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Abstract. In this paper, a one-dimensional homogeneous fuzzy wave

equation is solved with an analytical procedure using the fuzzy D’Alembert
method by considering the generalized differentiability. Then, some def-

initions related to fuzzy numbers, theorems, and used lemmas are given.

Additionally, the physical interpretation and dependency domain of fuzzy
wave solutions are investigated by providing examples, where the fuzzy

wave solutions are in the form of fuzzy standing, traveling, and recursive

waves. The abstract of this article was presented in the 9th Iranian Joint
Congress on Fuzzy and Intelligent Systems (2022, March 2-4), Bam, Ker-

man, Iran.
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1. Introduction

Partial differential equations provide an important tool for modeling nu-
merous issues in various fields of engineering, physics, and systems involving
variables of space and time. A class of differential equations with hyperbolic
partial derivatives, which describe vibrations within objects and how waves
propagate inside them, is called telegraph equations. Telegraph equations ap-
pear in the study of the propagation of electrical signals in a transmission line
wire and wave phenomena. Transactions between heat transfer and diffusion
or interaction reaction of diffusion introduces several non-linear phenomena
in physics, chemistry, and biological processes [1–3, 9]. Wave equations and
a particular class of telegraph equations are much more useful for modeling
reaction propagation in the branches of the mentioned sciences than conven-
tional diffusion equations. For example, biologists encounter such equations
when studying the pulsatile blood flow in the arteries and the one-dimensional
random movement of insects along with a rivet [24]. Porous and parallel flows
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of Maxwell viscous liquids [11] are only a few small examples that can be mod-
eled with telegraph equations [10,18,19]. Fuzzy sets theory is a natural way of
detecting dynamic systems under uncertainty and processing ambiguous infor-
mation in mathematical models that are used for extensive real-time problems
in science. In 1965, professor Lotfizade first introduced this theory to model
ambiguous concepts in the real world [12]. To introduce fuzzy partial differ-
ential equations, we need to define the fuzzy derivative. The fuzzy derivative
was initially introduced by Change and Zadeh [25], followed by Dubois and
Prade [8], Puri and Ralescu [16], and Goetschel and Voxman [21] used this def-
inition. For the first time, the concept of differential equations was formulated
in a fuzzy environment by Kaleva [17]. In recent years, several authors have
presented a wide range of results in both theoretical and applied fields. The
pioneers in this theory typically followed the methods of Hukuhara derivation.
But this method had a fundamental disadvantage, the length of support of
the final solution increased indefinitely and this objection made this method
fail to reflect the behavior of the system. This problem was corrected by the
generalized derivative definition, based on the generalized difference, defined
by Bede and Gal [5], then a complete theory of fuzzy differential equations was
presented. After that, Stefanini described the generalized Hukuhara definitions
in 2010 [13], and the generalized derivation, based on the generalized Hukuhara
derivative, is redefined in 2013 [6]. Fuzzy partial differential equations often
arise from the formulation of the fundamental laws of nature or mathematical
analysis of uncertainty in applied mathematics and engineering sciences. Most
laws of nature and physics, Newtonian motion laws and equations such as tele-
graph, heat, wave, etc. are in the form of fuzzy partial differential equations
in uncertainty. These laws express the phenomena of physics by connecting
fuzzy space and fuzzy derivatives with time. Professor Allahviranloo et al.
presented an analytical method for solving the fuzzy heat equation under gen-
eralized Hukuhara derivation (gH-derivation) [26]. In this regard, we have
solved the one-dimensional fuzzy wave equation in electromagnetic and tele-
graph equations using an analytical technique under generalized derivatives
(gH-derivatives). Besides, the physical interpretations of the ambiguous wave
responses are presented by giving examples, in which the solutions are shown
as the fuzzy standing wave, fuzzy traveling wave, and fuzzy backward wave.
Here, we present some basic concepts of fuzzy theory, including fuzzy sets, fuzzy
numbers, fuzzy new definitions, gH-derivatives, and related concepts used in
this study. This paper aims to attain a solution for a fuzzy wave equation under
generalized partial Hukuhara differentiability by the fuzzy D’Alembert method.
To find the solution to some properties for generalized partial Hukuhara differ-
entiability are provided. In Section 2, we introduce the basic concept of gen-
eralized Hukuhara derivative. Also, multi-variables calculus for fuzzy function
and some significant properties of this concept is discussed. In Section 3, the
physical interpretation of fuzzy D’Alembert solutions for the fuzzy wave under
generalized Hukuhara derivative is defined. In Section 4, the fuzzy D’Alembert
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solutions for the fuzzy wave on an infinite string under the generalized deriv-
ative is studied. In Section 5, the solution method and domain of dependence
are explored. In Section 6, the conclusion is given, and the results are shown
in some examples. The abstract of this article was presented in [15].

