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Abstract. In this paper, a new generalized likelihood ratio (GLR) con-

trol chart based on sequentially probability ratio test (SPRT) is intro-
duced to monitor the directional mean of von Mises distribution. Differ-

ent window size of past samples are utilized to construct the GLR chart
statistic, and the performance of this chart in detecting a wide range of

parameter shift is evaluated. A simulation study is carried out to inves-

tigate the performance of the proposed control chart in comparison with
cumulative sum (CUSUM) control chart. To guide practitioners, a real

example is provided.
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1. Introduction

Von Mises (circular normal) distribution is the most common circular distri-
bution for modeling circular or angular data. As mentioned in [19], directional
data are applicable in many fields such as biology, geography, geology, geo-
physics, medicine, oceanography and meteorology. For example, a biologist
may be measuring the direction of flight of a bird, while a meteorologist may
be interested in wind directions in a specific region. A set of such observations
on directions is said to as directional data.

Suppose X has von Mises distribution, denoted by vM(µ, k). Its density
function has the following form:

(1) f(x;µ, k) =
1

2πI0(k)
ek cos(x−µ), 0 ≤ x < 2π, 0 ≤ µ < 2π, k ≥ 0,

where, I0(k) is the imaginary Bessel function of the first kind, obtained by

(2) I0(k) =
1

2π

∫ 2π

0

ek cos(x)dx =

∞∑
i=0

(
k

2
)2i(

1

i!
)2.
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The parameter k measures the concentration of the circle normal distribu-
tion, and 1

k is analogous to σ2 in the normal distribution in linear case. If
k = 0, then vM(µ, k) is circular uniform distribution, and when k is small,
the distribution is close to uniform. In fact, as k increases the distribution ap-
proaches a normal distribution with mean µ and variance 1/k. For large value
of k, the distribution vM(µ, k) becomes very concentrated about µ.

Fisher [5], Gadsden and Kanji [6], Laha and Gupta [12], Lombard [15],
Mardia [16,17], and Sengupta and Laha [20] worked on the circular distribution
and statistical analysis of angular data. In order to apply the sequentially
probability ratio test (SPRT) for testing the hypothesis H0 : µ = µ0 versusH1 :
µ = µ1, that µ1 6= µ0. Suppose a random sample of size n as X1, X2, ..., Xn,
with values x1, x2, ..., xn is taken sequentially from a vM(µ, k), which K > 0,
so the likelihood function is as the following;

(3) L(µ1, k, x1, x2, ..., xn) = (
1

2πI0(k)
)nek

∑n
i=1 cos(xi−µ1).

Then, the log-likelihood function is as:

(4) l(µ1, k, x1, x2, ..., xn) = −n log 2π + k

n∑
i=1

cos(xi − µ1)− n log I0(k).

Set C̄ = 1/n
∑n
i=1 cos(xi − µ1), S̄ = 1/n

∑n
i=1 sin(xi − µ1), and R̄ =√

C̄2 + S̄2, so

(5) l(µ1, k, x1, x2, ..., xn) = n{− log 2π + kR̄ cos(x̄− µ1)− log I0(k)}.

Let the concentration parameter is known or constant, then the maximum
value of cos(x) occurs at x = 0. Therefore, the maximum likelihood estimate
of µ1 is obtained as what follows;

(6) µ̂1 = x̄ =



tan−1( S̄
C̄

); C̄ > 0, S̄ ≥ 0,

tan−1( S̄
C̄

) + 2π; C̄ ≥ 0, S̄ < 0,

tan−1( S̄
C̄

) + π; C̄ < 0.
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The maximum likelihood ratio is obtained as:

ln = log
L(µ1, k, x1, x2, ..., xn)

L(µ0, k, x1, x2, ..., xn)
= l(µ1, k, x1, x2, ..., xn)− l(µ0, k, x1, x2, ..., xn)

= k

n∑
i=1

{
cos(xi − µ1)− cos(xi − µ0)

}
= 2k

n∑
i=1

sin
(
xi −

µ1 + µ0

2

)
sin
(µ1 − µ0

2

)
=

n∑
i=1

Zi.(7)

Let α and β are type I and II errors of hypothesis testing, respectively, and
A = (1−β)/α, and B = β/(1−α). Then, based on the critical values lnA and
lnB, there is a three decision problem as what follows;
• If

∑n
i=1 Zi ≤ lnB, then one cannot reject the null hypothesis H0.

• If
∑n
i=1 Zi ≥ lnA, then the null hypothesis H0 will be rejected.

