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Abstract. The uncertain functional differential equation (UFDE) is a

type of functional differential equations driven by a canonical uncertain
process. Uncertain functional differential equation with infinite delay

(IUFDE) have been widely applied in sciences and technology. In this

paper, we prove an existence and uniqueness theorem for IUFDE inthein-
terval [t0, T ], underuniform Lipschitz condition and weak condition. Also,

the novel existence and uniqueness theorem under the linear growth con-
dition and the local Lipschitz condition is proven. In the following, a more

general type of UFDE considers, which the future state is determined by

entire of the past states rather than some of them. Finally, the existence
and uniqueness theorem is considered on theinterval [t0,∞].
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Uncertainty space.
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1. Introduction

The majority of life events such as attacks by terrorists, economic or political
changes, tribal conflicts, governments’ fall and wars takes place by coincident.
For this reason, accurately anticipating or estimating of stocks or precious metal
prices or exchange rates etc. are considered impossible. The only way to see
in what way this factor influences the drop and growth of the value of corpora-
tions and companies, thus, can be concentrating on the stocks’ prices. In order
to carry out and figure out a more precise modeling of such phenomena, it is
required to investigate the effects of the factors along with uncertainty theory.
This idea, as mentioned, are according to self-duality, normality, subadditivity
axioms and monotonicity. By proposing the uncertain process, Liu meant an
uncertain process which possessed stationary and independent increment which
is called canonical Liu’s process which is applied in different other sciences like
optimal control and economics. This process which is described by Brownian
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motion is similar to a stochastic process. [5], [7]. Further, the concepts of sto-
chastic and its related process inspired Liu to introduce uncertain differential
equations [5] driven by canonical Liu’s process which contributes to better un-
derstanding the uncertain phenomena.
In connection with the significance of existence and uniqueness of a solution
to uncertain differential equations driven by canonical Liu’s process, the exis-
tence and uniqueness of solution to the uncertain differential equations were
investigated Liu. He employed Lipschitz and Linear growth conditions [4],
and also, Yao et al. presented the stability analysis of uncertain differential
equations. [6]. A number of researchers attempted to manage finding analytic
solutions for some particular types of uncertain differential equations like Chen
and Liu [1]. Differential equations with memory identified as functional differ-
ential equations state the point that the velocity of the system pertains not only
to the estate of the system at a specified moment but pertains to the history
of the path to this instant. The range of differential equations with memory
includes a vast category of differential equations. Such equations have an essen-
tial roleinan advancing number of models in biology ,engineering, physics, and
other sciences. There is extensive research dealing with functional differential
equations and their applications. We refer to the monographs [1], and refer-
ences there. The existing paper proves a new theorem about the solution’s ex-
istence and uniqueness of the uncertain functional differential equations under
weaker conditions. Thispaperisorganizedasfollows: Some substantial concepts
that are needed through out there maining sections givein section2. Section3
focuses on the main results including a new existence and uniqueness theorem
for IUFDEs.This theorem provides us with the conditions to deal with some
problems that are not previously solvable. In section 4, the global solution for
IUFDEs is condider and, the final section includes a summary.

2. Preliminaries

The current section aims to briefly introduce several fundamental concepts
in the theory of uncertainty.

Definition 2.1. [2]: Let Γ be a σ-algebra on a nonempty set Γ. Each element
A ∈ L is called an event and a set function U : L→ [0, 1] is called an uncertain
measure if it satisfies the following axioms:

(1) Axiom1 (Normality) U{Γ} = 1.
(2) Axiom2 (Monotonicity) For every event A1 and A2 where A1 ⊆ A2, we

have
U{A1} ≤ U{A2}

(3) Axiom3 (Duality) U{A}+ U{Ac} = 1 for any event A.
(4) Axiom4 (Subadditivity) For every countable sequence of eventsA1, A2, · · · ,

we have

U{∪∞i=1Ai} ≤ Σ∞i=1U{Ai}
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In addition, the triplet (Γ, L, U) is called an uncertainty space.