2. Preliminaries

The basic definitions and theorems that we need in this article are consid-
ered. In addition, some new concepts are proved here. We denote RF , the set
of fuzzy numbers, that is, normal, fuzzy convex, upper semi-continuous, and
compactly supported fuzzy sets that are defined over the real line. Let ũ ∈ RF
be a fuzzy number; for 0 < r ≤ 1, the r-level set (or r-cut) of ũ is defined by
[ũ]r = {x ∈ Rn|ũ(x) ≥ r}, and for r = 0 is defined by the closure of support
[ũ]0 = cl{x ∈ Rn|ũ(x) > 0}. We denote [ũ]r = [u−r , u

+
r ], so the r-level set [ũ]r

is a closed interval for all r ∈ [0, 1]. If ũ, ṽ ∈ RF and λ ∈ R, the addition and
scalar multiplication are defined as having the r-levels set of [ũ+ṽ]r = [ũ]r+[ṽ]r
and [λũ]r = λ[ũ]r, respectively. The triangular fuzzy number ũ ∈ RF is defined
as an ordered triple A = (a1, a2, a3) with a1 ≤ a2 ≤ a3.

Definition 2.1. [30] We denote by KC the family of all bounded closed in-
tervals in R, i.e.,

KC =
{
A = [a, a]/a, a ∈ R and a ≤ a

}
.

Definition 2.2. [30] Suppose that A = [a, a] ∈ KC . Then interval length of
A is showed by len(A) and is defined as len(A) = a− a.

In the bellow statement, the properties of interval length are expressed.

Proposition 2.3. [30] Let a ∈ R, and A,B ∈ KC . Then below relations are
established for interval length:

(1) len(A) ≥ 0,
(2) len(A+B) = len(A) + len(B),
(3) len(αA) = |a| len(A),
(4) if A�H B exists, then len(A�H B) = |len(A)− len(B)|.

Definition 2.4. [22] The generalized Hukuhara difference of two fuzzy num-
bers A,B ∈ RF is the fuzzy number C, (if it exists), such that

A	gH B = C ⇐⇒

{
(i) A = B + C,

or (ii) B = A+ (−1)C,

then

A�gH B = C ⇐⇒{
(i) C = (a1 − b1, a2 − b2, a3 − b3)

or (ii) C = (a3 − b3, a2 − b2, a1 − b1)



94 M. Miri Karbasaki, M. R. Balooch shahryari and O. Sedaghatfar

Provided that C is a triangular fuzzy number [5, 7]. The results obtained in
[7] show that if A,B ∈ RF , then A	gH B always exists in RF .

Definition 2.5. [6] The generalized difference (or g-difference for short) of
two fuzzy numbers ũ, ṽ ∈ RF is defined by its level-sets as

(1) [ũ	g ṽ]r = cl
(
conv

⋃
β≥r

[ũ]β 	gH [ṽ]β

)
for all r ∈ [0, 1],

where the gH-difference 	gH is with interval operands [ũ]β and [ṽ]β .

Proposition 2.6. [6] The g-difference (1) is given by the expression

[ũ	g ṽ]r =
[

inf
β≥r

min{ũ−β − ṽ
−
β , ũ

+
β − ṽ

+
β },

sup
β≥r

max{ũ−β − ṽ
−
β , ũ

+
β − ṽ

+
β }
]
.

