STRICTLY SUB ROW HADAMARD MAJORIZATION

A. Askarizadeh**
Article type: Research Article
(Received: 26 November 2021, Revised: 31 December 2021, Accepted: 31 December 2021)
(Available Online: 11 January 2022)
(Communicated by A. Salemi)

Abstract

Let $\mathbf{M}_{m, n}$ be the set of all m-by- n real matrices. A matrix R in $\mathbf{M}_{m, n}$ with nonnegative entries is called strictly sub row stochastic if the sum of entries on every row of R is less than 1 . For $A, B \in \mathbf{M}_{m, n}$, we say that A is strictly sub row Hadamard majorized by B (denoted by $A \prec_{S H} B$) if there exists an m-by- n strictly sub row stochastic matrix R such that $A=R \circ B$ where $X \circ Y$ is the Hadamard product (entrywise product) of matrices $X, Y \in \mathbf{M}_{m, n}$. In this paper, we introduce the concept of strictly sub row Hadamard majorization as a relation on $\mathbf{M}_{m, n}$. Also, we find the structure of all linear operators $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$ which are preservers (resp. strong preservers) of strictly sub row Hadamard majorization.

Keywords: Linear preserver, Strong linear preserver, Strictly sub row Hadamard majorization, Strictly sub row stochastic
2020 MSC: 15A04, 15A21

1. Introduction

The Hadamard product has been penetrated in many branches of mathematical sciences and other sciences such as linear algebra theory, programming languages, statistics, etc. See [1-4]. In this paper, with using the Hadamard product and a type of nonnegative matrices which are called strictly sub row stochastic matrices, we introduce a relation on $\mathbf{M}_{m, n}$ which is called strictly sub row Hadamard majorization or in brief SH-majorization. For $X, Y \in \mathbf{M}_{m, n}$, the Hadamard product (entrywise product) of $X=\left[x_{i j}\right]$ and $Y=\left[y_{i j}\right]$, is denoted by $X \circ Y$ and is defined by $X \circ Y=\left[x_{i j} y_{i j}\right]$. A matrix R in $\mathbf{M}_{m, n}$ with nonnegative entries is called strictly sub row stochastic if the sum of entries on every row of R is less than 1 .

Definition 1.1. Let $X, Y \in \mathbf{M}_{m, n}$. We say that X is $S H$-Hadamard majorized by Y (denoted by $X \prec_{S H} Y$), if there exists a strictly sub row stochastic matrix $R \in \mathbf{M}_{m, n}$ such that $X=R \circ Y$.

For a linear operator $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$, it is said that T preserves (resp. strongly preserves) SH-Hadamard majorization if $T(X) \prec_{S H} T(Y)$ whenever
*Corresponding author, ORCID: 0000-0001-6663-0548

E-mail: a.askari@vru.ac.ir
DOI: 10.22103/jmmrc.2021.18576.1177 © the Authors
How to cite: A. Askarizadeh, Strictly sub row Hadamard majorization, J. Mahani Math.
Res. Cent. 2022; 11(1): 159-168.
$X \prec_{S H} Y$ (resp. $T(X) \prec_{S H} T(Y)$ if and only if $X \prec_{S H} Y$). In this paper, we characterize all linear operators on $\mathbf{M}_{m, n}$ that preserve (resp. strongly preserve) SH-majorization. The following convention will be fixed throughout the paper. $\left\{E_{11}, E_{12}, \ldots, E_{m n}\right\}$ is the standard basis of $\mathbf{M}_{m, n}$. When we use $E_{i j}$, the positive integers i and j are either fixed or are understood from the context. The m-by- n matrix \mathbf{J} is the matrix of all ones, $\mathbf{R}_{m, n}$ is the set of all m-by- n row stochastic matrices, and $\mathbf{s} \mathbf{R}_{m, n}$ is the set of all m-by- n sub row stochastic matrices.