• If lnA <
∑n
i=1 Zi < lnB, then one cannot come to a clear decision and may

take an additional sample and follow the procedure until making a decision.
Now, suppose that the concentration parameter is unknown. The maximum

likelihood estimation of k1 is obtained as:

(8) k̂1 = B−1(R̄),

where B(k) = I1(k)/I0(k), and I1(k) = 1/2π
∫ 2π

0
cos(x)ek cos(x)dx. Best and

Fisher [3] obtained an approximation of k̂1 as:

(9) k̂1
∼=



2R̄+ R̄3 + 5
6 R̄

5; R̄ < 0.53,

−0.4 + 1.39R̄+ 0.43
1−R̄ ; 0.53 ≤ R̄ ≤ 0.85,

1
R̄3−4R̄2+3R̄

; R̄ > 0.85.

Control charts are graphical and powerful tools in statistical quality control
(SQC) to monitor the process stability and detect a shift occurred in in-control
parameter to out-of-control value. The Generalized likelihood ratio control
chart is effective to detect a wide range of parameter shifts. This type of
control chart has not received as much attention in statistical quality control
application as Shewhart, CUSUM, and EWMA charts, but the preference of
the GLR control chart against other charts is estimation of process change
point and shift size. In application, unlike another charts, the GLR control
chart does not require specifying control chart parameters to design. In the
literature, there have been some researches developing the GLR control charts.
For more information, one can see the papers by Apley and Shi [2], Capizzi [4],
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Gombay [7], Han et al. [8], Hawkins and Zamba [10], KazemiNia et al. [11],
Lai [13], Lee et al. [14], Reynolds and Lou [18], Seigmund and Venkatraman [21],
and Willsky and Jones [22] worked on this subject. Furthermore, Abbasi Ganji
and Sadeghpour Gildeh [1] presents some references in this field.

Average run length (ARL) is one of the most popular performance metric
for control charts. It is the expected samples number from starting to shift
until the first signal for out of control situation. If the process operates in
control for some periods of time (0, t) and then, operates out-of-control at time
(t+ 1, N), the steady state ARL (SSARL) is used, and when t = 0, the initial
state ARL (ISARL) is applied. In this study, the ISARL is utilized to evaluate
and compare the control charts abilities.

In this paper, the SPRT method is used to construct the GLR control chart
for monitoring the variation of directional mean parameter. Also, the ability
of the proposed control chart over wide range of shift is evaluated. In addition,
the performance of this chart is compared with the CUSUM chart, developed
by Hawkins and Lombard [9]. Furthermore, the corresponding control limits
with different ISARL for design the GLR chart is proposed.

2. The GLR control chart for monitoring directional mean

Let the data x1, x2, ..., xN from von Mises distribution with µ and constant
or estimated concentration parameter k are available. The in-control value of
µ is µ0. Consider the hypothesis that a directional mean shift to some value
µ1 has occurred at time t∗ between samples t and t + 1, which t < N , so the
likelihood function at N th sample, based on equation (3), is as what follows;
(10)

L(µ1, k, x1, x2, ..., xN ) = (
1

2πI0(k)
)Nek

{∑t
i=1 cos(xi−µ0)+

∑N
i=t+1 cos(xi−µ1)

}
.

The maximum likelihood estimation of unknown parameter µ1 obtains from

equation (6) as C̄ =
∑N
i=t+1 cosxi/(N − t), and S̄ =

∑N
i=t+1 sinxi/(N −

t). When there has been no directional mean shift, the likelihood function at
sample N defined as

(11) L(µ0, k, x1, x2, ..., xN ) = (
1

2πI0(k)
)Nek

∑N
i=1 cos(xi−µ0).

Hence, the GLR control chart statistic is as:

RN = ln
max0<t≤N, 0<µ1<2π L(µ1, k, x1, x2, ..., xN )

L(µ0, k, x1, x2, ..., xN )
(12)

= max
0<t≤N

k

N∑
i=t+1

cos(xi − µ̂1,t)− cos(xi − µ0).

Assume g(t) = k
∑N
i=t+1 cos(xi − µ̂1,t) − cos(xi − µ0), so by utilizing the

window size m of past samples, the chart statistic has the form
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(13) RN,m =


max0<t≤N g(t); N ≤ m,

maxN−m<t≤N g(t); N > m.

The control chart signals if RN,m > hGLR, where hGLR is a predetermined
control limit chosen to achieve the desired ISARL from an in-control process.