Definition 2.7. [28] The Hausdorff distance between fuzzy numbers is given
by D : RF × RF −→ R+

⋃
{0} as in [18]

D(ũ, ṽ) = sup
r∈[0,1]

d
(

[ũ]r, [ṽ]r
)

=

sup
r∈[0,1]

max{|u−(r)− v−(r)|, |u+(r)− v+(r)|},

where d is the Hausdorff metric. The metric space (RF , D) is complete, sepa-
rable and locally compact and the following properties from [18] for metric D
are valid:

(1) D(ũ⊕ w̃, ṽ ⊕ w̃) = D(ũ, ṽ), ∀ ũ, ṽ ∈ RF ;
(2) D(λũ, λṽ) = |λ|D(ũ, ṽ), ∀λ ∈ R, ũ, ṽ ∈ RF ;
(3) D(ũ⊕ ṽ, w̃ ⊕ z̃) ≤ D(ũ, w̃) +D(ṽ, z̃);
∀ ũ, ṽ, w̃, z̃ ∈ RF ;

(4) D(ũ	 ṽ, w̃ 	 z̃) ≤ D(ũ, ṽ) +D(ṽ, z̃), as long as ũ	 ṽ, w̃ 	 z̃ exist and
ũ, ṽ, w̃, z̃ ∈ RF ,

where �H is the Hukuhara difference (H-difference), it means that w̃�H ṽ = ũ
if and only if ũ⊕ ṽ = w̃.

Definition 2.8. A fuzzy number ũ is called a singleton fuzzy number if the
membership degree of ũ is one and the membership degrees for the other mem-
bers are zero. In other words

ũ =

{
1, x = u,

0, x 6= u,

especially

0̃ = χ{0} =

{
1, x = 0,

0, x 6= 0.
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Proposition 2.9. [22] Let λ1 and λ2 are two real constants such that λ1, λ2 ≥
0 (or λ1, λ2 ≤ 0 ). If f̃(t) is a triangular fuzzy function, then

λ1f̃(t)�gH λ2f̃(t) = (λ1 − λ2)f̃(t).

Definition 2.10. [4] The generalized Hukuhara derivative of a fuzzy-valued

function f̃ : (a, b) −→ RF at x0 ∈ (a, b) is defined as

(2) f̃ ′gH(x0) = lim
h→0

f̃(x0 + h)	gH f̃(x0)

h
,

if f̃ ′gH(x0) ∈ RF satisfying (2) exists, we say that f̃ is generalized Hukuhara

differentiable (gH-differentiable for short) at x0. In addition, we can say that

f̃(x)
• [(i)− gH]-differentiable function if and only if for all x ∈ (a, b)

(3) f̃ ′i.gH(x) =
(
f̃ ′1(x), f̃ ′2(x), f̃ ′3(x)

)
,

defines a triangular fuzzy number.
• [(ii)− gH]-differentiable function if and only if for all x ∈ (a, b)

(4) f̃ ′ii.gH(x) =
(
f̃ ′3(x), f̃ ′2(x), f̃ ′1(x)

)
,

is a triangular fuzzy number.

Definition 2.11. [14] We say that a point x0 ∈ (a, b) is a switching point

for differentiability of f̃ , if in any neighborhood V of x0 there exist points
x1 < x0 < x2 such that
type(I) at x1, (3) holds while (4) does not hold and at x2, (4) holds and (3)
does not hold, or
type(II) at x1, (4) holds while (3) does not hold and at x2, (3) holds and (4)
does not hold.

Definition 2.12. A fuzzy-valued function f̃ of two variables is a rule that
assigns to each ordered pair of real numbers (x, t), in a set D, a unique fuzzy

number denoted by f̃(x, t). The set D is the domain of f̃ and its range is the

set of values that f̃ takes on, that is, {f̃(x, t)|(x, t) ∈ D}.

Definition 2.13. [26] Let (x0, t0) ∈ D. Then the first generalized Hukuhara
partial derivative ([gH − p]-derivative for short) of a fuzzy-valued function

f̃(x, t) : I −→ RF at (x0, t0), w.r.t. x and t are the functions
∂f̃gH
∂x (x0, t0) and

∂f̃gH
∂t (x0, t0) given by

∂f̃gH
∂x

(x0, t0) = lim
h−→0

f̃(x0 + h, t0)	gH f̃(x0, t0)

h
,

and
∂f̃gH
∂t

(x0, t0) = lim
k−→0

f̃(x0, t0 + k)	gH f̃(x0, t0)

k
,

provided that
∂f̃gH
∂x (x0, t0) and

∂f̃gH
∂t (x0, t0) ∈ RF .
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Definition 2.14. [27] A triangular fuzzy function ũ(x, t) : D j R2 → RF ,
without any switching point on D, is called
• [(i)− gH]-differentiable w.r.t. x at (x0, t0) if

∂ũi.gH
∂x

(x0, t0) =
(∂ũ1
∂x

(x0, t0),
∂ũ2
∂x

(x0, t0),
∂ũ3
∂x

(x0, t0)
)
,

• [(ii)− gH]-differentiable w.r.t. x at (x0, t0) if

∂ũii.gH
∂x

(x0, t0) =
(∂ũ3
∂x

(x0, t0),
∂ũ2
∂x

(x0, t0),
∂ũ1
∂x

(x0, t0)
)
.

