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Abstract. Process capability indices are used widely throughout the

world to give a quick indication of a process capability in a format that

is easy to use and understand. A process capability index Cp that con-
structed for measuring the quality is an effective tool for assessing process

capability, since this index can reflect whether a centering process is capa-

ble of reproducing items meeting the specifications limits. The minimax
approach is proposed in this paper for testing capability on the basis of

precision index Cp when the producer goal is avoiding the largest pos-
sible risk. Motivations and benefits of proposing minimax approach are

discussed for capability test. Also, the proposed method clarified by an

industrial application.
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Minimax procedure, Loss function.
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1. Introduction

Process capability indices (PCIs) can be viewed as the effective and excel-
lent statistics for measuring product quality and process performance. They
are very useful statistical analysis tools to summarize process dispersion and
location by using process capability analysis [17]. The process capability analy-
sis compares the output of a process to the specification limits by using process
capability indices. This comparison is made by forming the ratio of the width
of the process specification limits to the width of the natural tolerance limits
which is measured by 6 process standard deviation units [19]. PCIs provide
numerical measures on whether a process conforms to the defined manufactur-
ing capability prerequisite. These have been successfully applied by companies
to compete with and to lead high-profit markets by evaluating the quality and
productivity performance. In the literature some PCIs such as Cp, Cpk, Cpm
and Cpmk have been used to measure the ability of process to decide how well
the process meets the specification limits.

The process can be classified as capable if the PCIs are greater than prede-
termined critical values. Otherwise they can be labeled as incapable.
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Cheng and Spiring proposed a Bayesian method for assessing capability in-
dex Cp [8]. Chan and Cheng applied a similar Bayesian method on Cpm under
the assumption that the process mean µ is equal to the target value T [7]. Shiau
et al. derived the posterior distributions for C2

p and C2
pm under the restriction

that process mean equals to the target value T , and for C2
pm under the restric-

tion that the process mean equals to the midpoint of specification limits (say
M) with respect to non-informative prior and also gamma prior [28]. However,
the restriction of µ = T or µ = M is not a practical assumption for many indus-
trial applications. A nice Bayesian procedure for assessing index Cpm relaxing
the restriction on the process mean proposed by Shiau et al. in [27]. They also
applied a similar Bayesian approach for testing the index Cpk but under the
restriction µ = M . Note that in this case Cpk reduces to Cp. Pearn and Wu
considered the index Cpk for assessing process capability without restriction on
the process mean [26]. Also, they proposed a Bayesian approach for assessing
Cp, Cpk and Cpm based on multiple samples [25]. Another Bayesian procedure
for testing the process capability Cpk is proposed by Kargar et al. to derive the
posterior probability p for which the process under investigation is capable [15].
In this paper, unlike these studies, the minimax procedure is presented for test-
ing process capability index Cp based on a meaningful and flexible loss function.
Interested readers can follow references [4, 13, 18, 21, 22, 30] and [1–3,10, 12, 20]
to see recent investigations about univariate and multivariate analyses with
process capability indices, respectively.

The organization of this paper is as follows. In Section 2, we review some
preliminaries about the estimator of Cp and its statistical distribution. In Sec-
tion 3, after introducing a flexible loss function for capability test, the minimax
approach is presented by a theorem on Cp. Also, some motivations of proposing
such minimax approach for capability test is listed in Section 3. An applied
industrial example is given in Section 4 to clarify the method. The final section
is the conclusion part.

2. Preliminaries

The first process capability index appeared in the literature is Cp and it is
called precision index [14] and defined as the ratio of specification width (USL−
LSL) over the process spread (6σ). The specification width represents customer
and/or product requirements. The allowable process variation is represented
by the specification width. If the process variation is very large, the Cp value
is small and it represents a low process capability [17]. Cp indicates how well
the process fits within the two specification limits and it simply measures the
spread of the specifications relative to the six-sigma spread in the process [19].