In the next proposition we investigate a useful result from [5]. For every $m \in \mathbb{N}$, let $\mathbb{N}_{m}=\{1, \ldots, m\}$.

Proposition 1.2. [5, Theorem 2.6] Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. The following conditions are equivalent:
(1): $T\left(E_{p q}\right) \circ T\left(E_{r s}\right)=0$ for every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(p, q) \neq(r, s)$.
(2): There exist a function $f: \mathbb{N}_{m} \times \mathbb{N}_{n} \rightarrow \mathbb{N}_{m} \times \mathbb{N}_{n}$ and a matrix $A \in \boldsymbol{M}_{m, n}$ such that for every $X=\left[x_{i, j}\right] \in \boldsymbol{M}_{m, n}$,

$$
\begin{align*}
& T(X)=\left(\begin{array}{cccc}
x_{f(1,1)} & \ldots & x_{f(1, n)} \\
\vdots & \vdots & \vdots \\
x_{f(m, 1)} & \ldots & x_{f(m, n)}
\end{array}\right) \circ A, \tag{1}\\
& \text { where } x_{f(i, j)} \text { means } x_{p q} \text { if } f(i, j)=(p, q) \text {. }
\end{align*}
$$

2. Linear preservers of SH-Hadamard majorization

In this section, first we state and prove some properties of preservers of SHHadamard majorization on $\mathbf{M}_{m, n}$. Then we give some examples of linear preservers and strong linear preservers of SH-Hadamard majorization. Finally, we find the structure of all linear operators on $\mathbf{M}_{m, n}$ which preserve SH-Hadamard majorization. The next remark is helpful in the following.

Remark 2.1. The next results hold:
(i): Let $A \in \mathbf{M}_{m, n} . A \prec_{S H} A$ if and only if $A=0$.
(ii): A linear operator $X \mapsto T(X)$ on $\mathbf{M}_{m, n}$, preserves $\prec_{S H}$ if and only if $X \mapsto P T(X) Q$ preserves $\prec_{S H}$, where $P \in \mathbf{M}_{m}$ and $Q \in \mathbf{M}_{n}$ are arbitrary permutation matrices.
(iii): For $A \in \mathbf{M}_{m, n}$ with no zero entries, the linear operator $X \mapsto T(X)$ is a linear preserver of $\prec_{S H}$ if and only if the linear operator $X \mapsto$ $T(X) \circ A$ is a linear preserver of $\prec_{S H}$.

Now we give a useful proposition about linear preservers of $\prec_{S H}$ on $\mathbf{M}_{m, n}$.
Proposition 2.2. If $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ is a linear preserver of $\prec_{S H}$, then $T\left(E_{p q}\right) \circ T\left(E_{r s}\right)=0$, for every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(p, q) \neq(r, s)$.

Proof. Assume if possible that $T\left(E_{p q}\right) \circ T\left(E_{r s}\right) \neq 0$ for some $(p, q) \neq(r, s)$. So $\left[T\left(E_{p q}\right)\right]_{i j}=\lambda \neq 0$ and $\left[T\left(E_{r s}\right)\right]_{i j}=\mu \neq 0$ for some $1 \leq i \leq m$ and $1 \leq j \leq n$. Let $Y=\frac{1}{\lambda} E_{p q}-\frac{1}{\mu} E_{r s}$. Set $X=R \circ Y$, where $R=\left[r_{i j}\right]$ is a strictly sub row stochastic matrix such that $r_{p q}$ and $r_{r s}$ are $\frac{1}{3}$ and $\frac{2}{3}$, respectively. Now, $X \prec_{S H}$ Y but $T(X) \nprec_{S H} T(Y)$, which is a contradiction. So $T\left(E_{p q}\right) \circ T\left(E_{r s}\right)=0$, for all $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(p, q) \neq(r, s)$.