Moreover, if
∂ũgH

∂x is [gH − p]-differentiable at (x0, t0) w.r.t. x without any
switching point on D and, if the type of [gH−p]-differentiability of both ũ(x, t)

and
∂ũgH

∂x are the same, then
∂ũgH

∂x is [(i)− p]-differentiable w.r.t. x and

∂2ũi.gH
∂x2

(x0, t0) =
(∂2ũ1
∂x2

(x0, t0),
∂2ũ2
∂x2

(x0, t0),
∂2ũ3
∂x2

(x0, t0)
)
,

if the type of [gH − p]-differentiability of both ũ(x, t) and
∂ũgH

∂x are different,

then
∂ũgH

∂x is [(ii)− p]-differentiable w.r.t. x and

∂2ũii.gH
∂x2

(x0, t0) =
(∂2ũ3
∂x2

(x0, t0),
∂2ũ2
∂x2

(x0, t0),
∂2ũ1
∂x2

(x0, t0)
)
.

Proposition 2.15. [7] That is [(i)−gH]-derivative and [(ii)−gH]-derivative

are additive operators, i.e., if f̃ and g̃ are both [(i)− gH]-differentiable or both
[(ii)− gH]-differentiable then

(i) (f̃ ⊕ g̃)′(i)−gH = f̃ ′(i)−gH ⊕ g̃
′
(i)−gH ,

(ii) (f̃ ⊕ g̃)′(ii)−gH = f̃ ′(ii)−gH ⊕ g̃
′
(ii)−gH .

Remark 2.16. [7] From Proposition 2.15, it follows that [(i) − gH]-derivative
and [(ii)− gH]-derivative are semi-linear operators (that is, additive homoge-
neous). They are not linear in general since we have

(kf̃gH)′(i)−gH = k(f̃gH)′(ii)−gH ,

if k < 0.

Lemma 2.17. [22] Consider g : [a, b] → I ⊆ R is real and differentiable

function at x, and f̃ : I → RF is gH-differentiable at the point g(x) without

any switching points. Then type of gH-differentiability for f̃(x) and f̃(g(x)) is
the same if

(
f̃(g(x))

)′
=


If g(x) is an increasing function, then

g′(x)� f̃ ′gH(g(x)),

If g(x) is an increasing function, then

�gH(−1)g′(x)� f̃ ′gH(g(x)).
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Theorem 2.18. [23] Let I ⊆ R be an open interval and x ∈ I. Let f̃ : I → RF
and g : I −→ R+. Suppose that g(x) is differentiable at x and the fuzzy function

f̃(x) is gH-differentiable at x. Then

(f̃ � g)′gH(x) = f̃ ′gH(x)� g(x)⊕ f̃(x)� g′(x).

Theorem 2.19. [23] Let I ⊆ R be an open interval and x ∈ I. Let f̃ , g̃ : I →
RF are gH-differentiable with the same type of gH-differentiability at x. Then
f̃(x)�gH g̃(x) is gH-differentiable, and

(f̃ �gH g̃)′(x) = f̃ ′gH(x)�gH g̃′gH(x).

Theorem 2.20. [23] Let I be an open interval in R. Consider g : I → ζ :=

g(I) ⊆ R is differentiable at x, and f̃ : ζ → RF is gH-differentiable at the point
g(x). Then we have the following conditions:
If g′(x) > 0

(f̃og)i−gH(x) = g′(x)� f̃ ′i−gH(g(x)),

(f̃og)ii−gH(x) = g′(x)� f̃ ′ii−gH(g(x)),

If g′(x) < 0

(f̃og)i−gH(x) = g′(x)� f̃ ′ii−gH(g(x)),

(f̃og)ii−gH(x) = g′(x)� f̃ ′i−gH(g(x)).

