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Abstract. Let Mm,n be the set of all m-by-n real matrices. A matrix

R in Mm,n with nonnegative entries is called strictly sub row stochastic
if the sum of entries on every row of R is less than 1. For A,B ∈Mm,n,

we say that A is strictly sub row Hadamard majorized by B (denoted
by A ≺SH B) if there exists an m-by-n strictly sub row stochastic ma-

trix R such that A = R ◦ B where X ◦ Y is the Hadamard product

(entrywise product) of matrices X,Y ∈ Mm,n. In this paper, we in-
troduce the concept of strictly sub row Hadamard majorization as a

relation on Mm,n. Also, we find the structure of all linear operators

T : Mm,n → Mm,n which are preservers (resp. strong preservers) of
strictly sub row Hadamard majorization.
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1. Introduction

The Hadamard product has been penetrated in many branches of mathe-
matical sciences and other sciences such as linear algebra theory, programming
languages, statistics, etc. See [1–4]. In this paper, with using the Hadamard
product and a type of nonnegative matrices which are called strictly sub row
stochastic matrices, we introduce a relation on Mm,n which is called strictly sub
row Hadamard majorization or in brief SH-majorization. For X,Y ∈ Mm,n,
the Hadamard product (entrywise product) of X = [xij ] and Y = [yij ], is de-
noted by X ◦ Y and is defined by X ◦ Y = [xijyij ]. A matrix R in Mm,n with
nonnegative entries is called strictly sub row stochastic if the sum of entries on
every row of R is less than 1.

Definition 1.1. Let X,Y ∈Mm,n. We say that X is SH-Hadamard majorized
by Y (denoted by X ≺SH Y ), if there exists a strictly sub row stochastic matrix
R ∈Mm,n such that X = R ◦ Y .

For a linear operator T : Mm,n → Mm,n, it is said that T preserves (resp.
strongly preserves) SH-Hadamard majorization if T (X) ≺SH T (Y ) whenever
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X ≺SH Y (resp. T (X) ≺SH T (Y ) if and only if X ≺SH Y ). In this paper,
we characterize all linear operators on Mm,n that preserve (resp. strongly
preserve) SH-majorization. The following convention will be fixed throughout
the paper. {E11, E12, . . . , Emn} is the standard basis of Mm,n. When we use
Eij , the positive integers i and j are either fixed or are understood from the
context. The m-by-n matrix J is the matrix of all ones, Rm,n is the set of all
m-by-n row stochastic matrices, and sRm,n is the set of all m-by-n sub row
stochastic matrices.

In the next proposition we investigate a useful result from [5]. For every
m ∈ N, let Nm = {1, . . . ,m}.

Proposition 1.2. [5, Theorem 2.6] Let T : Mm,n →Mm,n be a linear oper-
ator. The following conditions are equivalent:

(1): T (Epq) ◦ T (Ers) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with
(p, q) 6= (r, s).

(2): There exist a function f : Nm × Nn → Nm × Nn and a matrix
A ∈Mm,n such that for every X = [xi,j ] ∈Mm,n,

(1) T (X) =

 xf(1,1) . . . xf(1,n)
...

...
...

xf(m,1) . . . xf(m,n)

 ◦A,
where xf(i,j) means xpq if f(i, j) = (p, q).

2. Linear preservers of SH-Hadamard majorization

In this section, first we state and prove some properties of preservers of SH-
Hadamard majorization on Mm,n. Then we give some examples of linear pre-
servers and strong linear preservers of SH-Hadamard majorization. Finally, we
find the structure of all linear operators on Mm,n which preserve SH-Hadamard
majorization. The next remark is helpful in the following.

Remark 2.1. The next results hold:

(i): Let A ∈Mm,n. A ≺SH A if and only if A = 0.
(ii): A linear operator X 7→ T (X) on Mm,n, preserves ≺SH if and only

if X 7→ PT (X)Q preserves ≺SH , where P ∈ Mm and Q ∈ Mn are
arbitrary permutation matrices.

(iii): For A ∈Mm,n with no zero entries, the linear operator X 7→ T (X)
is a linear preserver of ≺SH if and only if the linear operator X 7→
T (X) ◦A is a linear preserver of ≺SH .