Definition 2.2. [2]: A uncertain process Pt is said to be a canonical process
if:

• (i) P0 = 0 and almost all sample paths are Lipschitz continuous,
• (ii) Pt has stationary and independent increments,
• (iii) every increment Pt+s − Ps is a normally distributed uncertain

variable ℵ(0, t) with expected value 0 and variance t2 whose uncertainty
distribution is

φ(x) = (1 + exp ( πx√
3t

))−1. x ∈ <

3. The existence and uniqueness theorem for IUFDEs

In this section we consider UFDEs in [t0, T ] with infinite delay as follow

(1) dZ(t) = h(Zt, t)dt+ g(Zt, t)dC(t), t0 ≤ t ≤ T,
where Zt = {Z(t + δ) | −∞ < δ ≤ 0} can be regarded as a C((−∞, 0], Rd)-
value uncertain process, where h : C((−∞, 0], Rd) × [t0, T ] → Rd and g :
C((−∞, 0], Rd) × [t0, T ] → Rd×m be uncertain measurable. We impose the
initial data:

(2) Zt0 = ς = {ς(δ) | −∞ ≤ δ ≤ t0}
where Zt0 is an Rt0-measurable C((−∞, 0], Rd)-value uncertain variable such
that ς ∈M2((−∞, 0], Rd). In addition, let us state the following conditions:

• (i) (uniform Lipschitz condition) Function h(Z, t) satisfies a uniform
Lipschitz condition in the variable Z on a set C((−∞, 0], Rd) if for
t ∈ [t0, T ], a constant L > 0 exists with

(3) | h(Zt, t)− h(Zt, t) |2
∨
| g(Zt, t)− g(Zt, t) |2≤ L | Zt − Zt |2,

• (II) Weak condition: There exists a positive constant L such that if
h(0, t), g(0, t) ∈ L2[t0, T ] then | h(0, t) |2

∨
| g(0, t) |2≤ L

Definition 3.1. [2] Zt is a solution of equation (3.1) with initial data (3.2)
if it is an Rd-value uncertain process for t0 ≤ t ≤ T and has the subsequent
properties:

(1) it is continuous and {Zt}t0≤t≤T is ρt-adapted

(2)
∫ T
t0
| h(Z, t)|dt <∞ and

∫ T
t0
|g(Z, t)|dt <∞

(3) Zt0 = β and, for every t0 ≤ t ≤ T ,

Z(t) = ς0 +
∫ t
t0
h(Zs, s)ds+

∫ t
t0
g(Zs, s)dC(s) a.s.

Lemma 3.2. Let Z(t) be the solution of (3.1) with initial data (3.2), and
(I)-(II) hold then

(4) E( sup
−∞<t≤T

|Z(t)|)2 ≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0)
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where P = 3E‖ξ‖2 + 6(T − t0 + 1)(T − t0)(L+ LE‖ξ‖2).

In addition, Z(t) ∈M2((−∞, T ], Rd).

Proof. : The stopping time is

τn = T ∧ inf{t ∈ [t0, T ] : ‖Zt‖ ≥ n}.

For n ≥ 1, Clearly, as n→∞, τn ↑ Ta.s. Let Znt = Z(t ∧ τn), t ∈ [t0, T ]. Then
Znt satisfy the next equation

Znt = ξ(0) +
∫ t
t0
h(Zns , s)I[t0,τn](s)ds+

∫ t
t0
g(Zns , s)I[t0,τn](s)dC(s)

by utilizing (e+ f + g)2 ≤ 3(e2 + f2 + g2), we have

|Znt |2 ≤ 3|ξ(0)|2 + 3|
∫ t
t0
f(Zns , s)I[t0,τn](s)ds|2 + 3|

∫ t
t0
g(Zns , s)I[t0,τn](s)dC(s)|2

By taking the expectation on both sides of the recent inequality, and using the
Holder inequality and (II), one gets

E|Znt |2 ≤
3E|ξ(0)|2 + 3E|

∫ t
t0
h(Zns , s)It0,τn(s)ds|2 + 3E|

∫ t
t0
g(Zns , s)I[t0,τn](s)dC(s)|2

≤ 3E‖ξ‖2 + 3(t− t0)E
∫ t
t0
|h(Zns , s)|2ds+ 3E

∫ t
t0
|g(Zns , s)|2I[t0,τn](s)ds.