Definition 2.3. Let $A \in \mathbf{M}_{m, n}$. We say that A is dominated by a $(0,1)$-row stochastic matrix if there exists a $(0,1)$-row stochastic matrix $R \in \mathbf{M}_{m, n}$ such that $A=A \circ R$. The set of all matrices which are dominated by $(0,1)$-matrices is denoted by $\Pi_{m, n}$.

The next theorem gives important properties of linear preservers of SHHadamard majorization on $\mathbf{M}_{m, n}$.

Theorem 2.4. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. If T preserves SH-Hadamard majorization, then the following conditions hold:
(1): For every $1 \leq p \leq m$ and $1 \leq q \leq n, T\left(E_{p q}\right) \in \Pi_{m, n}$.
(2): For every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $p \neq r, T\left(E_{p q}\right)$ and $T\left(E_{r s}\right)$ do not simultaneously have a nonzero entry in any row.

Proof. (1): Assume if possible that $T\left(E_{p q}\right) \notin \Pi_{m, n}$ for some $1 \leq p \leq m$ and $1 \leq q \leq n$. So by using part (ii) and part (iii) of Remark 2.1, at least two entries of the first row of $T\left(E_{p q}\right)$ are 1. Set $X=E_{p q}$ and $Y=2 E_{p q}$. Thus, $X \prec_{S H} Y$ but $T(X) \not_{S H} T(Y)$.
(2): Assume that $1 \leq p, r \leq m, 1 \leq q, s \leq n$ with $p \neq r$ and let $T\left(E_{p q}\right)=\left[a_{i j}\right], T\left(E_{r s}\right)=\left[b_{i j}\right]$. By part (ii) of Remark 2.1, without loss of generality we may assume that $a_{11} \neq 0$. Now by using Proposition 2.2, $b_{11}=0$. We show $b_{1 j}=0$ for all $2 \leqslant j \leqslant n$. Let $b_{1 j} \neq 0$ for some $2 \leq j \leq n$. Put $X=E_{p q}+E_{r s}$ and $Y=2 X$. So $X \prec_{S H} Y$. We show that $T(X) \nprec_{S H} T(Y)$. If $T(X) \prec_{S H} T(Y)$ there exists a strictly sub row stochastic matrix R such that

$$
\left(\begin{array}{ccccc}
a_{11} & \ldots & b_{1 j} & \ldots & \star \\
& \vdots & \vdots & \vdots & \\
\star & \ldots & \star & \ldots & \star
\end{array}\right)=R \circ\left(\begin{array}{ccccc}
2 a_{11} & \ldots & 2 b_{1 j} & \ldots & \star \\
& \vdots & \vdots & \vdots & \\
\star & \ldots & \star & \ldots & \star
\end{array}\right)
$$

which is imposible.

By using Proposition 1.2, we can prove the following theorem.
Theorem 2.5. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. If T preserves SH-Hadamard majorization, then the following conditions hold:
(1): There exist a function $f: \mathbb{N}_{m} \times \mathbb{N}_{n} \rightarrow \mathbb{N}_{m} \times \mathbb{N}_{n}$ and a matrix $A \in \boldsymbol{M}_{m, n}$ such that for every $X=\left[x_{i, j}\right] \in \boldsymbol{M}_{m, n}$,

$$
T(X)=\left(\begin{array}{ccc}
x_{f(1,1)} & \ldots & x_{f(1, n)} \tag{2}\\
\vdots & \vdots & \vdots \\
x_{f(m, 1)} & \ldots & x_{f(m, n)}
\end{array}\right) \circ A,
$$

where $x_{f(i, j)}$ means $x_{p q}$ if $f(i, j)=(p, q)$.
(2): $T(X \circ Y)=T(X) \circ T(Y)$ for all $X, Y \in \boldsymbol{M}_{m, n}$ if $T(\boldsymbol{J})$ is a $(0,1)$ matrix.