Now we give a useful proposition about linear preservers of ≺SH on Mm,n.

Proposition 2.2. If T : Mm,n → Mm,n is a linear preserver of ≺SH , then
T (Epq)◦T (Ers) = 0, for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (p, q) 6= (r, s).
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Proof. Assume if possible that T (Epq) ◦T (Ers) 6= 0 for some (p, q) 6= (r, s). So
[T (Epq)]ij = λ 6= 0 and [T (Ers)]ij = µ 6= 0 for some 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Let Y = 1

λEpq −
1
µErs. Set X = R ◦ Y , where R = [rij ] is a strictly sub row

stochastic matrix such that rpq and rrs are 1
3 and 2

3 , respectively. Now, X ≺SH
Y but T (X) ⊀SH T (Y ), which is a contradiction. So T (Epq) ◦ T (Ers) = 0, for
all 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with (p, q) 6= (r, s). �

Definition 2.3. Let A ∈Mm,n. We say that A is dominated by a (0, 1)-row
stochastic matrix if there exists a (0, 1)-row stochastic matrix R ∈Mm,n such
that A = A◦R. The set of all matrices which are dominated by (0, 1)-matrices
is denoted by Πm,n.

The next theorem gives important properties of linear preservers of SH-
Hadamard majorization on Mm,n.

Theorem 2.4. Let T : Mm,n → Mm,n be a linear operator. If T preserves
SH-Hadamard majorization, then the following conditions hold:

(1): For every 1 ≤ p ≤ m and 1 ≤ q ≤ n, T (Epq) ∈ Πm,n.
(2): For every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with p 6= r, T (Epq) and
T (Ers) do not simultaneously have a nonzero entry in any row.

Proof. (1): Assume if possible that T (Epq) /∈ Πm,n for some 1 ≤ p ≤ m
and 1 ≤ q ≤ n. So by using part (ii) and part (iii) of Remark 2.1, at
least two entries of the first row of T (Epq) are 1. Set X = Epq and
Y = 2Epq. Thus, X ≺SH Y but T (X) ⊀SH T (Y ).

(2): Assume that 1 ≤ p, r ≤ m, 1 ≤ q, s ≤ n with p 6= r and let
T (Epq) = [aij ], T (Ers) = [bij ]. By part (ii) of Remark 2.1, with-
out loss of generality we may assume that a11 6= 0. Now by using
Proposition 2.2, b11 = 0. We show b1j = 0 for all 2 6 j 6 n. Let
b1j 6= 0 for some 2 ≤ j ≤ n. Put X = Epq + Ers and Y = 2X. So
X ≺SH Y . We show that T (X) ⊀SH T (Y ). If T (X) ≺SH T (Y ) there
exists a strictly sub row stochastic matrix R such that a11 . . . b1j . . . ?

...
...

...
? . . . ? . . . ?

 = R ◦

 2a11 . . . 2b1j . . . ?
...

...
...

? . . . ? . . . ?

 ,

which is imposible.
�

By using Proposition 1.2, we can prove the following theorem.

Theorem 2.5. Let T : Mm,n → Mm,n be a linear operator. If T preserves
SH-Hadamard majorization, then the following conditions hold:
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(1): There exist a function f : Nm × Nn → Nm × Nn and a matrix
A ∈Mm,n such that for every X = [xi,j ] ∈Mm,n,

(2) T (X) =

 xf(1,1) . . . xf(1,n)
...

...
...

xf(m,1) . . . xf(m,n)

 ◦A,
where xf(i,j) means xpq if f(i, j) = (p, q).

(2): T (X ◦ Y ) = T (X) ◦ T (Y ) for all X,Y ∈ Mm,n if T (J) is a (0, 1)-
matrix.

Proof. (1): Since T is a linear preserver of ≺SH , by using Proposition 2.2,
we have T (Epq) ◦ T (Ers) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n
with (p, q) 6= (r, s). Now the conclusion follows from the Proposition
1.2.