One further obtains that

E((supt0<s≤t |Z
n
(t)|

2) ≤
3E‖ξ‖2 + 3(t− t0)E

∫ t
t0
|h(Zns , s)|2ds|2 + 3E|

∫ t
t0
|g(Zns , s)|2d(s)

≤ 3E‖ξ‖2 + 6(t− t0 + 1)E
∫ t
t0

(L‖Zns ‖2 + L)ds

≤ P1 + 6L(T − t0 + 1)
∫ t
t0
E(‖ξ‖2 + supt0<r≤s |Z

n
r |2)ds

≤ P2 + 6L(T − t0 + 1)
∫ t
t0
E(supt0<r≤s |Z

n
r |2)ds,

where P1 = 3E‖ξ‖2+6(t−t0+1)(T−t0), P2 = P1+6L(T−t0+1)(T−t0)E‖ξ‖2,
By the Gronwall inequality,

E(supt0<s≤t |Z
n
(s)|

2) ≤ Pe6L(T−t0+1)(T−t0), t0 ≤ t ≤ T.

Noting the fact that

(sup−∞<t≤T |Z(s)|)2 ≤ ‖ξ‖2 + (supt0<s≤t |Z(s)|)2,

therefore

E(sup−∞<s≤t |Zns |2) ≤ E‖ξ‖2 + E(supt0<s≤t |Z
n
s |2)

≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0).

Letting t = T , it then follows that
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E(sup−∞<s≤T |Zns |2) ≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0),

that is

E(sup−∞<s≤T |Z(s ∧ τn)|2) ≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0).

Consequently

E(sup−∞<s≤τn |Z(s)|2) ≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0).

If n→∞ then the following inequality is holds

E(sup−∞<s≤T |Z(s)|2) ≤ E‖ξ‖2 + Pe6L(T−t0+1)(T−t0)

�

Theorem 3.3. Let the conditions (I) and (II) hold. Then problem (3.1) with
initial data (3.2) has a unique solution Zt ∈M2((∞, T ], Rd).

Proof. Let Zt and Yt be two solutions of equation (3.1)-(3.2). put e(Zs, Ys) =
h(s, Zs)− h(s, Ys) and f(Zs, Ys) = g(s, Zs)− g(s, Ys). Then

Zt − Yt =
∫ t
t0
eds+

∫ t
t0
fdCs.

Using inequality (e+ f)2 6 2(e2 + f2), we obtain

|Zt − Yt|2 ≤ 2|
∫ t
t0
eds|2 + 2|

∫ t
t0
fdCs|2,

and by the Hölder inequality and Lipschitz condition I, we have

E|Zs − Ys|2 ≤ 2L(t− t0)E

∫ t

t0

|Zs − Ys|2ds+ 2LE

∫ t

t0

|Zs − Ys|2ds ≤

2L(T − t0 + 1)

∫ t

t0

|Zs − Ys|2ds,

from the fact Zt0(s) = Yt0(s) = ς(s), s ∈ (∞, 0], we get

E supt0≤s≤t |Zs − Ys|
2 ≤ 2L(T − t0 + 1)

∫ t
t0
E supt0≤r≤s |Zr − Yr|

2ds.

According to Gronwall inequality, we have

(5) E( sup
t0≤t≤T

|Zt − Yt|2) = 0.