Proof. (1): Since T is a linear preserver of $\prec_{S H}$, by using Proposition 2.2, we have $T\left(E_{p q}\right) \circ T\left(E_{r s}\right)=0$ for every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(p, q) \neq(r, s)$. Now the conclusion follows from the Proposition 1.2 .
(2): Assume that T is a linear preserver of $\prec_{S H}$ and $T(\mathbf{J})$ is a $(0,1)$ matrix. By using Proposition 2.2, $T\left(E_{p q}\right) \circ T\left(E_{r s}\right)=0$ for all $(p, q) \neq$ (r, s). So $T\left(E_{i j}\right)$ is a $(0,1)$-matrix for each $1 \leq i \leq m, 1 \leq j \leq n$ and $T\left(E_{i j}\right) \circ T\left(E_{i j}\right)=T\left(E_{i j}\right)$. Let $X=\sum_{i, j} x_{i j} E_{i j}$ and $Y=\sum_{i, j} y_{i j} E_{i j}$ be arbitrary m-by- n real matrices. Now we have

$$
\begin{aligned}
T(X \circ Y) & =T\left(\sum_{i, j} x_{i j} E_{i j} \circ \sum_{i, j} y_{i j} E_{i j}\right) \\
& =T\left(\sum_{i, j} x_{i j} y_{i j} E_{i j}\right) \\
& =\sum_{i, j} x_{i j} y_{i j} T\left(E_{i j}\right) \\
& =\sum_{i, j} x_{i j} T\left(E_{i j}\right) \circ \sum_{i, j} y_{i j} T\left(E_{i j}\right) \\
& =T(X) \circ T(Y) .
\end{aligned}
$$

To understanding the structure of the linear preservers of SH-Hadamard majorization, we present the following examples.

Example 2.6. Assume that P is an m-by-m permutation matrix, Q is an n-byn permutation matrix and $A \in \mathbf{M}_{m, n}$. The linear operator $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ defined by $T(X)=(P X Q) \circ A$ is a preserver of $\prec_{S H}$. Also, T strongly preserves $\prec_{S H}$ if A has no zero entry. But $T(X)=\left(P X^{t} Q\right) \circ A$ is not a preserver of $\prec_{S H}\left(X^{t}\right.$ is the transpose of $\left.X\right)$.

Example 2.7. Let $X=\left[x_{i j}\right] \in \boldsymbol{M}_{m, n}$. Consider the linear operator T : $\boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ defined by

$$
T(X)=\left(\begin{array}{ccccc}
x_{11} & x_{11} & 0 & \cdots & 0 \\
0 & & & & \\
& & \ddots & & \\
0 & & & & 0
\end{array}\right)
$$

Now, $I \prec_{S H} 2 I$ but $T(I) \nprec_{S H} T(2 I)$. So T is not a preserver of $\prec_{S H}$.
The following proposition is used to prove the main theorem of this section. For a subset X of $\mathbf{M}_{m, n}$, the set of extreme points of X is denoted by $\operatorname{ext}(X)$.

Proposition 2.8. The set of all m-by-n real strictly sub row stochastic matrices is a strictly convex set that its extreme points are m-by-n, (0,1)-row stochastic matrices, i.e.

$$
\operatorname{ext}\left(s \boldsymbol{R}_{m, n}\right)=\left\{A \in \boldsymbol{R}_{m, n}: A \text { is a }(0,1) \text {-row stochastic matrix }\right\} .
$$

Proof. It is easy to see that every m-by- n, $(0,1)$-row stochastic matrix is an extreme point of $\mathbf{s} \mathbf{R}_{m, n}$. Now we show that if $R \in \mathbf{s} \mathbf{R}_{m, n}$, then R is not an extreme point of $\mathbf{s} \mathbf{R}_{m, n}$. Without loss of generality we may assume that the first row of R has k nonzero components with $k \geqslant 2$. Let

$$
R=\binom{r_{11} \ldots r_{1 n}}{A}
$$

and let $r_{1 j_{1}}, \ldots, r_{1 j_{k}}$ be the nonzero components of the first row of R. Put

$$
R_{j_{1}}=E_{j_{1}}+\binom{0}{A}, \ldots, R_{j_{k}}=E_{j_{k}}+\binom{0}{A}
$$

So $R_{j_{1}}, \ldots, R_{j_{k}} \in \mathbf{s R}_{m, n}$ and we have $R=r_{j_{1}} R_{j_{1}}+\cdots+r_{j_{k}} R_{j_{k}}$. Since $k \geqslant 2$, R is not an extreme point of $\mathbf{s} \mathbf{R}_{m, n}$ and the proof is complete.

