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Abstract. In this article, we introduce wavelet sets and consider a spe-

cial wavelet set in R. We build a basis associated with this type of wavelet
sets and use an operational matrix of this basis to solve nonlinear Riccati

differential equations and Riemann-Liouville fractional integral equations
of order α > 0, numerically. Convergence analysis of this method is in-

vestigated. Also, we give examples that show the accuracy of the new

method by comparing it with previous methods.

Keywords: Fractional integral equation, Differential equation, Wavelet

sets, s-elementary wavelets.
2020 MSC : 65T60, 65R20, 42C40, 34A08, 45E16.

1. Introduction

1.1. History. After the development of wavelets by Chui [5], Daubechies [9],
Dai and Lu [8], Fang and Wang [12] and Hernandez and Weiss [16] and founda-
tion of Multiresolution Analysis (MRA) method by Meyer [24] and Mallat [23],
the word wavelet set and how to make it, was first introduced by Dai and
Larson [6], Gabardo and Yu [13] and Benedetto and Sumetkijakan [4]. In the
sequel, we introduce a special wavelet set in R. Then we build a basis for L2 (R)
and approximate functions via this basis, and use this it for solving nonlinear
Riccati differential equations and Riemann-Liouville fractional integral equa-
tions of order α > 0, numerically.

The nonlinear Riccati differential equations are of much importance and play
a significant role in many fields of applied sciences [14, 29]. There are many
ways proposed to solve Riccati differential equations, for example, Adomian’s
decomposition method [2,11], Variational Iteration method (VIM), Homotopy
Perturbation method (HPM) [1–3], the Legendre wavelets method [25] and Ho-
motopy Analysis method (HAM), a piecewise variational iteration method [29]
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and another methods [17,30].

Development of the theory of fractional integrals and derivatives has be-
gun by Euler, Liouville, and Abel (1823). There are many real problems in
physics, mechanics, chemistry and biology that have been formulated via frac-
tional integral equations. Also, there are several methods for solving fractional
integral equations such as, He’s homotopy [26], Adomian decomposition [22],
collocation [21] and power spectral density methods [31] and another meth-
ods [10,18–20,28].

The aim of this paper is to introduce bases made of wavelet sets to obtain
a method for approximating the solution of the Riemann-Liouville fractional
integral equations of order α > 0 and obtain the approximate solutions of non-
linear Riccati differential equations. The speed of computer calculations and
high accuracy are the advantages of this method compared to other methods.
Also, the efficiency and accuracy of the presented method are shown by some
example and table.

In section 2, we introduce the s-elementary vector wavelets and use them to
determine operational matrices.
In section 3, we will analyse the convergence of s-elementary wavelets approx-
imation series.
In the last section, we use s-elementary wavelets for the numerical solution
of nonlinear Riccati differential equation and fractional integral equation and
compare the results with the previous methods.

1.2. Notations and definitions. We use the standard notations and results
from wavelet and wavelet sets as found in [6,7,16]. To complete the discussion,
we bring the following definitions and theorems.
We know that the function ψ is a 2−dilation wavelet for L2 (R), if the system:{

ψjm (x) = 2
j
2ψ
(
2jx− 2mπ

)
; m, j ∈ Z

}
,

is an orthonormal basis for L2 (R).

Also, let {Vj}j∈Z be a sequence of closed subspaces of functions in L2 (R).

The collection of spaces {Vj}j∈Z is called a Multiresolution Analysis (MRA)

L2(R), if the following conditions hold:

(1) Vj ⊂ Vj+1 for all j ∈ Z,
(2) f(.) ∈ Vj iff f(2.) ∈ Vj+1 for all j ∈ Z,
(3)

⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj is dense in L2(R),

(4) f(.) ∈ V0 iff f(.− n) ∈ V0 for all n ∈ Z,
(5) There exists a function ϕ ∈ V0, called a scaling function, such that

the family {ϕ(.−m); m ∈ Z} is an orthonormal basis for V0.
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In this paper, for f ∈ L1 (R) ∩ L2 (R) the Fourier transform and the inverse
Fourier transform will be defined by:

f̂(ξ) =

∫ ∞
−∞

f (x) e−iξxdx and f̌(x) =
1

2π

∫ ∞
−∞

f (ξ) eiξxdξ.