It means that Z(t) = Yt for t0 ≤ t ≤ T .
Therefore, for all −∞ < t ≤ T,Zt = Yt. So, the proof of uniqueness is complete
Now to consider the existence, let Z0

t0 = Z0 = ς0 , for t0 ≤ t ≤ T.
Let Znt0 = ξ for n = 1, 2, · · · , also define Picard iterations sequence as follow

(6) Znt = ξ0 +

∫ t

t0

h(Zn−1s , s)ds+

∫ t

t0

g(Zn−1s , s)dC(s).
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Clearly Z0(t) ∈ M2((−∞, T ], Rd). By induction Zn(t) ∈ M2((−∞, T ], Rd).
From the Hölder inequality,and using equality (e + f)2 ≤ 2e2 + 2f2 and I we
get

E|Zn(t)|2 ≤ 3E‖ξ‖2 + 3(t− t0)E
∫ t
t0

2|h(Zn−1s , s)− h(0, s)|2 + 2|h(0, s)|2ds

+3E
∫ t
t0

2|g(Zn−1s , s)− g(0, s)|2 + 2|g(0, s)|2)ds

≤ 3E‖ξ‖2 + 3(t− t0 + 1)E
∫ t
t0

(2L‖Zn−1s ‖2 + 2L)ds

≤ P1 + 6L(T − t0 + 1)
∫ t
t0
E(supt0<r≤s |Z

n−1
r |2)ds

(7) ≤ P1 + 6L(T − t0 + 1)

∫ t

t0

E(|Zn−1s |2)ds,

where P1 = 3E‖ξ‖2 + 6(t − t0 + 1)(T − t0). Consequently for any k ≥ 1, one
can obtain

max1≤n≤k E|Zn(t)|2 ≤ P1 + 6L(T − t0 + 1)
∫ t
t0

max1≤n≤k E(|Zn−1s |2)ds.

≤ P2 + 6L(T − t0 + 1)E
∫ t
t0
E(max1≤n≤k |Zns |2)ds,

where P2 = P1 + 6L(T − t0 + 1)(T − t0)E‖ξ‖2.
Of the Gronwall inequality, one gets that

max1≤n≤k E|Zn(s)|2 ≤ P2e
6L(T−t0+1)(T−t0)

Since k is arbitrary,

(8) E|Zn(s)|2 ≤ P2e
6L(T−t0+1)(T−t0), t0 ≤ t ≤ T n ≥ 1

Of the Hölder inequality and I, we have

E|Z1(t)− Z0(t)|2 ≤ 2E|
∫ t
t0
h(Z0

s , s)ds|2 + 2E|
∫ t
t0
g(Z0

s , s)dC(s)|2

≤ 2(t− t0)E
∫ t
t0
|h(Z0

s , s)|2ds+ E
∫ t
t0
|g(Z0

s , s)|2ds

≤ 2(t− t0 + 1)E
∫ t
t0

(2L‖Z0
s‖2 + 2L)ds

≤ 4L(t− t0 + 1)(t− t0) + 4L(t− t0 + 1)(t− t0)E‖ξ‖2,

that is

E(supt0≤s≤t |Z
1(t)−Z0(t)|2) ≤ 4L(t−t0+1)(t−t0)+4L(t−t0+1)(t−t0)E‖ξ‖2.

Setting t = T , then

E(supt0≤s≤t |Z
1(t)− Z0(t)|2) ≤

4L(T − t0 + 1)(T − t0) + 4L(T − t0 + 1)(T − t0)E‖ξ‖2 := P.