(1) Cp =
Allowable process spread

Actual process spread
=
USL− LSL

6σ

where σ is the standard deviation of the process, and USL and LSL are upper
and lower specification limits, respectively. The value of index Cp gives us an
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opinion about process performance. For example if it is greater than 1.33 which
corresponds to a percentage of nonconforming items of 63 parts per million
(ppm) for a centered process, see [11]. That is because of USL − LSL =
1.33× 6σ ' 4σ and so µ∓ 4σ is the specification limits of the centered process.
Therefore

1− P (µ− 4σ < X < µ+ 4σ) = 1− [Φ(4)− Φ(−4)] ' 63× 10−6

and we can conclude that process performance is satisfactory. The quality con-
ditions for different Cp values are summarized in Table 1 of Kaya and Kahraman
(2011).

The index Cp involves only one parameter σ to be estimated. If a single

sample of size n is given as X1, X2, . . . , Xn, a natural estimator Ĉp of Cp will
be

(2) Ĉp =
USL− LSL

6S

where S =
√∑n

i=1(Xi−X̄)2

n−1 is the conventional estimator of the process standard

deviation σ, obtained from a stable process. Under normality assumption,
Chou and Owen obtained the probability density function (p.d.f.) of the natural

estimator Ĉp as follows [9]

(3) Ĉp ∼ fCp(c) =
2(
√

n−1
2 Cp)

n−1

Γ(n−1
2 )

c−ne
−(n−1)Cp

2

2c2 , c > 0.

3. Minimax Procedure

After introducing a flexible loss function for capability test at the first of Sec-
tion 3, a minimax approach is presented for Cp capability index in Subsection
3.2. Moreover, some motivations of the proposed minimax test for capability
test are listed discussed in Subsection 3.3.

3.1. Loss function. The objective of this paper is introducing minimax crit-
ical value for testing H0 : Cp ≤ c0 (process is not capable), v.s., H1 : Cp > c0
(process is capable). We suppose that the loss function is defined as follows: if
the alternative hypothesis is accepted, the loss is CI(Cp) ≥ 0 for Cp ≤ c0 and
CI(Cp) = 0 otherwise; if the null hypothesis is accepted, the loss is CII(Cp) ≥ 0
for Cp ≥ c0 and CII(Cp) = 0 otherwise. Furthermore, it is assumed that the
function CI(Cp) is actually positive for at least one value of Cp ≤ c0, and
CII(Cp) is positive for at least one value of Cp ≥ c0. Note that in this case
CI(Cp) is related to the cost of a type I error in testing capability, the error
of falsely rejecting H0 for any Cp ≤ c0, and similarly CII(Cp) is related to the
cost of a type II error, the error of falsely accepting H0 for any Cp ≥ c0.

The problem to be considered is the selection of a minimax test function
φĉp(X1, ..., Xn) under the above loss function on the basis of a random sample.
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3.2. Minimax capability test. First, let us to briefly recall some definitions
of decision theory. Let A be the action space and L(θ, a) : Θ × A → R a loss
function. The value L(θ, a) is the loss if we take action a when θ is the true
parameter value. Let D be the class of decision functions that map Rn into
A. The function R : Θ×D → R+ ∪ {0} defined by R(θ, d) = EθL(θ, d(X)) is
known as the risk function associated with d at θ. In statistical decision theory,
testing hypotheses is typically modelled as the choice between actions a0 and
a1, where ai denotes accepting hypothesis Hi : θ ∈ Θi, with i either 0 or 1.
Thus, A = {a0, a1} and Θ = Θ0 ∪Θ1.

On the basis of the above definitions, the principle of minimax is to choose
decision dm ∈ D so that

max
θ
R(θ, dm) ≤ max

θ
R(θ, d),

for all d in D. Such a rule dm, if it exists, is called a minimax rule (decision
function).

Theorem 3.1. Let X = (X1, X2, . . . , Xn) be a random sample from normal
distribution with mean µ and standard deviation σ parameters where n > 1.
For testing

H0 : Cp ≤ c0,
H1 : Cp > c0,

suppose that the loss function is defined by


LH0(Cp, a) =

{
CI(Cp) ≥ 0, if a = a1

0, if a = a0.

LH1
(Cp, a) =

{
CII(Cp) ≥ 0, if a = a0

0, if a = a1.

