.

Proof. Let fuzzy interval be a/b/c/d be given by (29) and (30).

Nec(A) = 1− Pos(AC)

= 1− sup
x∈AC

pos
trap

(x).

Let A = (−∞, c) ⇒ AC = [c,∞). Therefore

Nec(A) = 1− sup
x∈[c,∞)

pos
trap

(x)

= 1− 1 = 0.

This means that

nec(x) = 0 ∀x ∈ (−∞, c).
Now let A = (−∞, x), x ∈ (c, d)⇒ AC = [x,∞), c < x < d.
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This means that

Nec(A) = 1− sup
[x,∞)

pos
trap

(x), c < x < d

= 1−
(
− 1

d− c
x+

d

d− c

)
= 1 +

1

d− c
x− d

d− c

=
1

d− c
x+

d− c
d− c

− d

d− c

=
1

d− c
x− c

d− c
.

Lastly, let A = (−∞, x), x ∈ [d,∞)⇒ AC = [x,∞), x ≥ d.
This means that

Nec(A) = 1− sup
[x,∞)

pos
trap

(x), d ≤ x

= 1− 0

= 1.

Thus, nec(x) = 1,∀x ∈ [d,∞) and the first part of the theorem is proved. Since
Nec(A) is similar to Pos(A) except it is shifted, it too is a possibility. �

Remark 3.20. We emphasize that the dual necessity is with respect to the
fuzzy interval postrap(x), Equation (29), and it is also a possibility.

Remark 3.21. It can be shown that nested sets can be generated by possibility
measures and possibility measures can be generated from nested sets. More-
over, if we are to construct possibility/necessity pairs, we either need to begin
with a set of nested subsets, or if we construct possibility/necessity pairs, we
have nestedness underlying the domain of the sets over which the pair of dis-
tribution measures operate. Given a fuzzy interval as defined by Definition
3.17, since the α−levels of a fuzzy interval are nested, the underlying Pos/Nec
measures associated with fuzzy intervals exists. That is, nestedness is a charac-
teristic of alpha levels of a fuzzy interval. When considering generalizations of
probability, such as Dempster/Shafer theory of evidence or random sets, nest-
edness is used to related these generalized probability theories to possibility.
That is, theory of evidence and random sets will be related to possibility as
long as the underlying set structure over which these two generalized theories
operate are nested. The third generalized probability theory we present called
P-Boxes, have nestedness so are directly related to possibility.

Some simple standard properties associated with possibility and necessity
measures (see [25]) are the following.

(1) Nec(A) +Nec(AC) ≤ 1
(2) Pos(A) + Pos(AC) ≥ 1
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(3) Nec(A) + Pos(AC) = 1
(4) min{Nec(A), Nec(AC) = 0
(5) max{Pos(A), Pos(AC) = 1
(6) Nec(A) > 0⇒ Pos(A) = 1
(7) Pos(A) < 1⇒ Nec(A) = 0.

4. Probability

We begin with a very brief introduction to probability measures highlighting
only those aspects that are relevant to our exposition. The domain, a subset
of sets, needs a structure and for our purposes, the set structure is a sigma
algebra, which is discussed next. Note that in these notes, by a partition of
a set X, is an at most countable collection of pair-wise disjoint subsets whose
union is X. For possibility, we used the power set as a structured set of sets.
A sigma algebra set structure is used for probability, the power set being one
example of a sigma algebra.

Definition 4.1. Given a (universal) set X 6= ∅, a sigma algebra defined on
X, denoted σX , is a family of subsets of X such that:
1) ∅ ∈ σX ;
2) X ∈ σX ;
3) A ∈ σX ⇒ AC ∈ σX , AC ;
4) Ai ∈ σX , for any countable set (could be finite) ⇒ ∪iAi ∈ σX .

The power set of X, PS(X) is a common sigma algebra structure of the do-
main. However, the power set need not be the structure of the subsets of the
domain. The pair (X,σX) is called a measurable space. Let (X,σX) be
a measurable space. By a measure µ on this space we mean a set-valued
function

µ : σX → R+

such that µ(∅) = 0 and for any partition of A ⊆ X, Ai ∈ σX , µ(A) = µ (∪iAi) =∑
i µ (Ai) . The triple (X,σX , µ) is called a measure space.

Definition 4.2. (Probability) If the mapping µ : σX → [0, 1] has the property
that µ(X) = 1, then the measure is called a probability measure with µ
now denoted PrX and the measure space is called a probability measure
space denoted (X,σX ,PrX).

Remark 4.3. By definition of a probability measure, we have the fundamental
additive property of probabilities, that is,

Pr(A ∪B) = Pr(A) + Pr(B), A ∩B = ∅.