Simulation schemes with 5000 iterations and total sample number N =
10000 is applied to search the best window size and control chart limit. The
values of ISARL for different window sizes are presented in Table 1 to demon-
strate the effect of window size on the sensitivity of the control chart in detect-
ing process shift, similar to the approach discussed in Reynolds and Lou [18].

Table 1. The ISARL values of the GLR control chart for
k = 3, and different values of window

m

1 10 20 35 50 100 200 300 400 900 1000

shift size [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

0 369.959 369.959 369.959 369.959 369.959 369.959 369.959 369.959 369.959 369.959 369.959

0.039 360.453 300.322 200.112 77.581 54.634 27.618 25.604 23.031 22.104 22.698 24.137

0.052 306.342 201.116 121.054 61.523 43.401 23.862 17.594 15.736 10.521 17.103 17.134

0.079 258.236 172.315 101.085 47.342 22.141 11.612 7.855 4.442 4.162 5.099 6.324

0.105 203.457 155.324 81.403 30.519 12.762 6.103 3.445 1.832 1.832 2.678 3.008

0.157 188.231 121.584 69.545 19.108 5.326 2.327 1.901 1.031 1.014 1.931 2.011

0.314 58.206 44.938 22.347 6.693 3.412 1.734 1.192 0.872 0.612 0.967 1.523

0.393 30.162 20.431 10.319 3.087 1.321 1.145 0.622 0.544 0.544 0.675 0.675

0.785 5.323 4.602 3.091 1.034 0.819 0.736 0.545 0.515 0.513 0.55 0.55

1.047 1.013 1.004 1.003 0.723 0.711 0.674 0.525 0.507 0.507 0.51 0.51

1.571 0.501 0.505 0.505 0.505 0.505 0.505 0.505 0.503 0.503 0.505 0.505

hGLR 4.982 5.423 5.657 5.712 5.745 5.789 6.231 6.443 6.612 6.653 6.773

Assume that the size of shift in directional mean is µ− µ0, whereas µ > µ0.
The control chart limits were adjusted to reach an in-control ARL for 370
(ARL0 = 370). From Table 1, it is found that the GLR control chart with
m = 1, has less sensitive performance in detecting the small shifts, while is
sensitive for detecting large shifts. Increasing the window size improves the
ability of this control chart in detecting the small and intermediate shifts. On
the other hand, selecting large value of window size is equivalent to the control
chart without window size. It can be seen that m = 400 is the best window
size for the GLR control chart to detect parameter shifts.

Control limits hGLR of the GLR control chart corresponds to some specified
in-control ARL are presented in Table 2. To find hGLR, the linear interpolation
method is used.
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Table 2. The control limit of GLR control chart according
to in control ARL and m = 400

k

0.1 0.5 1 2 3 4 5 6

ICARL [1] [1] [1] [2] [3] [4] [5] [6]

100 3.102 4.826 5.321 5.774 6.237 6.425 6.565 6.872

200 4.011 5.225 5.645 6.104 6.348 6.661 6.684 6.935

300 4.324 5.786 6.327 6.448 6.569 6.709 6.723 6.967

370 5.028 6.127 6.553 6.572 6.621 6.746 6.763 7.203

450 5.412 6.326 6.647 6.675 6.691 6.941 7.132 7.357

550 5.625 6.537 6.708 6.751 6.852 7.205 7.462 7.683

800 5.814 7.219 7.472 7.601 7.853 7.972 8.405 8.749

3. The CUSUM chart for monitoring directional mean

As mentioned in the paper by Hawkins and Lombard [9], when the con-
centration parameter k remains fixed and directional mean parameter µ may
change from its in-control value µ0 to some out of control value µ1, the CUSUM
chart statistic for detecting the occurred shift defined as

(14) CN = max
{

0, CN−1 + k
[

cos(xN − µ1)− cos(xN − µ0)
]}
,

or

(15) CN = max
{

0, CN−1 + 2k sin(xN −
µ1 + µ0

2
) sin(

µ1 − µ0

2
)
}
.

The CUSUM chart statistic signals at sample N, when CN > hC , where hC
is the upper control limit selected according to a specified in-control ARL.

To design the CUSUM chart, the value of µ1 must be specified as a tuning
parameter, even though the actual value of the shift is unknown. Table 3
presents the ISARL values of the CUSUM chart with some tuning parameters
(such as µ1 = π/80 = 0.039) to illustrate the performance of this chart for
detecting the parameter shifts. This table gives the control chart limit adjusted
to achieve an in-control ARL of 370.