(4)

Then the minimax solution is to reject H0 if and only if

(5) ĉp > k0,

in which ĉp = USL−LSL
6s and the constant k0 is chosen so that

max
Cp≤c0

CI(Cp)

∫ ∞
k0

Cp
−(1−n)c−ne

(1−n)Cp
2

2c2 dc

= max
Cp≥c0

CII(Cp)

∫ k0

0

Cp
−(1−n)c−ne

(1−n)Cp
2

2c2 dc.(6)

Proof. Regarding to the p.d.f. of Ĉp under normality assumption, which is

presented in (3), it is obvious that Ĉp blongs to the one-dimentional exponential

distributions family f(x; θ) = ω(θ)ψ(x)eθx, in which x = 1
c2 and θ =

−(n−1)Cp
2

2 .
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Therefore, using Theorem 1 of [5] , one can assert that minimax critical region
for testing hypotheses

H ′0 :
−(n− 1)

2
Cp

2 ≥ −(n− 1)

2
c0

2,

H ′1 :
−(n− 1)

2
Cp

2 <
−(n− 1)

2
c0

2,

under loss function (4) is 1
c2 < t, or equivalently ĉp > k0 (since ĉp is the observed

value of Ĉp which is denoted in (3) by c), where the constant k0 = t−
1
2 is chosen

so that

(7) max
Cp≤c0

RH0
(Cp, dk0) = max

Cp≥c0
RH1

(Cp, dk0)

in which RHj
(Cp, dk0) is the risk of decision dk0 under hypothesis Hj in Cp

point for j = 0, 1 (for more details see Theorem 1 in [5]). In other words,
by considering the fact that Cp ∈ (0,∞) one can assert that minimax critical
region for capability testing H0 vs H1 under loss function (4) is ĉp > k0 such
that the constant k0 is chosen from Eq. (7) in which

RH0
(Cp, dk) = ECp

LH0
(Cp, dk(X))

= CI(Cp) PCp(Ĉp > k)

= CI(Cp)

∫ ∞
k

2(
√

n−1
2 Cp)

n−1

Γ(n−1
2 )

c−ne
−(n−1)Cp

2

2c2 dc, Cp ≤ c0(8)

and

RH1(Cp, dk) = ECpLH1(Cp, dk(X))

= CII(Cp) PCp(Ĉp ≤ k)

= CII(Cp)

∫ k

0

2(
√

n−1
2 Cp)

n−1

Γ(n−1
2 )

c−ne
−(n−1)Cp

2

2c2 dc, Cp ≥ c0.(9)

Hence, relation (7) can be rewritten as

max
Cp≤c0

CI(Cp)

∫ ∞
k0

2(
√

n−1
2 Cp)

n−1

Γ(n−1
2 )

c−ne
−(n−1)Cp

2

2c2 dc

= max
Cp≥c0

CII(Cp)

∫ k0

0

2(
√

n−1
2 Cp)

n−1

Γ(n−1
2 )

c−ne
−(n−1)Cp

2

2c2 dc,(10)

which is equivalent to (6) and the proof is complete. �

Remark 3.2. The answer of Eq. (6) in Theorem 1 is positive and exists; since
we have the following inequalities based on the left and the right sides of this
equation

max
Cp≤c0

RH0(Cp, dk0) > max
Cp≥c0

RH1(Cp, dk0) = 0, when Cp → 0,
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0 = max
Cp≤c0

RH0(Cp, dk0) < max
Cp≥c0

RH1(Cp, dk0), when Cp → +∞.

Therefore, considering monotones of the left and the right sides/functions in
Eq. (6) and also the continuity property of the Cp on domain (0,+∞), there
exist one answer for Eq. (6). Moreover, regarding to the monotones of the left
and the right sides, this answer is unique.

3.3. Why and when minimax approach? Some motivations and benefits
of the proposed minimax capability test are presented in follows:

(1) In testing hypotheses, minimax criteria causes the equivalence of max-
imum risks under hypotheses H0 and H1, i.e.

(11) max
Cp≤c0

RH0(Cp, dk0) = max
Cp≥c0

RH1(Cp, dk0).