Theorem 2.21. [23] (The fuzzy Chain rule)

Let ũ := Ũ(ξ(t), η(t)) is a fuzzy-valued function, where ξ(t) and η(t) are differ-

entiable real-valued functions of t. Then, Ũ is the gH-differentiable function
of t, therefore we have

∂ũ

∂t
=
∂ŨgH
∂ξ

� ∂ξ

∂t
⊕ ∂ŨgH

∂η
� ∂η

∂t
.

Theorem 2.22. [22] Let ũ(x, t) = Ũ(ξ) be a fuzzy-valued function, where

ξ(x, t) is a differentiable real-valued function of x and t. Then, Ũ is the gH-
differentiable function of ξ, and we have

∂ũ

∂t
=
∂ŨgH
∂ξ

� ∂ξ

∂t
.

Also

(1). If ∂ξ
∂t > 0 and Ũ(ξ) is [(i)− gH]-differentiable, then ũ(x, t) is [(i)− p]-

differentiable w.r.t. t.
Ũ(ξ) is [(ii)− gH]-differentiable then ũ(x, t) is [(ii)− p]-differentiable
w.r.t. t.

(2). If ∂ξ
∂t < 0 and U(ξ) is [(i)− gH]-differentiable, then ũ(x, t) is [(ii)− p]-

differentiable w.r.t. t.
Ũ(ξ) is [(ii) − gH]-differentiable then ũ(x, t) is [(i) − p]-differentiable
w.r.t. t.
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Theorem 2.23. [22] Let ũ(x, t) := Ũ(ξ(x, t), η(x, t)) and ũ(x, t) is a [gH−p]-
differentiable function such that the second-order [(gH)−p]-derivatives w.r.t. t
and x exists. Then

∂2ũgH
∂t2

=(∂2ŨgH
∂ξ2

� ∂ξ

∂t
⊕ ∂

∂η

(∂ŨgH
∂ξ

)
� ∂η

∂t

)
� ∂ξ

∂t

⊕ ∂Ũ

∂ξ
� ∂2ξ

∂t2
⊕
( ∂
∂ξ

( ∂
U gH

∂η
)
� ∂ξ

∂t
⊕ ∂2ŨgH

∂η2

� ∂η

∂t

)
� ∂η

∂t
⊕ ∂Ũ

∂η
� ∂2η

∂t2
,

and
∂2ũgH
∂x2

=(∂2ŨgH
∂ξ2

� ∂ξ

∂x
⊕ ∂

∂η

(∂ŨgH
∂ξ

)
� ∂η

∂x

)
� ∂ξ

∂x

⊕ ∂Ũ

∂ξ
� ∂2ξ

∂x2
⊕
( ∂
∂ξ

(∂ŨgH
∂η

)
� ∂ξ

∂x
⊕ ∂2ŨgH

∂η2

� ∂η

∂x

)
� ∂η

∂x
⊕ ∂Ũ

∂η
� ∂2η

∂x2
.

Definition 2.24. [29] Let f̃ : [a, b] −→ RF . We say that f̃(x) is fuzzy
Riemann integrable in I ∈ RF if for any ε > 0, there exists δ > 0 such that for
any division P = {[u, v]; ξ} with the norms ∆(P ) < δ, we have

D
( ∗∑

p

(v − u)� f̃(ξ), I
)
< ε,

where
∑∗
p denotes the fuzzy summation. We choose to write I :=

∫ b
a
f̃(x)dx.

Definition 2.25. [4] Let f̃ : (a, b)→ RF is a triangular fuzzy-valued function
and x0 ∈ (a, b). Then∫ b

a

f̃(x)dx =
(∫ b

a

f̃1(x)dx,

∫ b

a

f̃2(x)dx,

∫ b

a

f̃3(x)dx
)
.

Lemma 2.26. [23]
∫ a
b
ũ(x, t)dx = �H

∫ b
a
ũ(x, t)dx, where �H denotes the

H-difference and ũ(x, t) be a fuzzy-valued function.

Lemma 2.27. [20] If f̃ : (a, b)→ RF is integrable and
c ∈ (a, b), then ∫ c

a

f̃(t)dt⊕
∫ b

c

f̃(t) =

∫ b

a

f̃(t)dt.
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Theorem 2.28. [7] If f̃ is gH-differentiable with no switching point in the
interval [a, b], then we have∫ b

a

f̃ ′gH(x)dx = f̃(b)	gH f̃(a).