5. Generalization of Probability Theory

There are many generalizations of probability theory that have been de-
veloped and have relationships to possibility theory. We present three such
generalizations, each of which has a relationship with possibility theory. There
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are at least 8 other generalizations (see, for example, [22]) that can be found
in the literature.

5.1. Evidence Theory of Dempster/Shafer. Given X and PS(X), the
power set of X, the Dempster/Shafer theory is based on the function

m : PS(X)→ [0, 1]

such that
m(∅) = 0 and

∑
A∈PS(X)

m(A) = 1.

The function m is called the basic assignment function. Every set A ∈ PS(X)
for which m(A) 6= 0 is called a focal element. The pair (F,m) where F denotes
the set of all focal elements of m, is called a body of evidence. There are two
measures they define,

Bel(A) =
∑
B⊆A

m(B) Belief measure,

Pl(A) =
∑

A∩B 6=∅

m(B) Plausibility measure.

(1) When the focal elements are singletons, then Bel(A) = Pl(A) and they
become a probability.

(2) When all focal elements are nested (ordered by inclusion), the body of
evidence is called consonant. In this case, the plausibility measures
become possibility measures and the belief measures become necessity
measure.

Recall that a possibility measure Π is determined by a function

pos : X → [0, 1]

via the formula
Π(A) = max

x∈A
pos(x)

for all A ∈ PS(X). The corresponding necessity measure Nec is determined
by

Nec(A) = 1−Π(Ac)

where Ac is the complement of the set A. This results in

Π(A ∪B) = max {Π(A),Π(B)}
Nec(A ∩B) = min {Nec(A), Nec(B)} .

On the other hand, a consonant body of evidence

F = {A1, A2, ..., An} , A1 ⊂ A2 ⊂ ... ⊂ An
and a possibility distribution pos can be used to generated a basic assignment
function via

m(Ai) = pos(xi)− pos(xi+1)
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for some xi ∈ Ai, xi+1 ∈ Ai+1, where pos(xn+1) = 0 by convention, i =
1, 2, ..., n. Similarly, a possibility distribution is given by

r(xi) =

n∑
k=1

m(Ak)

for each xi ∈ Ai. That is, given a consonant body of evidence, we can generate
a belief and plausibility pair and also the pair possibility and necessity.

5.2. Random Sets. A random set can be considered as a convenient name
for a convex combination of a weighted family of sets, with positive weights
summing to 1. Let U ⊆ R be a non-empty set.

Definition 5.1. A random set on U is a pair (F,m) where F is a family of
distinct non-empty subsets of U and m is a mapping F → [0, 1], such that∑
A∈F

m(A) = 1.

The family of sets F is called the support of the random set and m is called
the basic probability assignment. Each A ∈ F contains the possible values of
a variable x, and m(A) can be viewed as the probability that A is the actual
range of x. Such a random set (F,m) is equivalent to a belief function in the
sense of Shafer (see [28]) Given a random set (F,m), a belief function Bel and
plausibility function Pl, can be defined as

Bel(A) =
∑
{m(B), B ⊆ A,∀A} .(32)

Pl(A) = 1−Bel(AC),∀A ⊆ U.(33)

A fuzzy interval generates a random set as follows.

Example 5.2. Given a fuzzy interval, say the fuzzy number 2 given by a trian-
gular fuzzy interval whose representation is 1/2/3. Discretize the fuzzy interval
2 into alpha levels of, for example, 1/4 units apart. Thus, α0, α1, α2, α3.α4 =
0, 14 ,

1
2 ,

3
4 , 1 respectively. Now, define m, the basic probability assignment as

follows.

m([1, 3]) = 0

m([
5

4
,

11

4
]) = α1 − α0 =

1

4
− 0 =

1

4

m([
3

2
,

5

2
]) = α2 − α1 =

1

2
− 1

4
=

1

4

m([
7

4
,

9

4
]) = α3 − α2 =

3

4
− 1

2
=

1

4

m([2, 2]) = α4 − α3 = 1− 3

4
=

1

4
.
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In general, for a fuzzy interval A ⊂ R whose alpha levels are partitioned in N
levels of increasing values from 0 to 1, define

µA ([ak, bk]) = αk,

µA ([a0, b0]) = α0 = 0,

µA ([aN , bN ]) = αN = 1,

and
[ak−1, bk−1] ⊆ [ak, bk] .

Then, the basic probability assignment function is

m ([ak, bk]) = αk − αk−1.
Note that we have nested sets and normalization. In this case we also have a
possibility distribution and a necessity distribution.