By the same manner, we compute



On the existence and uniquness theorem... – JMMRC Vol. 11, No. 1 (2022) 113

E|Z1(t)− Z0(t)|2 ≤ 2E|
∫ t
t0

[h(Z1
s , s)− h(Z0

s , s)]ds|2

+2E|
∫ t
t0

[g(Z1
s , s)− g(Z0

s , s]dC(s)|2

≤ 2(t− t0)E
∫ t
t0
|h(Z1

s , s)− h(Z0
s , s)|2ds+ E

∫ t
t0
|g(Z1

s , s)− g(Z0
s , s)|2ds

thus we derive that

E(supt0≤r≤s |Z
2(t)− Z1(t)|2) ≤ UE

∫ t
t0
‖Z1(s)− Z0(s)‖2ds

≤ U
∫ t
t0
E(supt0≤r≤s |Z

1(r)− Z0(r)|2)ds ≤ U(t− t0)P,

where U = 2L(T − t0 + 1). In the same way,

E(supt0≤s≤t |Z
3(t)− Z2(t)|2) ≤ U

∫ t
t0
E(supt0≤r≤s |Z

2(r)− Z1(r)|2)ds

≤ U
∫ t
t0
U(s− t0)Pds = P [U(t−t0)]2

2 ,

continuing this process to find that,

E(supt0≤s≤t |Z
4(t)− Z3(t)|2) ≤ U

∫ t
t0
E(supt0≤s≤t |Z

3(r)−X2(r)|2)ds

≤ U
∫ t
t0

[U(s−t0)]2P
2 ds = P [U(t−t0)]3

6 .

Now we claim that for all n ≥ 0,

(9) E( sup
t0≤s≤t

|Zn+1(s)− Zn(s)|2) ≤ P [U(t− t0)]n

n!
t0 ≤ t ≤ T.

When n = 0, 1, 2, 3, inequality (3.9) is holds. We suppose that (3.9) holds holds
check it for n+ 1. In fact,

E(supt0≤s≤t |Z
n+2(s)−Zn+1(s)|2) ≤ 2L(t− t0 + 1)

∫ t
t0
E‖Zn+1(s)−Zn(s)‖2ds

≤ UM
∫ t
t0
E(supt0≤r≤s |Z

n+1(r)− Zn(r)|2)ds

By induction and (3.9),

E(supt0≤s≤t |Z
n+2(s)− Zn+1(s)|2) ≤ U

∫ t
t0

[U(s−t0)]nP
n! ds = P [U(t−t0)]n+1

(n+1)! .

It is simple to observe that (3.9) holds for n + 1. Accordingly, by induction,
(3.9) holds for all n ≥ 0. Now we verify Zt is the solution of (3.1)-(3.2). Since
Znt converge to Zt at the sense of L2 and uncertainty on M2((−∞, T ], Rd). By
setting t = T in (3.9) , we have ,

E( sup
t0≤t≤T

|Zn+1(t)− Zn(t)|2) ≤ P [U(T − t0)]n

(n)!
.

Using the Chebyshev inequality,

U{ sup
t0≤t≤T

|Zn+1(t)− Zn(t)|2 > 1

2n
} ≤ P [4U(T − t0)]n

(n)!
.
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From the fact
∑∞
n=0 P [4U(T − t0)]n/n! <∞, and by the Borel-Cantelli lemma,

for almost all w ∈ Ω, there exists a positive integer n0 = n0(w) such that

supt0≤t≤T |Z
n+1(t)− Zn(t)|2 ≤ 1

2n as n ≥ n0.

We know that the parial sums Z0
t + Σnt=1[Zit − Zi−1t ] = Znt are uniformly in

[0, T ]. It is clear Zt is-continuous and Pt- adapted. On the other hand from
(3.9) the sequence {Znt } is Cauchy in L2 , for every t. Therefore, in (3.8),
Z2
t (−∞, T ]. Let n→∞ then

E|Zn(s)|
2 ≤ P2e

6L(T−t0+1)(T−t0) for all t0 ≤ t ≤ T,

where P2 = P1 + 6L(T − t0 + 1)(T − t0)E‖ξ‖2.
Therefore, by use of the above result, we obtain that

E
∫ T
−∞ |Z(s)|2ds = E

∫ t0
−∞ |Z(s)|2ds+ E

∫ T
t0
|Z(s)|2ds

≤ E
∫ 0

−∞ |ξ(s)|
2ds+

∫ T
t0
P2e

6L(T−t0+1)(T−t0)ds <∞,

that is Z(t) ∈M2((−∞, T ], Rd). Now to show that Z(t) satisfy (3.1).