(2): Assume that T is a linear preserver of ≺SH and T (J) is a (0, 1)-
matrix. By using Proposition 2.2, T (Epq) ◦ T (Ers) = 0 for all (p, q) 6=
(r, s). So T (Eij) is a (0, 1)-matrix for each 1 ≤ i ≤ m, 1 ≤ j ≤ n and
T (Eij) ◦ T (Eij) = T (Eij). Let X =

∑
i,j xijEij and Y =

∑
i,j yijEij

be arbitrary m-by-n real matrices. Now we have

T (X ◦ Y ) =T (
∑
i,j

xijEij ◦
∑
i,j

yijEij)

=T (
∑
i,j

xijyijEij)

=
∑
i,j

xijyijT (Eij)

=
∑
i,j

xijT (Eij) ◦
∑
i,j

yijT (Eij)

=T (X) ◦ T (Y ).

�

To understanding the structure of the linear preservers of SH-Hadamard
majorization, we present the following examples.

Example 2.6. Assume that P is an m-by-m permutation matrix, Q is an n-by-
n permutation matrix and A ∈Mm,n. The linear operator T : Mm,n →Mm,n

defined by T (X) = (PXQ)◦A is a preserver of ≺SH . Also, T strongly preserves
≺SH if A has no zero entry. But T (X) = (PXtQ) ◦ A is not a preserver of
≺SH (Xt is the transpose of X).
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Example 2.7. Let X = [xij ] ∈ Mm,n. Consider the linear operator T :
Mm,n →Mm,n defined by

T (X) =


x11 x11 0 · · · 0
0

. . .

0 0

 .

Now, I ≺SH 2I but T (I) ⊀SH T (2I). So T is not a preserver of ≺SH .

The following proposition is used to prove the main theorem of this section.
For a subset X of Mm,n, the set of extreme points of X is denoted by ext(X).

Proposition 2.8. The set of all m-by-n real strictly sub row stochastic matrices
is a strictly convex set that its extreme points are m-by-n, (0, 1)-row stochastic
matrices, i.e.

ext(sRm,n) = {A ∈ Rm,n : A is a (0, 1)-row stochastic matrix}.

Proof. It is easy to see that every m-by-n, (0, 1)-row stochastic matrix is an
extreme point of sRm,n. Now we show that if R ∈ sRm,n, then R is not an
extreme point of sRm,n. Without loss of generality we may assume that the
first row of R has k nonzero components with k > 2. Let

R =

(
r11 . . . r1n

A

)
,

and let r1j1 , . . . , r1jk be the nonzero components of the first row of R. Put

Rj1 = Ej1 +

(
0
A

)
, . . . , Rjk = Ejk +

(
0
A

)
.

So Rj1 , . . . , Rjk ∈ sRm,n and we have R = rj1Rj1 + · · ·+ rjkRjk . Since k > 2,
R is not an extreme point of sRm,n and the proof is complete. �

The following theorem is the key to characterize the linear preservers of
SH-Hadamard majorization on Mm,n.

Theorem 2.9. Let T : Mm,n →Mm,n be a linear operator. Then T preserves
≺SH if and only if T satisfies the following conditions:

(1): T (Ers) ◦ T (Epq) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with
(r, s) 6= (p, q).

(2): For every R ∈ ext(sRm,n) there exists a (0, 1)-matrix Z ∈ Mm,n

such that Z ◦ T (J) = 0 and Z + T (R) ∈ Πm,n.

Proof. By using part (iii) of Remark 2.1, without loss of generality we may
assume that T (J) is a (0, 1)-matrix. Suppose that T preserves ≺SH . By Propo-
sition 2.2, (1) holds. Let R ∈ ext(sRm,n). Since T satisfies (2), it is clear that
T (R) is a (0, 1)-matrix. Also R = R ◦ J ≺SH 2J, and so there exists a strictly
sub row stochastic matrix D ∈ Mm,n such that T (R) = D ◦ 2T (J). Thus,
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T (R) ∈ Πm,n and there exist permutation matrices P ∈Mm and Q ∈Mn such
that

T (R) = P

 U 0

0

Q,

where U is a k × k (0, 1)-row stochastic matrix for some 0 ≤ k ≤ min{m,n}.
By the use of part (ii) of Remark 2.1, we may assume that

T (R) =

 U 0

0

 .