From Table 3, it can be concluded that selecting the tuning parameter near to
the actual shift improves the ability of the CUSUM chart in detecting parameter
shift. For example, the best tuning parameter value to detect the occurred shift
size 1.57, is µ1 = π/2 = 1.57, and some of this type cases are bolded in Table 3.
Increasing the value of tuning parameter, decreases the ability of the chart in
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detecting the small shifts, and increases its ability in detecting the intermediate
and large shifts.

Table 3. ISARL values of the CUSUM chart for k = 3, and
some tuning parameter values

µ1

0.039 0.105 0.314 0.785 1.571

shift size [1] [2] [3] [4] [5]

0 369.959 369.959 369.959 369.959 369.959

0.039 21.692 27.452 89.84 2 222.416 295.096

0.052 10.701 12.365 62.807 187.329 282.465

0.079 3.924 4.232 22.735 118.392 225.489

0.105 1.945 1.868 8.564 81.784 196.894

0.157 1.139 1.01 1.984 38.097 142.052

0.314 0.718 0.65 0.592 3.164 45.471

0.393 0.668 0.614 0.561 0.893 25.019

0.785 0.581 0.554 0.523 0.514 0.708

1.047 0.565 0.542 0.517 0.508 0.511

1.571 0.555 0.535 0.513 0.505 0.504

hC 2.857 4.98 5.756 5.475 5.104

The best performance of the CUSUM chart is achieved when the tuning
parameter is equal to actual shift. In fact, this is disadvantage of the CUSUM
chart, because in practice area, the real shift is unknown. Based on the tables
1 and 3, the CUSUM chart with special tuning parameter (equal or next to
the shift size) in some cases has a better performance against the GLR control
chart, but the overall performance of the GLR control chart with m = 400 is
better than the CUSUM chart. In addition, despite the CUSUM chart, the
advantage of the GLR control chart is detecting the unknown shift without
determining the tuning parameter.

4. An application to real data

In the application, the proposed control chart can be used for monitoring
circular distributed data that arise whenever directions are measured, and usu-
ally expressed as angles, such as monitoring the transporting matter data from
one place to another in time (geological processes), wind speed and directions
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data (meteorological processes), bird orientation data in homing and migra-
tion (biological processes), the occurrence of earthquakes data in a region,
the longitude and latitude of each shock (geographical processes), a periodic
phenomenon data with known period (economical processes), sound waves or
molecular links data, experiments results on divers and swimmers under water
to simulate zero-gravity in space travel (physical processes), circadian rhythm
data of systolic blood pressure, and the number of deaths due to a disease or
the number of onsets of a disease in each month over years (medical processes),
and monitoring the airway of airplanes and rockets and astronomical processes.

Monitoring the wind speed and direction are important for predicting weather
patterns and global climate. Wind speed and direction have numerous impacts
on surface water. These parameters affect rates of evaporation, mixing of sur-
face waters, and the development of seiches and storm surges. Each of these
processes has dramatic effects on water quality and water level.

Wind direction is an instance of circular data that can vary over 360◦, and
can be represented as a point on a unit circle. Tables 4 and 5, and also Figure
1 present the wind direction taken hourly at Mesa Verde National Park (U.S
National Park Service, Air Resources Division, from 07/05/2018 to 07/12/2018-
https://www.nps.gov/subjects/air/current-data.htm?site=meve).

Figure 1. Wind direction taken hourly at Mesa Verde Na-
tional Park (U.S National Park Service, Air Resources Divi-
sion, from 07/05/2018 to 07/12/2018)

The proposed GLR control chart is utilized to monitor wind direction data
(with radian transformation). The in-control directional mean and concentra-
tion parameter are estimated as 2.786 and 0.221, respectively. The window
size (m = 400) and control limit hGLR = 6.1 are considered corresponding to
in-control ARL 370. Based on the Figure 2, the GLR control chart signals
the out-of-control wind direction at Thursday, July 12th. An estimation of
directional mean of this day is obtained as 0.109.
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Table 4. Wind direction taken hourly at Mesa Verde Na-
tional Park (U.S National Park Service, Air Resources Divi-
sion, from 07/05/2018 to 07/08/2018)