E|
∫ t
t0

[h(Zns , s)− h(Zs, s)]ds|2 + E|
∫ t
t0

[g(Zns , s)− g(Zs, s)]dC(s)|2

≤ 2E|
∫ t
t0

[h(Zns , s)− h(Zs, s)]ds|2 + 2E|
∫ t
t0

[g(Zns , s)− g(Zs, s)]dC(s)|2

≤ 2(t− t0)E|
∫ t
t0

[hf(Zns , s)− h(Zs, s)]ds|2 + 2E|
∫ t
t0

[g(Zns , s)− g(Zs, s)]dC(s)|2

≤ UE
∫ t
t0
‖Zns − Zs‖2ds ≤ U

∫ t
t0
E(supt0≤r≤s |Z

n
r − Zr|2)ds

≤ U
∫ T
t0
E(|Zns − Zs|2)ds.

Noting that sequence Zn(t) is uniformly converge on (−∞, T ], it means that for

any given ε > 0, there exists an n0 such that as n ≤ n0, for any t ∈ (−∞, T ],
one then deduces that E(|Znt − Zt|2 ≤ ε , further,∫ T

t0
E(|Zns − Zs|2)ds < (T − t0)ε.

In other words, for t ∈ [t0, T ] one has∫ t
t0
h(Zns , s)ds→L2 ∫ t

t0
h(Zs, s)ds,

∫ t
t0
g(Zns , s)dCs→L2 ∫ t

t0
g(Zs, s)dCs

For t0 ≤ t ≤ T , taking limits on both sides of (3.7),

limn→∞ Zn(t) = ξ(0) + limn→∞
∫ t
t0
h(Zn−1s , s)ds+ limn→∞

∫ t
t0
g(Zn−1s , s)dCs

that is

Z(t) = ξ(0) +
∫ t
t0
h(Zs, s)ds+

∫ t
t0
g(Zs, s)dCs t0 ≤ t ≤ T

The expression mentioned above demonstrates that Z(t) is the solution of (3.1).
So far, the existence of theorem is complete. �
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Now, we consider the following conditions that are weaker than conditions
(I) and(II).

(A) (Linear growth condition) For all t ∈ [t0, T ] and Z ∈ C((−∞, 0], Rd),
there exists a positive number L such that

(10) |h(Z, t)|2 ∨ |g(Z, t)|2 ≤ L(1 + ‖Z‖2);

(B) (Local Lipschitz condition) For each integer n ≥ 1, there exists a pos-
itive constant number Ln such that for all t ∈ [t0, T ] and all Z, Y ∈
C((−∞, 0], Rd) with ‖Z‖ ∨ ‖Y ‖ ≤ n, it follows that

(11) |h(Z, t)− h(Y, t)|2 ∨ |g(Z, t)− g(Y, t)|2 ≤ Ln‖Z − Y ‖2;

Theorem 3.4. Let conditions A and B hold.Then the initial value problem
(3.1)-(3.2) has a unique Z(t). Moreover, Z(t) ∈M2((−∞, T ], Rd).

Proof. For each n ≥ 1, define truncation functions hn and gn as follows:

hn(Zt, t) = {
h(Zt, t) ‖Zt‖ ≤ n
h( nZt

‖Zt‖ , t) ‖Zt‖ > n

gn(Zt, t) = {
g(Zt, t) ‖Zt‖ ≤ n
g( nZt

‖Zt‖ , t) ‖Zt‖ > n

then hn and gn satisfy conditions (A) and (B). By Theorem 3.1, equation

(12) Zn(t) = ξ(0) +

∫ t

t0

fn((Zn)s, s)ds+

∫ t

t0

gn((Zn)s, s)dCs t0 ≤ t ≤ T

has a unique solution Zn(t), moreover, Zn(t) ∈M2((−∞, T ], Rd). Of course,Zn+1(t)
is the unique solution of equation