Also by part (2) of Theorem 2.5, we have T (R) ◦ T (J) = D ◦ 2T (J). So
[T (R)− 2D] ◦ T (J) = 0. Now we have

D =


U

2
0

V

 ,

 0

V

 ◦ T (J) = 0,

where, V ∈ Mm−k,n is strictly sub row stochastic. Now we can choose a
(0, 1)-matrix W ∈ Πm−k,n such that 0

W

 ◦ T (J) = 0.

Put

Z =

 0

W

 .

Therefore, Z + T (R) ∈ Πm,n, and Z ◦ T (J) = 0.
Conversely, first similar to the necessary part and without loss of generality we
can assume that T (J) is a (0, 1)-matrix. Let X,Y ∈Mm,n and let X ≺SH Y .
Then there exists a strictly sub row stochastic matrix R in Mm,n such that
X = R ◦ Y and hence by part (2) of Theorem 2.5, T (X) = T (R) ◦ T (Y ).

By Theorem 2.8, R =
∑k
i=1 λiRi for some matrices R1, . . . , Rk ∈ ext(sRm,n)

and some positive numbers λ1, . . . , λk ∈ R such that
∑k
i=1 λi < 1. By the

use of part (2), for each 1 ≤ i ≤ k, we can find (0, 1)-matrices Zi ∈ Mm,n

such that Zi ◦ T (J) = 0 and T (Ri) + Zi ∈ Πm,n. By part (2) of Proposition
1.2, Zi ◦ T (Ri) = 0 and hence T (Ri) + Zi is a (0, 1)-matrix. Thus, R′ =
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∑k
i=1 λi(T (Ri) + Zi) ∈Mm,n is strictly sub row stochastic . Now we have

T (X) =T (R) ◦ T (Y )

=T

(
k∑
i=1

λiRi

)
◦ T (Y )

=

(
k∑
i=1

λi(T (Ri) + Zi)

)
◦ T (Y )

=R′ ◦ T (Y ).

Therefore, T preserves SH-Hadamard majorization. �

In the next Theorem we completely determine the structure of the linear
operators T : Mm,n →Mn,m, which preserves SH-Hadamard majorization.

Theorem 2.10. Let T : Mm,n → Mm,n be a linear operator. Then T pre-
serves ≺SH if and only if there exist A ∈ Mm,n and permutation matrices
Q1, . . . , Qm ∈Mn such that

(3) T (X) =


Xi1Q1

Xi2Q2

...
XimQm

 ◦ T (J), ∀X ∈Mm,n,

where Xij are some rows of X for 1 6 j 6 m (not necessarily distinct).

Proof. Assume that T is of the form (3) and X ≺SH Y . Then there exists
an m-by-n strictly sub row stochastic matrix R such that X = R ◦ Y . Thus,
T (X) = S ◦ T (Y ) where

S =


Ri1Q1

Ri2Q2

...
RimQm

 ,

is an m-by-n strictly sub row stochastic matrix (Rij are some rows of R for
1 6 j 6 m ). Therefore, T (X) ≺SH T (Y ) and so T preserves ≺SH .
Conversely, assume that T is a preserver of ≺SH . By Proposition 1.2, there
exist a function γ : Nm×Nn → Nm×Nn such that for every X = [xi,j ] ∈Mm,n,

T (X) =

 xγ(1,1) . . . xγ(1,n)
...

...
...

xγ(m,1) . . . xγ(m,n)

 ◦ T (J),

where xγ(i,j) means xuv if γ(i, j) = (u, v). Set A = [aij ] = T (J). So the rth
row of T (X) is [ar1xγ(i,1) . . . arnxγ(i,n)]. Now by part (ii) of Theorem 2.9, for
every (0, 1)-row stochastic matrix R, T (R) has at most one nonzero entry in
each row and hence for each 1 6 j 6 n, γ(i, j) = (r, s). Thus, the nonzero
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entries of a row of T (X) must be multiple of entries of a row of X. So the
rth row of T (X) is of the form [ar1xikj1 . . . arnxikjn ], where 1 6 ik 6 m and
{j1, . . . , jn} = {1, . . . , n}. Therefore, T is of the form (3) and the proof is
complete. �

3. Strong linear preservers of SH-Hadamard majorization

In this section, we characterize the linear operators on Mm,n which strongly
preserve SH-Hadamard majorization. The next lemma shows that every strong
linear preserver of ≺SH on Mm,n is invertible.