It means that the minimax criteria can be proposed an impartial and
just procedure to producer and consumer for judging about the capa-
bility of a manufacturing process by Cp.

(2) From the practical point of view, “the loss of capable assessing for an
incapable process” is not equivalent to “the loss of incapable assess-
ing for a capable process”. User can design an unequal and suitable
loss function in minimax approach, but note that two above mentioned
losses must be considered equivalent in UMP and p-value-based capa-
bility tests.

(3) Because of the importance of the capability tests, it is more appropriate
that add more flexibility and sensitiveness to their inferences. In this
regard, the proposed loss function in (4) is subjectively reasonable and
it is completely flexible. In other words, the proposed loss function has
the ability of mapping different values under H0 (or equivalently, under
H1) to different losses. Therefore, it can easily model any objective/real
situations for the consumer and producer’s losses.

(4) Although the Bayesian procedures are introduced based on the loss
function, there exist three weaknesses. First, one may has not a reli-
able and suitable prior density for unknown Cp index. Second, minimax
does not require any knowledge about the chance that each of the states
of the world will turn out to be true. Third, minimax statistical deci-
sions are in many cases reasonable, and tend to err on the conservative
side. For more details see [23].

(5) As presented in Subsection 3.2, the philosophy of minimax decision is
minimizing the maximum risks. Therefore, this optimized decision rule
can be helpful for the prudent consumers/producers which are wary to
the point for which maximum risk occurred.

(6) From the perspective of the manufacturer, the minimax optimization
method can be a useful approach for insurance of the factory. Because
as you know, the minimax approach minimize the maximum risk, and
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factory owners for fear of bankruptcy are interested in decision which
is able to minimize its risk in the worst situation of the nature.

4. An Industrial Application

To illustrate the idea of this paper, we are going to quote a simplified exam-
ple from [19] in this section. In manufacturing automobile engine piston rings,
the inside diameter of the rings is a critical quality characteristic. Suppose
we wish to evaluate whether the manufacturing process of automobile engine
piston rings is capable or not. Twelve measurements were made on the in-
side diameter of forged piston rings (in millimeter) are 74.001, 73.994, 74.011,
74.012, 74.032, 74.001, 73.993, 74.008, 73.988, 74.025, 74.015, and 74.004. The
sample mean of inside ring diameter is 74.007 millimeter, and its standard devi-
ation is 0.01301049 millimeter. Shapiro-Wilk normality test strongly accepted
the normality assumption of data with p-value = 0.8853.

Suppose that the specification limits on this piston ring are 74±0.05 millime-
ter which is considered in [6]. Hence, the hypothesis µ = USL+LSL

2 is acceptable
on the basis of observations at significance level 0.05 with p-value = 0.0892.
Therefore, we can use Cp index, with the estimated value ĉp = 1.281018, for
evaluating the manufacture process of automobile engine piston rings. To de-
termine a minimax critical value in testing capability by the method of Theo-
rem 3.1, let us to choose the standard minimal lower boundary of Cp equal to
c0 = 1.33. In other words, we can design the hypotheses as H0 : Cp ≤ 1.33,
v.s. H1 : Cp > 1.33. Let the loss functions are defined as follows

(12)


LH0(Cp, a) =

{ √
1.33− Cp, if a = a1

0, if a = a0.

LH1(Cp, a) =

{
Cp−1.33

3 , if a = a0

0, if a = a1.

As can be seen in Figure 1, the loss under hypothesis H1 is defined by a linear
function and the loss under hypothesis H0 is considered as a nonlinear function.
This unequal consideration of loss functions is one of the advantages of the
proposed method in this paper which was also mentioned in Subsection 3.3. It
means that the loss due to the increase in Cp - relative to the boundary of the
hypotheses - increases linearly, but the loss due to the decrease in Cp relative to
the boundary of the hypotheses increases nonlinearly. This nonlinear property
of the considered loss under H0, allows the rate of increase of losses not to
be the same for different distances between Cp and c0. Moreover, it must be
mentioned that defining loss function has no certain mathematical rule and
it must be defined by an expert who practically knows the losses caused by
capability index Cp for each production process.
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Figure 1. Loss functions under hypotheses H0 and H1 in
industrial application