Lemma 1.1. [16] Let ϕ be the scaling function of MRA and let ψ be the

corresponding wavelet function. Then |ϕ̂(ξ)|2 =
∑+∞
j=0 |ψ̂(2jξ)|

2
, a.e ξ ∈ R.

In the following, We are going to introduce the wavelet set and its charac-
terization. The measurable set W ⊂ R, with finite measure, is a wavelet set

for L2 (R), if the inverse Fourier transform of ψ̂ = χW is an orthonrmal wavelet
for L2 (R).

Similarly Dai and Larson in [6] called this type of wavelets an s-elementary
wavelets ( The prefix “s” is for “set”.). Also, by Fang and Wang [12], a
measurable set W ⊂ R is a wavelet set if and only if

{
2jW ; j ∈ Z

}
and

{W + 2πm; m ∈ Z} are both partitions of R.

As a specific example, Hernandez et al. in [15] proved that Wc = [4π(c− 1),
2π(c−1))∪(2πc, 4πc] , where c ∈ (0, 1) is a 2−dilation wavelet set. Such that,
if c = 0.5 then, W0.5 = [−2π, −π) ∪ (π, 2π] is the Shannon wavelet set.

2. Operational matrices corresponding to the basis created
by wavelet sets

From now on, consider k as a fixed number unless it is mentioned as some-
thing else.

We put c ψ̂ = 1√
2π
χWc . Then it is a s-elementary wavelet and we define

c ψ̂mk (x) := 2
k
2√
2π c ψ̂

(
2kx− 2mπ

)
for k,m ∈ Z and c ∈ (0, 1).

Lemma 2.1. The system
{
c ψ̂mk ; m ∈ Z

}
is an orthonrmal basis for L2(R).

Proof. By definition, obviously

(1) c ψ̂mk (x) =



0, x < 4π(c−1)+2mπ
2k

,

2
k
2√
2π
, 4π(c−1)+2mπ

2k
≤ x < 2π(c−1)+2mπ

2k
,

0, 2π(c−1)+2mπ
2k

≤ x ≤ 2πc+2mπ
2k

,

2
k
2√
2π
, 2πc+2mπ

2k
< x ≤ 4πc+2mπ

2k
,

0, 4πc+2mπ
2k

< x,

and by (1) we have
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supp
(
c

ˆψmk

)
=
[

4π(c−1)+2mπ
2k

, 2π(c−1)+2mπ
2k

)
∪
(

2πc+2mπ
2k

, 4πc+2mπ
2k

]
,

and a simple calculation show that, for m 6= n and fix k,

λ
(

supp
(
c ψ̂mk

)
∩ supp

(
c ψ̂nk

))
= 0,

where λ is the Lebesgue measure. So we get:〈
c ψ̂mk, c ψ̂nk

〉
=

∫ +∞

−∞
c ψ̂mk(x)c ψ̂nk (x) dx =

{
0, if m 6= n,

1, if m = n.

Where 〈., .〉 is an inner product on L2(R). �

Also, if c ϕ̂ is the scaling function corresponding to c ψ̂, then by Lemma
1.1, c ϕ̂ = 1√

2π
χQc , with QC = [2π(c− 1), 2πc] is a basis for L2(R). So, if for

k,m ∈ Z and c ∈ (0, 1) we define c ϕ̂mk (x) := 2
k
2√
2π c ϕ̂

(
2kx− 2mπ

)
.

Lemma 2.2. The system {c ϕ̂mk ; m ∈ Z} is an orthonrmal basis for L2(R).