Lemma 3.1. Let T : Mm,n → Mm,n be a linear operator. If T strongly
preserves ≺SH , then T is invertible.

Proof. Assume that T : Mm,n → Mm,n is a strong linear preserver of SH-
majorization and T (X) = 0. Then, T (X) ≺SH 0 and hence X ≺SH 0. There-
fore, X = 0 which implies that T is invertible. �

Lemma 3.2. Let T : Mm,n → Mm,n be a linear operator. If T strongly
preserves ≺SH , then T (J) has no zero entry.

Proof. Assume that the linear operator T : Mm,n →Mm,n strongly preserves
≺SH . So by Theorem 2.5, T has the form 1.2 and by Lemma 3.1, T is invertible.
Thus, T (J) has no zero entry. �

The next proposision, gives necessary and sufficient conditions for a linear
operator T on Mm,n that strongly preserves SH-Hadamard majorization.

Proposition 3.3. Let T : Mm,n → Mm,n be a linear operator. Then T
strongly preserves ≺SH if and only if T is invertible and T satisfies the following
conditions:

(1): T (Ers) ◦ T (Epq) = 0 for every 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with
(r, s) 6= (p, q).

(2): For every R ∈ ext(sRm,n), T (R) has exactly one nonzero entry in
each row.

Proof. Similar to the proof of Theorem 2.9, without loss of generality we can
assume that T (J) is a (0, 1)-matrix. Assume that T strongly preserves ≺SH .
By Lemma 3.1, T is invertible and by part (1) of Theorem 2.9, (1) holds. Now,
by part (2) of Theorem 2.9, for every R ∈ ext(sRm,n) there exists a (0, 1)-
matrix Y ∈ Mm,n such that Y ◦ T (J) = 0 and T (R) + Y has exactly one
nonzero entry in each row. By Lemma 3.2, T (J) has no zero entry. Hence
Y = 0 and the conclusion is desired.
Conversely, since T is invertible and satisfies (2), T−1(ext(sRm,n)) ⊆ ext(sRm,n)
and hence T−1 satisfies (2). For 1 ≤ p, r ≤ m and 1 ≤ q, s ≤ n with
(r, s) 6= (p, q), assume that A = T−1(Ers) and B = T−1(Epq). Thus by part
(2) of Theorem 2.5, T (A ◦ B) = T (A) ◦ T (B) = Ers ◦ Epq = 0. This implies
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that A ◦ B = 0 and hence T−1 satisfies (1). Therefore, by Theorem 2.9, T−1

preserves ≺SH and so T strongly preserves ≺SH . �

The following theorem characterizes the linear preservers of SH-Hadamard
majorization on Mm,n.

Theorem 3.4. Let T : Mm,n →Mm,n be a linear operator. Then T strongly
preserves ≺SH if and only if there exist A ∈ Mm,n with no zero entry and
permutation matrices P ∈Mm and Q1, . . . , Qm ∈Mn such that

(4) T (X) = P


X1Q1

X2Q2

...
XmQm

 ◦A, ∀X ∈Mm,n,

where X1, . . . , Xm are rows of X.

Proof. First assume that T strongly preserves ≺SH . By Theorem 2.10, there
are A ∈Mm,n and permutation matrices Q1, . . . , Qm ∈Mn such that

T (X) =


Xi1Q1

Xi2Q2

...
XimQm

 ◦A, ∀X ∈Mm,n,

where Xi1 , . . . , Xim are some rows of X. By Lemma 3.1, T is invertible and
hence A has no zero entry and Xi1 , . . . , Xim are distinct rows of X. Therefore,

T (X) = P


X1Q1

X2Q2

...
XmQm

 ◦A, ∀X ∈Mm,n,

where P ∈Mm is a permutation matrix, as desired. For the proof of suffi-
ciency, if T is of the form (4), we conclude that

T−1(X) = P−1


X1Q

−1
1

X2Q
−1
2

...
XmQ

−1
m

 ◦B, ∀X ∈Mm,n,
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where B = [
1

aij
] ∈ Mm,n. Now, it is easy to check that T and T−1 preserve

SH-Hadamard majorization. Therefore, T strongly preserves SH-Hadamard
majorization and the proof is complete. �
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