5.3. P-Boxes. Another generalization associated with probability is what is
called a probability box (see [15]).

Definition 5.3. A set of cumulative distribution functions P,
P = {P | F∗ ≤ P ≤ F ∗} , induced by two bounding cumulative distributions,
F∗ and F ∗, is called a probability box (P-Box). A P-Box is a special random
interval with focal sets Eα whose upper and lower bounds induce the same
ordering. That is, given F ∗(a) = α, F∗(b) = α,Eα = [a, b],

P ∗ ([a, b]) = F ∗(b)− F∗(a), P∗ ([a, b]) = max {0, F∗(b)− F ∗(a)} .
Remark 5.4. Consider fuzzy interval, A, whose membership function is µA(x)
induces a P-Box as follows. Let

F ∗(a) = Πm ((−∞, a]) =

{
µA(a) if a ≤ inf CoreA

1 otherwise

}
,

and

F∗(a) = Necm ((−∞, a]) =

{
0 if a ≤ supCoreA

1− limx↓a µA(x) otherwise

}
.

The P-Box is the set {F | F∗ ≤ F ≤ F ∗} .

6. An Unified Theory of Uncertainty - Generalized Uncer-
tainty: Interval-Valued Probability

Definition 6.1. Generalized uncertainty theory, for this presentation,
is a mathematical theory of incompleteness or lack of information, or lack of
specificity, or imprecision, whose representation is given by a set of functions
that are between two a-priori given bounding functions.

Note that generalized uncertainty includes possibility. A different approach
to generalized uncertainty than probability, possibility, Dempster/Shafer the-
ory of evidence, random sets, and P-Boxes, is Interval-Valued Probability Mea-
sures. IVPMs are general in that it includes these five types of generalized un-
certainties as well as other generalizations (see [22]). Many situations possess
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insufficient information to accurately construct an underlying unique proba-
bility measure as is the case for possibility, Dempster/Shafer, random sets, or
P-Boxes. The IVPM approach utilizes subsets of the interval [0,1], which is de-
noted Int[0,1] = {[a, b] | 0 ≤ a ≤ b ≤ 1} . There is a similar yet distinct theory
to IVPMs, interval probabilities (see [30]), which we note but do not discuss
except to say that it is a type of IVPM.

Definition 6.2. [16]Given measurable space (X,σX), then im : σX → Int[0,1]
is called an interval-valued probability measure (IVPM) on (X,σX) if it
satisfies the following:
1) im (φ) = [0, 0]
2) im (X) = [1, 1]
3) ∀A ∈ σX , im (A) =

[
Al, Au

]
⊆ [0, 1]

4) for every partition of X, {Ak∈K}, {Bj∈J} ⊆ σX such that A = ∪k∈KAk and
Ac = ∪j∈JBj then

im (A) ⊆
[

max
{

1− Σj∈JB
u
j ,Σk∈KA

l
k

}
,

min
{

1− Σj∈JB
l
j ,Σk∈KA

u
k

} ]
We call (X,σX , im) an interval-valued probability measure space.

Remark 6.3. To see the motivation behind the above definition of an IVPM
suppose we have an interval valued measure space (R,B, im), which provides
a model for an unknown random variable X such that ∀A ∈ B we know that
Pr (X ∈ A) ∈ im (A). Let A,B,C,D be mutually disjoint with union all of R
(i.e. they are a partition of R). Consider Pr (X ∈ A ∪B). Since these sets are
disjoint, the maximum this probability can be is Au +Bu, the maximum prob-
abilities of A and B separately. Similarly, the minimum is Al +Bl. Combined
we have

Pr (X ∈ A ∪B) ∈
[
Al +Bl, Au +Bu

]
Similarly we have

Pr (X ∈ C ∪D) ∈
[
Cl +Dl, Cu +Du

]
But since C ∪D = (A ∪B)

c
and Pr (X ∈ A ∪B) = 1− Pr (X ∈ (A ∪B)

c
) we

know that

Pr (X ∈ A ∪B) ∈
[
1− (Cu +Du) , 1−

(
Cl +Dl

)]
Combining these two bounds on Pr (X ∈ A ∪B) gives

(34) Pr (X ∈ A ∪B) ∈
[

max
{

1− (Cu +Du) , Al +Bl
}
,

min
{

1−
(
Cl +Dl

)
, Au +Bu

} ]
,

which is consistent with our definition for an IVPM. Thus, for any A ∈ B the
interval im (A) has the smallest width possible for the given information (data)
at hand.