Zn+1(t) = ξ(0) +
∫ t
t0
hn+1((Zn+1)s, s)ds+

∫ t
t0
gn+1((Zn+1)s, s)dCs t0 ≤ t ≤ T,

and Zn+1(t) ∈M2((−∞, T ], Rd).
Define the stopping time τn = T ∧ inf{t ∈ [t0, T ] : ‖(Zn)t‖ ≥ n}. Taking the
expectation, and by the Hölder inequality, it deduces that

E|Zn+1(t)− Zn(t)|2 ≤ 2E|
∫ t
t0

[fn+1((Zn+1)s, s)]ds−
∫ t
t0

[hn((Zn)s, s)]ds|2

+2E|
∫ t
t0

[gn+1((Zn+1)s, s)]dCs−
∫ t
t0

[gn((Zn)s, s)]dCs|2 ≤

2(t− t0)E
∫ t
t0
|hn+1((Zn+1)s, s)− hn((Zn)s, s)|2ds+ E

∫ t
t0
|gn+1((Zn+1)s, s)−

gn((Zn)s, s)|2ds

≤ 4(t− t0)E
∫ t
t0
|[hn+1((Zn+1)s, s)− hn+1((Zn)s, s)|2 + |hn+1((Zn)s, s)−

hn((Zn)s, s)|2]ds

+4E
∫ t
t0
|[gn+1((Zn+1)s, s)− gn+1((Zn)s, s)|2 + |gn+1((Zn)s, s)−

gn((Zn)s, s)|2]ds.
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For t0 ≤ t ≤ τn, we have known that

hn+1((Zn)s, s) = hn((Zn)s, s) = h((Zn)s, s),

gn+1((Zn)s, s) = gn((Zn)s, s) = g((Zn)s, s),

again by Zn+1(t0 + s) = Zn(t0 + s) = ξ(s), s ∈ (−∞, 0], one then gets that

E(supt0≤r≤t |Zn+1(t)− Zn(t)|2) ≤

≤ 4(t− t0)E
∫ t
t0
|hn+1((Zn+1)s, s)− hn+1((Zn)s, s)|2ds

+4E
∫ t
t0
|gn+1((Zn+1)s, s)− gn+1((Zn)s, s)|2ds

4(t− t0 + 1)E
∫ t
t0
Ln‖(Zn+1)s − (Zn)s‖2ds

≤ 4(t− t0 + 1)Ln
∫ t
t0
E(supt0≤r≤s |(Zn+1)r − (Zn)r|2)ds.

From the Gronwall inequality, one sees that

E(supt0≤s≤t |Zn+1(t)− Zn(t)|2) = 0 t0 ≤ t ≤ τ,

this means that for t0 ≤ t ≤ τn, we always have

(13) Zn(t) = Zn+1(t).

It then deduces that τn is increasing, that is as n → ∞, τn ↑ T a.s. By linear
growth condition, for almost all ω ∈ Ω, there exists an integer n0 = n0(ω) such
that τn = T as n ≥ n0. Now define Z(t) by Z(t) = Zn0(t), t ∈ [t0, T ]. Next to
verify that Z(t) is the solution of (3.1). By (3.13), Z(t∧τn) = Zn(t∧ τn), and by
(3.12), it follows that

Z(t ∧ τn) = ξ(0) +
∫ t∧τn
t0

hn((Z)s, s)ds+
∫ t∧τn
t0

gn((Z)s, s)dCs

= ξ(0) +
∫ t∧τn
t0

h((Z)s, s)ds+
∫ t∧τn
t0

g((Z)s, s)dCs.

Letting n→∞ then yields

X(t ∧ τn) = ξ(0) +
∫ t∧τn
t0

h((Z)s, s)ds+
∫ t∧τn
t0

g((Z)s, s)dCs

that is

Z(t) = ξ(0) +
∫ t
t0
h((Z)s, s)ds+

∫ t
t0
g((Z)s, s)dCs.