The following theorem is the key to characterize the linear preservers of SH-Hadamard majorization on $\mathbf{M}_{m, n}$.
Theorem 2.9. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. Then T preserves $\prec_{S H}$ if and only if T satisfies the following conditions:
(1): $T\left(E_{r s}\right) \circ T\left(E_{p q}\right)=0$ for every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(r, s) \neq(p, q)$.
(2): For every $R \in \operatorname{ext}\left(s \boldsymbol{R}_{m, n}\right)$ there exists a (0,1)-matrix $Z \in \boldsymbol{M}_{m, n}$ such that $Z \circ T(\boldsymbol{J})=0$ and $Z+T(R) \in \Pi_{m, n}$.
Proof. By using part (iii) of Remark 2.1, without loss of generality we may assume that $T(\mathbf{J})$ is a $(0,1)$-matrix. Suppose that T preserves $\prec_{S H}$. By Proposition 2.2, (1) holds. Let $R \in \operatorname{ext}\left(\mathbf{s R}_{m, n}\right)$. Since T satisfies (2), it is clear that $T(R)$ is a $(0,1)$-matrix. Also $R=R \circ \mathbf{J} \prec_{S H} 2 \mathbf{J}$, and so there exists a strictly sub row stochastic matrix $D \in \mathbf{M}_{m, n}$ such that $T(R)=D \circ 2 T(\mathbf{J})$. Thus,
$T(R) \in \Pi_{m, n}$ and there exist permutation matrices $P \in M_{m}$ and $Q \in M_{n}$ such that

$$
T(R)=P\left(\begin{array}{cc}
U & 0 \\
0
\end{array}\right) Q
$$

where U is a $k \times k(0,1)$-row stochastic matrix for some $0 \leq k \leq \min \{\mathrm{m}, \mathrm{n}\}$. By the use of part (ii) of Remark 2.1, we may assume that

$$
T(R)=\left(\begin{array}{cc}
U & 0 \\
0
\end{array}\right)
$$

Also by part (2) of Theorem 2.5, we have $T(R) \circ T(\mathbf{J})=D \circ 2 T(\mathbf{J})$. So $[T(R)-2 D] \circ T(\mathbf{J})=0$. Now we have

$$
D=\left(\begin{array}{cc}
\frac{U}{2} & 0 \\
V
\end{array}\right),\binom{0}{V} \circ T(\mathbf{J})=0
$$

where, $V \in \mathbf{M}_{m-k, n}$ is strictly sub row stochastic. Now we can choose a (0,1)-matrix $W \in \Pi_{m-k, n}$ such that