Proof. It is similarly to proof Lemma 2.1. �

Let (c)Ψ̂mk
be the vector of s-elementary wavelets, so we put:

(2) (c)Ψ̂mk
=
[
c ψ̂0k, c ψ̂1k, c ψ̂2k, ..., c ψ̂mk

]T
,

As a consequence of definition (2), we can obtain appropriate approximation
of functions in L2[0, 1], if we choose k large enough. Also using large k’s

one can cover the interval [0, 1] with the union of supports of cψ̂mk’s i. e.

V = ∪mi=0 supp(cψ̂ik) so that the measure of V \[0, 1] be smaller than every
ε > 0. Then for f ∈ L2[0, 1], we have:

(3) f '
m∑
i=0

dik c ψ̂ik = DT
(c)Ψ̂mk

,

where dik =
〈
f, c ψ̂ik

〉
, DT = [d0k, d1k, ..., dmk].

Also, the integration of entries cΨ̂mk can be expanded in terms of

(4)

∫ x

0
(c)Ψ̂mk

(t) dt = (c)P̂ (c)Ψ̂mk
(x),

where the (m+1)×(m+1) matrix (c)P̂ = [(c)p̂ij ] is called the operational matrix

of s-elementary wavelets and its entries are:

(c)p̂ij =

〈∫ (.)

0
cψ̂i−1,k(t)dt, cψ̂j−1,k

〉
.
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Similarly, if we put:

(5) (c)Φ̂mk = [c ϕ̂0k, c ϕ̂1k, c ϕ̂2k, ..., c ϕ̂mk]
T
,

then for f ∈ L2(R),

(6) f '
m∑
i=0

hik c ϕ̂ik = HT
(c)Φ̂mk,

where hik = 〈f, c ϕ̂ik〉 and HT = [h0k, h1k, ..., hmk].

Also the integration of entries (c)Φ̂mk(x) can be expanded in terms of

(7)

∫ x

0
(c)Φ̂mk(t) dt = (c)Q̂ (c)Φ̂mk(x),

where the (m+1)×(m+1) matrix (c)Q̂ = [(c)q̂ij ] is called the operational matrix

of s-elementary wavelets and its entries are:

(c)q̂ij =

〈∫ (.)

0
c ϕ̂i−1,k(t)dt, c ϕ̂j−1,k

〉
.

For a = π
2k

, the (m+1)×(m+1) operational matrix of s-elementary wavelets
are as the following,

(c)P̂
k

(m+1)
=

a a(2c2 − 2c+ 2) 2a ... 2a 2a
2a(c− c2) a a(2c2 − 2c+ 2) 2a ... 2a

0 2a(c− c2) a a(2c2 − 2c+ 2) ... 2a

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 · · · 2a(c− c2) a a(2c2 − 2c+ 2) 2a
0 0 · · · 0 2a(c− c2) a

,

(c)Q̂
k

(m+1)
=



a 2a · · · 2a 2a
0 a 2a · · · 2a
...

. . .
. . .

. . .
...

0 · · ·
. . . a 2a

0 0 · · · 0 a


(m+1)×(m+1)

.

In addition, let E = [e0, e1, ..., em]
T

is a vector and ω = 2
k
2√
2π

, we have:

(8) ET (c)Ψ̂mk (c)Ψ̂mk

T
= (c)Ψ̂mk

T
diag(ωE).

Lemma 2.3 establishes that how to find the operational matrix to solve the
Riemann–Liouville fractional integral equations of order α > 0.
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First, for the function u(x) and α > 0 we put:

(9) Iαu(x) =
1

Γ(α)

∫ x

0

(x− t)α−1
u(t)dt,

where Γ(.) is the Gamma function.