It can be seen that Z(t) ∈M2((−∞, T ], Rd) is the solution of (3.1) and Zn(t) ∈
M2((−∞, T ], Rd). So far, the existence is complete. The uniqueness is obtained
by stopping our process. The proof is complete. �
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4. Global solution for IUFDEs

In the previous section, we proved the existence and uniqueness theorem
of solutions for uncertain functional differential equation with initial date in
[t0, T ]. Now, consider the assumptions of the existence and uniqueness theorem
on every sub interval [t0, T ] of (−∞,∞). In follows, we consider the following
UFDE:

(14) dZ(t) = h(Zt, t)dt+ g(Zt, t)dC(t), t ∈ [t0,∞),

with initial data (3.2), that equation (4.1) has a unique solution Zt on [t0,∞).
Such a solution is called global solution. Now, Assume that for each real number
T > 0 and each integer n ≥ 1, there exists a positive constant KT,n such that
for all t ∈ [t0, T ] and all Z, Y ∈ C((−∞, 0], Rd) with ‖Z‖

∨
‖Y ‖n, it follows

that:

(a) | f(Z, t)− f(Y, t) |2
∨
| g(Z, t)− g(Y, t) |2≤ KT,n‖Z − Y ‖2

(b) There exists a positive number KT such that for all Z ∈ C((−∞, 0], Rd)
and t ∈ [t0, T ], it then follows that

| f(Z, t) |2
∨
| g(Z, t) |2≤ KT (1+ ‖ Z ‖2)

Theorem 4.1. Assume that (a) and (b) are hold. Then (4.1) has a unique
global solution Zt,more over, Zt ∈M2((∞,∞), Rd).

Proof. The proof of Theorem 3 is similar to that of Theorem 2 . We omit it
here. �

A kind of general uncertain functional differential equation will be considered
next, its future state is dependent on all past states or part of them. For
example, uncertain integral equation

(15) dZ(t) = h(Zt, t)dt+

∫ t

t0

| Zs | G(Zt, t)dC(t)

and uncertain functional equation

(16) dZ(t) = h(Zt, t)dt+ sup
t0≤s≤t

| Zs | G(Zt, t)dC(t)

Owing to the fact that there are some requirements for the formulation, some
notations are primarily introduced. For each t ≥ 0, let C((−∞, t], Rd) de-
note the family of bounded continuous functions Z : (−∞, t] −→ Rd with
norm‖Z‖ = sup−∞<δ≤t |Z(δ)|, and assume that f(0, t) and g(0, t) represent

the mappings from C((−∞, t], Rd) toRd and Rdm, respectively. Define Zt =
Z(t+ δ) : −∞ < δt. Consider a d-dimensional uncertain functional differential
equation

(17) dZ(t) = h(Zt, t)dt+ g(Zt, t)dC(t), t ∈ [t0,∞)

with initial value (3.2). Clearly, equations (15) and (16) are special cases of
equation (17). Now we demonstrate the existence and uniqueness theorem for
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equation (4.17), its proof is similar to theorem 1, we omit it here and just state
the theorem itself.

Theorem 4.2. Assume that for each real number T > 0 and each integer
n ≥ 1, there exists a positive constant KT,n such that for all t ∈ [t0, T ] and all
Z, Y ∈ C((−∞, 0], Rd) with ‖Z‖

∨
‖Y ‖ ≤ n, it follows that

| h(Z, t)− h(Y, t) |2
∨
| g(Z, t)− g(Y, t) |2≤ KT,n‖Z − Y ‖2.

Assume further that for each T > 0, there exists a positive numberKT such
that for all Z ∈ C((−infty, 0], Rd) and t ∈ [t0, T ], it then follows that

| ch(Z, t) |2
∨
| g(Z, t) |2≤ KT (1 + ‖Z‖2)

Then equation (17) has a unique global solution Zt, moreover, Zt ∈M2((−∞,∞), Rd).

5. Conclusion

In this study, the existence and uniqueness theorem for the solution of
UFDEs with infinite delay are discussed by using uncertain space axioms. We
provided a novel existence and uniqueness theorem under the local Lipschitz
condition and the linear growth condition. Also, the global solution for IUFDEs
is considered and the existence and uniqueness theorem under two conditions
is proved.
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