$$
\binom{0}{W} \circ T(\mathbf{J})=0
$$

Put

$$
Z=\binom{0}{W}
$$

Therefore, $Z+T(R) \in \Pi_{m, n}$, and $Z \circ T(\mathbf{J})=0$.
Conversely, first similar to the necessary part and without loss of generality we can assume that $T(\mathbf{J})$ is a $(0,1)$-matrix. Let $X, Y \in \mathbf{M}_{m, n}$ and let $X \prec_{S H} Y$. Then there exists a strictly sub row stochastic matrix R in $\mathbf{M}_{m, n}$ such that $X=R \circ Y$ and hence by part (2) of Theorem 2.5, $T(X)=T(R) \circ T(Y)$. By Theorem 2.8, $R=\sum_{i=1}^{k} \lambda_{i} R_{i}$ for some matrices $R_{1}, \ldots, R_{k} \in \operatorname{ext}\left(\mathbf{s R}_{m, n}\right)$ and some positive numbers $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that $\sum_{i=1}^{k} \lambda_{i}<1$. By the use of part (2), for each $1 \leq i \leq k$, we can find (0,1)-matrices $Z_{i} \in \mathbf{M}_{m, n}$ such that $Z_{i} \circ T(\mathbf{J})=0$ and $T\left(R_{i}\right)+Z_{i} \in \Pi_{m, n}$. By part (2) of Proposition 1.2, $Z_{i} \circ T\left(R_{i}\right)=0$ and hence $T\left(R_{i}\right)+Z_{i}$ is a (0,1)-matrix. Thus, $R^{\prime}=$

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}\left(T\left(R_{i}\right)+Z_{i}\right) \in \mathbf{M}_{m, n} \text { is strictly sub row stochastic. Now we have } \\
& T(X)
\end{aligned}=T(R) \circ T(Y) \text {. } \quad=T\left(\sum_{i=1}^{k} \lambda_{i} R_{i}\right) \circ T(Y) \text {. } \quad \begin{aligned}
& k \\
&=\left(\sum_{i=1}^{k} \lambda_{i}\left(T\left(R_{i}\right)+Z_{i}\right)\right) \circ T(Y) \\
&=R^{\prime} \circ T(Y) .
\end{aligned}
$$

Therefore, T preserves SH-Hadamard majorization.
In the next Theorem we completely determine the structure of the linear operators $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{n, m}$, which preserves SH-Hadamard majorization.

Theorem 2.10. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. Then T preserves $\prec_{S H}$ if and only if there exist $A \in \boldsymbol{M}_{m, n}$ and permutation matrices $Q_{1}, \ldots, Q_{m} \in M_{n}$ such that

$$
T(X)=\left(\begin{array}{c}
X_{i_{1}} Q_{1} \tag{3}\\
X_{i_{2}} Q_{2} \\
\vdots \\
X_{i_{m}} Q_{m}
\end{array}\right) \circ T(\boldsymbol{J}), \quad \forall X \in \boldsymbol{M}_{m, n}
$$

where $X_{i_{j}}$ are some rows of X for $1 \leqslant j \leqslant m$ (not necessarily distinct).
Proof. Assume that T is of the form (3) and $X \prec_{S H} Y$. Then there exists an m-by-n strictly sub row stochastic matrix R such that $X=R \circ Y$. Thus, $T(X)=S \circ T(Y)$ where

$$
S=\left(\begin{array}{c}
R_{i_{1}} Q_{1} \\
R_{i_{2}} Q_{2} \\
\vdots \\
R_{i_{m}} Q_{m}
\end{array}\right)
$$

is an m-by- n strictly sub row stochastic matrix ($R_{i_{j}}$ are some rows of R for $1 \leqslant j \leqslant m)$. Therefore, $T(X) \prec_{S H} T(Y)$ and so T preserves $\prec_{S H}$.
Conversely, assume that T is a preserver of $\prec_{S H}$. By Proposition 1.2, there exist a function $\gamma: \mathbb{N}_{m} \times \mathbb{N}_{n} \rightarrow \mathbb{N}_{m} \times \mathbb{N}_{n}$ such that for every $X=\left[x_{i, j}\right] \in \mathbf{M}_{m, n}$,

$$
T(X)=\left(\begin{array}{ccc}
x_{\gamma(1,1)} & \ldots & x_{\gamma(1, n)} \\
\vdots & \vdots & \vdots \\
x_{\gamma(m, 1)} & \ldots & x_{\gamma(m, n)}
\end{array}\right) \circ T(\mathbf{J})
$$