Lemma 2.3. Let (c)Ψ̂mk
is the vector of s-elementary wavelets. The fractional

integration of its entries can be expanded in terms of

(10) Iα(c)Ψ̂mk
= (c)P̂

(α),k

(c)Ψ̂mk
,

where the (m+1)×(m+1) matrix (c)P̂
(α),k

=
[

(c)p̂
(α),k
ij

]
is called the operational

matrix of s-elementary wavelets and its entries are given by:

(c)p̂
(α),k
ij =

〈
Iαcψ̂i−1,k, cψ̂j−1,k

〉
.

Proof. By (1) and (9) for (c)p̂
(α),k
1,1 , we have:

Iαcψ̂0k(x) = 1
Γ(α)

∫ x
0

(x− t)α−1
cψ̂0k(t)dt

=



2
k
2

αΓ(α)
√

2π
(x− 4π(c−1)

2k
)α, 4π(c−1)

2k
≤ x < 2π(c−1)

2k
,

−2
k
2

αΓ(α)
√

2π

(
(x− 2π(c−1)

2k
)α − (x− 4π(c−1)

2k
)α
)
, 2π(c−1)

2k
≤ x ≤ 2πc

2k
,

−2
k
2

αΓ(α)
√

2π

(
(x− 2π(c−1)

2k
)α − (x− 4π(c−1)

2k
)α − (x− 2πc

2k
)α
)
,

2πc
2k

< x ≤ 4πc
2k
,

−2
k
2

αΓ(α)
√

2π

(
(x− 2π(c−1)

2k
)α − (x− 4π(c−1)

2k
)α − (x− 2πc

2k
)α + (x− 4πc

2k
)α
)
,

4πc
2k

< x,

then we have:

(c)p̂
(α),k
1,1 =

〈
Iαcψ̂0k, cψ̂0k

〉
=
∫ 1

4π(c−1)

2k
Iαcψ̂0k(x) cψ̂0k(x) dx

=
∫ 2π(c−1)

2k

4π(c−1)

2k

Iαcψ̂0k(x) dx+
∫ 4πc

2k

2πc

2k

Iαcψ̂0k(x) dx

= −2k

α(α+1)Γ(α)2π

(
( 4πc

2k
− 2π(c−1)

2k
)α+1 − ( 4πc

2k
− 4π(c−1)

2k
)α+1 − ( 4πc

2k
− 2πc

2k
)α+1

)
−

−2k

α(α+1)Γ(α)2π

(
( 2πc

2k
− 2π(c−1)

2k
)α+1 − ( 2πc

2k
− 4π(c−1)

2k
)α+1

)
+
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2k

α(α+1)Γ(α)2π

(
2π(c−1)

2k
− 4π(c−1)

2k

)α+1

.

In the same way, the other entries obtained. �

For fix k = 5 and m = 5, α = 0.5 and c = 0.5 the operator matrix is given
by:

(0.5)P̂
(0.5),5

(6)
=


0.7197 0.4180 0.5510 0.3840 0.3230 0.2855
0.2447 0.7197 0.4180 0.5510 0.3840 0.3230

0 0.2447 0.7197 0.4180 0.5510 0.3840
0 0 0.2447 0.7197 0.4180 0.5510
0 0 0 0.2447 0.7197 0.4180
0 0 0 0 0.2447 0.7197


(6×6)

.

Note that the above method can be stated by basis vector (5).

Lemma 2.4. Let (c)Φ̂mk(x) is the vector of s-elementary wavelets. The frac-
tional integration of its entries can be expanded as follows,

(11) Iα(c)Φ̂mk(x) = (c)Q̂
(α),k

(c)Φ̂mk(x),

where the (m+1)×(m+1) matrix (c)Q̂
(α),k

=
[

(c)q̂
(α),k
ij

]
is called the operational

matrix of s-elementary wavelets and its entries are:

(c)q̂
(α),k
ij = 〈Iαcϕ̂i−1,k, cϕ̂j−1,k〉 .