98 Weldon A. Lodwick

Example 6.4. Let X ⊂ R with partition A,B,C,D (mutually disjoint whose
union is X) and im(A) = [0.2, 0.5], im(B) = [0.1, 0.15].im(C) = [0.15, 0.2],
im(D) = [0.3, 0.4].

im(A) ⊆ [max {(1− (Bu + Cu +Du)) , Al} ,min
{(

1− (Bl + Cl +Dl
)
, Au

}
= [max{(1− (0.15 + 0.2 + 0.4)) , 0.2},min{(1− (0.1 + 0.15 + 0.3)) , 0.5}]
= [max{0.25, 0.2},min{0.45, 0.5}] = [0.25, 0.45].

im(A ∪B) ∈
[
Al +Bl, Au +Bu

]
= [0.2 + 0.1, 0.5 + 0.15]

= [0.3, 6.5]

However, using (34)

im(A ∪B) ∈
[

max
{

1− (Cu +Du)Al +Bl
}
,

min
{

1−
(
Cl +Dl

)
, Au +Bu

} ]
=

[
max {1− (0.2 + 0.4), 0.2 + 0.1} ,
min {1− (0.15 + 0.4) , 0.5 + 0.15}

]
= [0.4, 0.45]

That is, the bounds on im(A) and im(A∪B) were reduced. The uncertainty in
A and A∪B are related to the uncertainty of their respective compliments, which
means that the uncertainty on collected interval data can be used to reduce the
uncertainties in the data, especially when the sets form a partition. Therefore,
preprocessing to obtain the smallest width on the interval probability bounds
possible associated with the given uncertainty data should be implemented prior
to any mathematical analysis.

IVPMs include at least 8 uncertainty types (see [22]). This means that
IVPMs are a useful way to look at uncertainty.

7. Probability and Possibility - Relationships and Differences

Possibility theory (as well as generalized uncertainty, and IVPMs) is an
uncertainty theory devoted to handling of incomplete information. It is similar
to probability theory because it is based on set-functions. It differs by the use
of a pair of dual set-functions (possibility and necessity measures) instead of
only one. Possibility is not additive and makes sense on ordinal structures.

7.1. Upper Probabilities as Possibilities. It has been established that a
possibility measure is a special case of upper probability (see [9]), or in Shafer
terminology, a plausibility function. In particular, let π be a possibility distri-
bution where π(s) ∈ [0, 1] and Π the corresponding possibility measure. Next,
let Pπ be the set of probability measures P such that

P ≤ Π,

that is,
∀A ⊆ X,P (A) ≤ Π(A).
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Then the possibility measure Π coincides with the upper probability function
P ∗ such that

(35) P ∗(A) = sup {P (A), P ∈ P π}
while the necessity measure Nec is the lower probability function P∗ such that

P∗(A) = inf {P (A), P ∈ P π} .
Thus, we can go from possibility/necessity to a bounded set of probabilities.
We note that this is similar to interval probabilities (see [30]).

On the other hand, we can go from a family of probabilities where we as-
sume that this family is bounded above and below by P (A) , P (A) respec-
tively to possibility and necessity measures. That is, given a set of probabil-
ities,

{
P (A) | ∀A ⊆ X,P (A) ≤ P (A) ≤ P (A)

}
, a possibility and necessity is

obtained by setting

Π(A) = P (A) ,

Nec(A) = P (A).

7.2. Belief/Plausibility and Necessity/Possibility. Recall that when the
set of focal elements, within the theory of evidence [28], F, is a nested family

A1 ⊂ A2 ⊂ ... ⊂ A,
then Belief and Plausibility satisfy the decomposability properties (see Shafer
[28]),

Bel(A ∩B) = min {Bel(A), Bel(B)}
Pl(A ∪B) = max {Pl(A), P l(B)} .

Plausibility in this case is a possibility measure in the sense of Zadeh ( [31]) and
belief is its dual necessity in the sense of Dubois/Prade ( [8]). That is, from
the generalization of probability theory, we can obtain possibility and necessity
measures as long as the underlying set of focal elements are nested. And from
possibility and necessity, we can obtain belief and plausibility functions over
these nested sets.

7.3. Random Sets and Possibility. Suppose a random set, (F,m) is given,
where F is a family of nested sets. In this case, the random sets can be
translated into belief/plausibility functions using Equations (32), and (33). In
turn, the belief and plausibility functions are necessity and possibility functions
given that we have nested sets.

8. Conclusion

A way to understand possibility theory, probability theory, and their rela-
tionship was presented. It is noted that probability and possibility coincide
when for the case of the Dirac delta function. A unifying theory of generalized
uncertainty, IVPM, was proposed as a way to represent possibility theory and
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probability theory. The advantage of unification is that the associated repre-
sentation and its resulting properties are given by one approach. Moreover,
for problems in which the various types of uncertainties occur in the input
data (parameters), the overarching theory (IVPM) can be used as a consistent
representation and thus mathematical analysis becomes possible.
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