Thursday, July 5th Friday, July 6th Saturday, July 7th Sunday, July 8th

time degree time degree time degree time degree

11:00 PM 330 12:00 AM 221 11:00 PM 311 11:00 PM 343

10:00 PM 339 10:00 PM 180 10:00 PM 208 10:00 PM 343

9:00 PM 343 9:00 PM 183 9:00 PM 183 9:00 PM 342

8:00 PM 12 8:00 PM 169 8:00 PM 290 8:00 PM 346

7:00 PM 45 7:00 PM 158 7:00 PM 131 7:00 PM 349

6:00 PM 48 6:00 PM 172 6:00 PM 147 6:00 PM 3

5:00 PM 39 5:00 PM 167 5:00 PM 142 5:00 PM 49

4:00 PM 44 4:00 PM 165 4:00 PM 154 4:00 PM 70

3:00 PM 24 3:00 PM 169 3:00 PM 168 3:00 PM 101

2:00 PM 43 2:00 PM 171 2:00 PM 178 2:00 PM 95

1:00 PM 53 1:00 PM 162 1:00 PM 165 1:00 PM 96

12:00 PM 47 12:00 PM 179 12:00 PM 169 12:00 PM 98

11:00 AM 40 11:00 AM 190 11:00 AM 171 11:00 AM 118

10:00 AM 42 10:00 AM 189 10:00 AM 170 10:00 AM 168

9:00 AM 34 9:00 AM 197 9:00 AM 132 9:00 AM 143

8:00 AM 195 8:00 AM 81 8:00 AM 222

7:00 AM 209 7:00 AM 108 7:00 AM 314

6:00 AM 229 6:00 AM 80 6:00 AM 287

5:00 AM 244 5:00 AM 287 5:00 AM 280

4:00 AM 326 4:00 AM 279 4:00 AM 236

3:00 AM 195 3:00 AM 279 3:00 AM 209

2:00 AM 189 2:00 AM 236 2:00 AM 259

1:00 AM 181 1:00 AM 213 1:00 AM 210

12:00 AM 313 12:00 AM 222 12:00 AM 190
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Table 5. Wind direction taken hourly at Mesa Verde Na-
tional Park (U.S National Park Service, Air Resources Divi-
sion, from 07/09/2018 to 07/12/2018)

Monday, July 9th Tuesday, July 10th Wednesday, July 11th Thursday, July 12th

time degree time degree time degree time degree

12:00 AM 249 11:00 PM 216 11:00 PM 21 8:00 AM 22

10:00 PM 215 10:00 PM 198 10:00 PM 11 7:00 AM 20

9:00 PM 205 9:00 PM 183 9:00 PM 7 6:00 AM 17

8:00 PM 322 8:00 PM 169 8:00 PM 25 5:00 AM 18

7:00 PM 20 7:00 PM 161 7:00 PM 37 4:00 AM 345

6:00 PM 38 6:00 PM 158 6:00 PM 34 3:00 AM 342

5:00 PM 127 5:00 PM 162 5:00 PM 40 2:00 AM 307

4:00 PM 159 4:00 PM 158 4:00 PM 49 1:00 AM 38

3:00 PM 148 3:00 PM 160 3:00 PM 45 12:00 AM 18

2:00 PM 137 2:00 PM 169 2:00 PM 58

1:00 PM 129 1:00 PM 171 1:00 PM 116

12:00 PM 109 12:00 PM 162 12:00 PM 141

11:00 AM 140 11:00 AM 176 11:00 AM 143

10:00 AM 139 10:00 AM 180 10:00 AM 84

9:00 AM 51 9:00 AM 170 9:00 AM 52

8:00 AM 22 8:00 AM 249 8:00 AM 324

7:00 AM 19 7:00 AM 220 7:00 AM 302

6:00 AM 26 6:00 AM 294 6:00 AM 314

5:00 AM 16 5:00 AM 246 5:00 AM 287

4:00 AM 12 4:00 AM 239 4:00 AM 337

3:00 AM 0 3:00 AM 220 3:00 AM 245

2:00 AM 344 2:00 AM 207 2:00 AM 215

1:00 AM 343 1:00 AM 209 1:00 AM 210

12:00 AM 343 12:00 AM 236 12:00 AM 260

5. Conclusion

In this paper, the design of the GLR control chart for monitoring the di-
rectional mean parameter shifts in von Mises distributed process is studied,
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Figure 2. The GLR chart of wind direction with m = 400,
µ0 = 2.786, k = 0.221, and hGLR = 6.1

and the performance of the proposed chart is evaluated in view of Monte Carlo
simulations. Furthermore, the performance of the GLR control chart with
the CUSUM chart is compared based on ARL criterion. It is concluded that
the GLR control chart has better and more accurate performance than the
CUSUM chart in detecting parameter shifts. The determination of the control
limit and window size in the GLR control chart is conducted based on simu-
lations. Finally, the proposed control chart is used to monitor the directional
mean parameter shifts in wind direction process.
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