Proof. The proof is clear. �

For fix k = 5, m = 5, α = 0.5 and c = 0.5 the operator matrix is given by:

(0.5)Q̂
(0.5),5

(6)
=


0.3333 0.2761 0.1798 0.1454 0.1255 0.1121

0 0.3333 0.2761 0.1798 0.1454 0.1255
0 0 0.3333 0.2761 0.1798 0.1454
0 0 0 0.3333 0.2761 0.1798
0 0 0 0 0.3333 0.2761
0 0 0 0 0 0.3333


(6×6)

.

3. Convergence analysis of s-elementary wavelets approxima-
tion

By (1),
[

2k−π
2π

]
+2 translations of c ψ̂ik cover the interval [0, 1] ( The symbol

“[ ]” is a bracket.). We put m =
[

2k−π
2π

]
+ 1. Then for f ∈ L2([0, 1]), the s-

elementary wavelets series of f is fmk =
∑m
i=0 dik c ψ̂ik, and the corresponding

error is defined as follows:

emk = f − fmk.
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It is clear that

em =

m∑
i=0

dik c ψ̂ik.

Suppose that f satisfies a Lipschitz condition on [0, 1], that is,

(12) there is a M > 0 such that for all x, y ∈ [0, 1], |f(x)− f(y)| ≤M |x−y|.

Now we will prove that em(x) tends to zero as k goes to infinity.

||em||2 =

〈
m∑
i=0

dik c ψ̂ik,

m∑
j=0

djk c ψ̂jk

〉

=

m∑
i=0

m∑
j=0

dikdjk

〈
c ψ̂ik, c ψ̂jk

〉
=

m∑
i=0

|dik|2 ,

and by using relation (3), we have:

dik =
〈
f, c ψ̂ik

〉
=

∫ 1

0

f(x)c ψ̂ik(x) dx

=
2
k
2

√
2π

(∫
I1

f(x) dx+

∫
I2

f(x) dx

)
.

Where I1 =
[

4π(c−1)+2nπ
2k

, 2π(c−1)+2nπ
2k

)
and I2 =

(
2πc+2nπ

2k
, 4πc+2nπ

2k

]
with

λ(I1) = 2π(1−c)
2k

and λ(I2) = 2πc
2k

. Now, from (1) and by using the mean value

theorem, there are xik1 ∈ I1 and xik2 ∈ I2, such that

dik =
2
k
2

√
2π

[
λ(I1)f(xik1 )− λ(I2)f(xik2 )

]
.

For c 6= 0.5, λ(I1) 6= λ(I2). Without loss of generality, suppose λ(I2) < λ(I1),
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there is I3 ⊂ I1 such that λ(I2) = λ(I3) and xik1 ∈ I3. So we have:

dik ≤
2
k
2

√
2π

[
λ(I2)f(xik1 )− λ(I2)f(xik2 )

]
=

2
k
2

√
2π
× 2πc

2k
[
f(xik1 )− f(xik2 )

]
≤ 2

k
2

√
2π
× 2πc

2k
×M

(
xik1 − xik2

)
≤ 2

k
2

√
2π
× 2πc

2k
×M × 2π

2k

=
2πc
√

2π

2
3k
2

×M,

therefore, |dik|2 ≤ 8π3c2

23k M2

||em||2 =

m∑
i=0

|dik|2

≤
m∑
i=0

8π3c2

23k
M2

= (m+ 1)
8π3c2

23k
M2

=

([
2k − π

2π

]
+ 2

)
8π3c2

23k
M2

≤ 2k
8π3c2

23k
M2

=
8π3c2

22k
M2,

By the above proof, we can obtain a bound for ||em||2 ,

||em|| ≤ N
(

1

22k

)
,

where N = 2πcM
√

2π.

4. Numerical solution of nonlinear differential equations and
fractional integral equations

In this section, we present an operational method for solving nonlinear Ric-
cati differential equations and Riemann–Liouville fractional integral equations
by using the s-elementary wavelets as an application of them.
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4.1. Numerical solution of nonlinear Riccati differential equations.
Consider the following nonlinear Riccati differential equation:

(13)

{
u
′
(t) + f(t)u2(t) + g(t)u(t) + h(t) = 0, f(t) 6= 0, 0 ≤ t ≤ a,
u(0) = α.