where $x_{\gamma(i, j)}$ means $x_{u v}$ if $\gamma(i, j)=(u, v)$. Set $A=\left[a_{i j}\right]=T(\mathbf{J})$. So the r th row of $T(X)$ is $\left[a_{r 1} x_{\gamma(i, 1)} \ldots a_{r n} x_{\gamma(i, n)}\right]$. Now by part (ii) of Theorem 2.9, for every (0,1)-row stochastic matrix $R, T(R)$ has at most one nonzero entry in each row and hence for each $1 \leqslant j \leqslant n, \gamma(i, j)=(r, s)$. Thus, the nonzero
entries of a row of $T(X)$ must be multiple of entries of a row of X. So the r th row of $T(X)$ is of the form $\left[a_{r 1} x_{i_{k} j_{1}} \ldots a_{r n} x_{i_{k} j_{n}}\right]$, where $1 \leqslant i_{k} \leqslant m$ and $\left\{j_{1}, \ldots, j_{n}\right\}=\{1, \ldots, n\}$. Therefore, T is of the form (3) and the proof is complete.

3. Strong linear preservers of SH-Hadamard majorization

In this section, we characterize the linear operators on $\mathbf{M}_{m, n}$ which strongly preserve SH-Hadamard majorization. The next lemma shows that every strong linear preserver of $\prec_{S H}$ on $\mathbf{M}_{m, n}$ is invertible.

Lemma 3.1. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. If T strongly preserves $\prec_{S H}$, then T is invertible.
Proof. Assume that $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$ is a strong linear preserver of SHmajorization and $T(X)=0$. Then, $T(X) \prec_{S H} 0$ and hence $X \prec_{S H} 0$. Therefore, $X=0$ which implies that T is invertible.

Lemma 3.2. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. If T strongly preserves $\prec_{S H}$, then $T(\boldsymbol{J})$ has no zero entry.

Proof. Assume that the linear operator $T: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$ strongly preserves $\prec_{S H}$. So by Theorem 2.5, T has the form 1.2 and by Lemma 3.1, T is invertible. Thus, $T(\mathbf{J})$ has no zero entry.

The next proposision, gives necessary and sufficient conditions for a linear operator T on $\mathbf{M}_{m, n}$ that strongly preserves SH-Hadamard majorization.

Proposition 3.3. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. Then T strongly preserves $\prec_{S H}$ if and only if T is invertible and T satisfies the following conditions:
(1): $T\left(E_{r s}\right) \circ T\left(E_{p q}\right)=0$ for every $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(r, s) \neq(p, q)$.
(2): For every $R \in \operatorname{ext}\left(s \boldsymbol{R}_{m, n}\right), T(R)$ has exactly one nonzero entry in each row.

Proof. Similar to the proof of Theorem 2.9, without loss of generality we can assume that $T(\mathbf{J})$ is a $(0,1)$-matrix. Assume that T strongly preserves $\prec_{S H}$. By Lemma 3.1, T is invertible and by part (1) of Theorem 2.9, (1) holds. Now, by part (2) of Theorem 2.9 , for every $R \in \operatorname{ext}\left(\mathbf{s R}{ }_{m, n}\right)$ there exists a $(0,1)$ matrix $Y \in \mathbf{M}_{m, n}$ such that $Y \circ T(\mathbf{J})=0$ and $T(R)+Y$ has exactly one nonzero entry in each row. By Lemma 3.2, $T(\mathbf{J})$ has no zero entry. Hence $Y=0$ and the conclusion is desired.
Conversely, since T is invertible and satisfies (2), $T^{-1}\left(\operatorname{ext}\left(\mathbf{s R}_{m, n}\right)\right) \subseteq \operatorname{ext}\left(\mathbf{s R}_{m, n}\right)$ and hence T^{-1} satisfies (2). For $1 \leq p, r \leq m$ and $1 \leq q, s \leq n$ with $(r, s) \neq(p, q)$, assume that $A=T^{-1}\left(E_{r s}\right)$ and $B=T^{-1}\left(E_{p q}\right)$. Thus by part (2) of Theorem 2.5, $T(A \circ B)=T(A) \circ T(B)=E_{r s} \circ E_{p q}=0$. This implies
that $A \circ B=0$ and hence T^{-1} satisfies (1). Therefore, by Theorem 2.9, T^{-1} preserves $\prec_{S H}$ and so T strongly preserves $\prec_{S H}$.