Considering Theorem 3.1, the minimax capability test reject H0 if and only
if ĉp > k0, where the constant k0 is chosen so that

max
Cp≤1.33

√
1.33− Cp

∫ ∞
k0

Cp
−(1−n)c−ne

(1−n)Cp
2

2c2 dc

= max
Cp≥1.33

Cp − 1.33

3

∫ k0

0

Cp
−(1−n)c−ne

(1−n)Cp
2

2c2 dc.(13)

The left and right sides of Eq. (13) are drawn, as a function of k, in Figure
2 which are equivalent for critical value k0 = 1.6317. Also, one can see the
difference of left and right sides of Eq. (13) in the left shapes of Figure 2 for
c0 = 1.00, 1.33, 1.50 and 1.67 respectively. Therefore, the minimax test function
for the inside diameter of the manufacturing automobile engine piston rings,
under loss function (12) is

(14) φĉp(x1, ..., x12) =

{
1 if ĉp > 1.6317,
0 if ĉp ≤ 1.6317.

It means that, by considering ĉp = 1.281018, we accept null hypothesis based on
observed data and the process of the manufacturing piston rings is not capable
from minimax point of view. It must be mentioned that all computations of this
application done by a computer program in R software [29] which is available
upon request on the basis of the presented approach in Section 3.

To show the behaviour of the proposed minimax test, a table is prepared
for this example. Table 1 contains the critical values k0 for the various c0 and
sample size, which are computed from Eq. (6). The calculated critical values
imply to a reasonable reaction between c0 and k0 for the introduced minimax
test in Theorem 3.1. By increasing the value of c0 in each column of Table 1
(i.e. for each fixed sample size), an increase in the critical value k0 is observed;
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for instance see/check the column related to n = 12 in this table. Moreover,
this reasonable fact that increasing c0 causes increasing critical value k0 shown
in Figure 3 for the presented industrial application.

The relation between n and k0 is depicted in Figure 4 for n = 1, 2, ..., 100
when c0 = 1.33. This figure does not shown a monotone relationship between
the sample size and the critical value in the minimax test, which of course is
not expected. For example, in this study the sample size is 12 and the minimax
critical value is 1.6317 which are shown by vertical and horizontal lines in Figure
4, respectively.

Table 1. Minimax critical value (k0) for various c0 and n in
industrial application

n
c0 6 12 18 24 30

1 1.3816 1.2432 1.1934 1.1663 1.1368
1.33 1.8003 1.6317 1.5710 1.5743 1.5334
1.50 2.0131 1.8302 1.7637 1.7849 1.7385
1.67 2.2241 2.0276 1.9565 1.9961 1.9438
2.00 2.6297 2.4083 2.3270 2.4064 2.3432

5. Conclusions and future works

To judge if the process satisfies the present capability requirement (i.e. be-
ing capable), one can consider the following capability test, procedure with
the null hypothesis H0 : Cp ≤ c0 (the process is not capable), versus the al-
ternative H1 : Cp > c0 (the process is capable), where c0 is a predetermined
capability requirement. In this paper a capability test for index Cp is presented
from minimax point of view. Then, some motivations and benefits of the pre-
sented minimax approach for capability test are listed and discussed. Finally,
an industrial application is given to show the performance of the presented
approach.

Regarding to the proposed approach in this paper, the following topics can
be considered for future works:

(1) Investigation on the relationship between minimax capability test and
Bayesian capability test is a potential subject for further research. It
must be noted that both of these statistical tests are based on loss
function and may be comparable for some special priors.

(2) As another related subject one can investigate on the minimax capa-
bility test based on not only one sample, but also for multiple samples
with different sizes.
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Figure 2. A proportion of maximum risks under hypotheses
H0 and H1 is shown in right figures, and left figures show their
difference for n = 12 and c0 = 1.00, 1.33, 1.50, 1.67 in industrial
application

(3) Moreover, the minimax capability test on the basis of other process
capability indices, like Cpk and Cpm, are some other potential directions
for future research.
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