First, we express the functions u, f, g, h and α in terms of the basis (2) as
follows:
(14)

u ' XT
(c)Ψ̂mk

, f ' FT (c)Ψ̂mk
, g ' GT (c)Ψ̂mk

, h ' HT
(c)Ψ̂mk

, α ' DT
(c)Ψ̂mk

.

Moreover, we have:

(15)

∫ x

0

u
′
(t)dt = u(x)− u(0) = u(x)− α ' XT

(c)Ψ̂mk
(x)−DT

(c)Ψ̂mk
(x),

and so by substituting (14) and (15) in (13) and integrating, we get:∫ x

0

u
′
(t)dt+

∫ x

0

f(t)u2(t)dt+

∫ x

0

g(t)u(t)dt+

∫ x

0

h(t)dt = 0

XT
(c)Ψ̂mk

(x)−DT
(c)Ψ̂mk

(x) +

∫ x

0

FT (c)Ψ̂mk
(t)dt ω (XT )2

(c)Ψ̂mk
(t)dt+∫ x

0

GT (c)Ψ̂mk
(t) XT

(c)Ψ̂mk
(t)dt+

∫ x

0

HT
(c)Ψ̂mk

(t)dt = 0

(c)Ψ̂
T

mk
(x) X − (c)Ψ̂

T

mk
(x) D +

∫ x

0

FT (c)Ψ̂mk
(t) (c)Ψ̂

T

mk
(t) ωX2dt+∫ x

0

GT (c)Ψ̂mk
(t)(c)Ψ̂

T

mk
(t) Xdt+

∫ x

0
(c)Ψ̂

T

mk
(t) Hdt = 0,

by using relation (8), we have:

(c)Ψ̂
T

mk
(x) X − (c)Ψ̂

T

mk
(x) D +

∫ x

0
(c)Ψ̂

T

mk
(t) diag(ωF ) ωX2dt+∫ x

0
(c)Ψ̂

T

mk
(t) diag(ωG) Xdt+

∫ x

0
(c)Ψ̂

T

mk
(t) Hdt = 0,

and by substitute relation (4), we get:

(c)Ψ̂
T

mk
(x) X − (c)Ψ̂

T

mk
(x) D + (c)Ψ̂

T

mk
(x)

(
(c)P̂

k

(m+1)

)T
diag(ωF ) ωX2+

(c)Ψ̂
T

mk
(x)

(
(c)P̂

k

(m+1)

)T
diag(ωG) X + (c)Ψ̂

T

mk
(x)

(
(c)P̂

k

(m+1)

)T
H = 0,

then

X −D +
(

(c)P̂
k

(m+1)

)T
diag(ωF ) ωX2+
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(16)
(

(c)P̂
k

(m+1)

)T
diag(ωG) X +

(
(c)P̂

k

(m+1)

)T
H = 0.

We solve this nonlinear system by the Newton method and obtain u(t). Note
that the above method can be stated by basis vector (5).

Example 4.1. The nonlinear Riccati differential

(17)

{
u
′
(t) = 1 + u(t)− u2(t),

u(0) = α,

with the exact solution u(t) = 1+
√

2 tanh

(√
2 t+

log
(
−1+

√
2

1+
√

2

)
2

)
has been solved

in [1] by the methods ADM and VIM and also in [3] by the method HPM. Ac-
cording to Fig.1, the approximate solutions of all methods diverge outside the
interval [0, 1], while the approximate solution obtained with the latter method
converge to the exact solution at any desired interval with high accuracy and
is clearly seen in Fig.2, (a) and (b) when we used (c)Φ̂mk and (c)Ψ̂mk

in our
method, respectively.