The following theorem characterizes the linear preservers of SH-Hadamard majorization on $\mathbf{M}_{m, n}$.

Theorem 3.4. Let $T: \boldsymbol{M}_{m, n} \rightarrow \boldsymbol{M}_{m, n}$ be a linear operator. Then T strongly preserves $\prec_{S H}$ if and only if there exist $A \in \boldsymbol{M}_{m, n}$ with no zero entry and permutation matrices $P \in \boldsymbol{M}_{m}$ and $Q_{1}, \ldots, Q_{m} \in \boldsymbol{M}_{n}$ such that

$$
T(X)=P\left(\begin{array}{c}
X_{1} Q_{1} \tag{4}\\
X_{2} Q_{2} \\
\vdots \\
X_{m} Q_{m}
\end{array}\right) \circ A, \quad \forall X \in M_{m, n},
$$

where X_{1}, \ldots, X_{m} are rows of X.
Proof. First assume that T strongly preserves $\prec_{S H}$. By Theorem 2.10, there are $A \in \mathbf{M}_{m, n}$ and permutation matrices $Q_{1}, \ldots, Q_{m} \in \mathbf{M}_{n}$ such that

$$
T(X)=\left(\begin{array}{c}
X_{i_{1}} Q_{1} \\
X_{i_{2}} Q_{2} \\
\vdots \\
X_{i_{m}} Q_{m}
\end{array}\right) \circ A, \quad \forall X \in \mathbf{M}_{m, n}
$$

where $X_{i_{1}}, \ldots, X_{i_{m}}$ are some rows of X. By Lemma 3.1, T is invertible and hence A has no zero entry and $X_{i_{1}}, \ldots, X_{i_{m}}$ are distinct rows of X. Therefore,

$$
T(X)=P\left(\begin{array}{c}
X_{1} Q_{1} \\
X_{2} Q_{2} \\
\vdots \\
X_{m} Q_{m}
\end{array}\right) \circ A, \quad \forall X \in \mathbf{M}_{m, n}
$$

where $P \in \mathbf{M}_{m}$ is a permutation matrix, as desired. For the proof of sufficiency, if T is of the form (4), we conclude that

$$
T^{-1}(X)=P^{-1}\left(\begin{array}{c}
X_{1} Q_{1}^{-1} \\
X_{2} Q_{2}^{-1} \\
\vdots \\
X_{m} Q_{m}^{-1}
\end{array}\right) \circ B, \quad \forall X \in \mathbf{M}_{m, n}
$$

where $B=\left[\frac{1}{a_{i j}}\right] \in \mathbf{M}_{m, n}$. Now, it is easy to check that T and T^{-1} preserve SH-Hadamard majorization. Therefore, T strongly preserves SH-Hadamard majorization and the proof is complete.

References

[1] C. Davis, The norm of the Schur product operation, Numerische Mathematik, vol. 4, no 1. (1962) 343-344.
[2] B. Cyganek, Obeject detection and recognition in digital images (theory and practice), A John Wiley and Sons, 2013.
[3] P. H. George, Hadamard product and multivariate statistical analysis, Linear Algebra and its Applications vol. 6 (1973) 217-240 .
[4] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 2012.
[5] S. M. Motlaghian, A. Armandnejad and F. J. Hall, Linear preservers of Hadamard majorization, Electronic Journal of Linear Algebra, vol 31. (2016) 593-609.

Abbas Askarizadeh
Orcid number: 0000-0001-6663-0548
Department of Mathematics
Vali-e-Asr University of Rafsanjan
Rafsanjan, Iran
Email address: a.askari@vru.ac.ir