Figure 1. The exact solution (solid) versus ADM (dot), VIM
(dot dash) and HPM (dash)

4.2. Numerical solution of the Riemann–Liouville fractional integral
solution of order α > 0. Consider the following Riemann–Liouville fractional
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Figure 2. Comparison of the approximate solution ( dashed

red line) by using (0.99)Φ̂m,8 and (0.8)Ψ̂m,8
with the exact solu-

tion (green line) (Example: 4.1).

integral solution of order α > 0 with the unknown function u,

(18) u(x) = f(x) +

∫ x

0

(x− t)α−1
u(t)dt.

For solution of the equation (18), we put f ' FT (c)Ψ̂mk
and u ' XT

(c)Ψ̂mk
.

Then from relations (9) and (10) we have:

XT
(c)Ψ̂mk

(x) = FT (c)Ψ̂mk
(x) +

∫ x

0

(x− t)α−1
XT

(c)Ψ̂mk
(t)dt,

XT
(c)Ψ̂mk

(x) = FT (c)Ψ̂mk
(x) + Γ(α)XT

(c)P̂
(α),k

(c)Ψ̂mk(x).

Then we have:

XT = FT + Γ(α)XT
(c)P̂

(α),k

XT − Γ(α)XT
(c)P̂

(α),k = FT

XT
(
I − Γ(α)(c)P̂

(α),k
)

= FT

(19) XT = FT
(
I − Γ(α)(c)P̂

(α),k
)−1

.

After finding the vector X, the approximate value of the function u(t) can be
obtained. Note that the above method can be stated by basis vector (5).
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Example 4.2. Consider the following Riemann-Liouville fractional integral
equation (Abel’s integral equation) [20, 27]:∫ x

0

f(t)√
x− t

dt = x,

the exact solution of which is f(x) = 2
π

√
x. In Table 1, we compare the error

of our approximations with the method in [27]. Fig. 3, (a) and (b) shows the
comparisons between the approximate solutions and the exact solutions, when
we have used (c)Φ̂mk and (c)Ψ̂mk

in our method, respectively.

Table 1. Comparison the error of the method presented in
[27] with our method (Example: 4.2).

Example [27] New method by New method by

(0.5)Ψ̂m,17
, ‖em‖2 (0.5)Φ̂m,17

, ‖em‖2
Example 4.2 4.68× 10−6 5.61× 10−7 2.08× 10−7

Figure 3. Comparison of the approximate solution (dashed

red line) using (0.5)Φ̂m,8 and (0.5)Ψ̂m,8
with the exact solution

(blue line) (Example: 4.2).
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Example 4.3. Consider the following Riemann-Liouville fractional integral
equation [27]:

f(x) +

∫ x

0

f(t)√
x− t

dt =
1

2
πx+

√
x, 0 ≤ x ≤ 1,

the exact solution of which is f(x) =
√
x. In Table 2, we compare our error

approximations with the method in [27]. Fig. 4, (a) and (b) shows the compar-
isons between the approximate solutions and the exact solutions, when we have
used (c)Φ̂mk and (c)Ψ̂mk

in our method, respectively.

Table 2. Comparison the error of the method presented in
[27] with our method (Example: 4.3).

Example [27] New method by New method by

(0.5)Ψ̂m,17
, ‖em‖2 (0.5)Φ̂m,17

, ‖em‖2
Example 4.3 1.13× 10−5 8.81× 10−7 3.27× 10−7

Figure 4. Comparison of the approximate solution (dashed

red line) (0.5)Φ̂m,8 and (0.5)Ψ̂m,8
with the exact solution (blue

line) (Example: 4.3).
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5. Conclusion

Using s-elementary wavelets method is very simple and easy to implement
and is able to approximate the solution of equations more accurate in a larger
interval compared with other discussed methods. Also, we use them to solve
the fractional Volterra integral equations which have a weakly singular kernel.
Numerical examples and their error analysis show that more accurate results are
obtained when finer resolutions are used. We hope the method to be generalized
to the case of fractional Fredholm integral equations and other differential
equations.
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