Lemma 2.29. [22] If f̃ : [a, b] → RF is a triangular fuzzy function with no
switching point, then we have

(1). If f̃(x) is [i− gH]-differentiable, then∫ b

a

f̃ ′gH(x)dx = f̃(b)	gH f̃(a).

(2). If f̃(x) is [(ii)− gH]-differentiable, then∫ b

a

f̃ ′gH(x)dx = (−1)f̃(a)	gH (−1)f̃(b).

Lemma 2.30. [23] If f̃(x, y) and g̃(x, y) are the fuzzy-valued functions, then
we have ∫

f̃(x, y)dx�gH

∫
g̃(x, y)dx =

∫ (
f̃(x, y)�gH g̃(x, y)

)
dx.

3. The physical interpretation of fuzzy D’Alembert solutions
for the fuzzy wave under generalized Hukuhara derivative

Consider that we have a linear fuzzy partial differential equation (FPDE) in
the following form

(5) F̃
(
ũ,
∂ũgH
∂t

,
∂ũgH
∂x

,
∂2ũgH
∂t2

,
∂2ũgH
∂x2

)
= 0̃,

where ũ = ũ(x, t) is an unknown fuzzy function, F̃ is a polynomial in ũ and its
generalized Hukuhara derivatives.
With the change of variable, we can define the new coordinates

ξ(x, t) = x− ct, η(x, t) = x+ ct,(6)

and let

ũ(x, t) = Ũ(ξ, η),

where c ∈ R+ is an arbitrary constant generally termed the wave velocity. In
this paper, we consider c > 0, which means the profile Ũ(x − ct) at a later
time t is moving to the positive x-direction by an amount ct with speed c and
Ũ(x+ ct) at a later time, t is moving to the negative x-direction by an amount
ct with speed c. By differentiating (6) w.r.t. x and t yields, we have

∂ξ

∂t
= −c, ∂η

∂t
= c,

∂ξ

∂x
= 1,

∂η

∂x
= 1,

∂2ξ

∂x2
=
∂2η

∂x2
=
∂2ξ

∂t2
=
∂2η

∂t2
= 0.
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Substituting the above equation in (5) and considering the type of gH-differentiability

for Ũ and by using Theorems 2.21 and 2.23, we have

F̃
(
Ũ , (−1)c� ∂Ũii.gH

∂ξ
⊕ c� ∂Ũi.gH

∂η
,
∂Ũi.gH
∂ξ

⊕ ∂i.gH Ũ

∂η
, c2 � ∂2Ũi.gH

∂ξ2
⊕ (−1)c2 � ∂

∂η

(∂Ũii.gH
∂ξ

)
⊕ (−1)c2 � ∂

∂ξ

(∂Ũi.gH
∂η

)
⊕ c2 � ∂2Ũi.gH

∂η2
,
∂2Ũi.gH
∂ξ2

⊕ ∂

∂η

(∂Ũi.gH
∂ξ

)
⊕ ∂

∂ξ

(∂Ũi.gH
∂η

)
⊕ ∂2Ũi.gH

∂η2

)
= 0̃,

and

F
(
Ũ , (−1)c� ∂Ũi.gH

∂ξ
⊕ c� ∂Ũii.gH

∂η
,
∂Ũii.gH
∂ξ

⊕ ∂Ũii.gH
∂η

, c2 � ∂2Ũii.gH
∂ξ2

⊕ (−1)c2 � ∂

∂η

( ∂
U i.gH

∂ξ
)

⊕ (−1)c2 � ∂

∂ξ

(∂Ũii.gH
∂η

)
⊕ c2 � ∂2Ũii.gH

∂η2
,
∂2Ũii.gH
∂ξ2

⊕ ∂

∂η

(∂Ũii.gH
∂ξ

)
⊕ ∂

∂ξ

(∂Ũii.gH
∂η

)
⊕ ∂2Ũii.gH

∂η2

)
= 0̃.

Let us consider the homogeneous one-dimensional fuzzy wave equation

FPDE :
∂2ũgH(x, t)

∂t2
�gH c2 � ∂2ũgH(x, t)

∂x2
= 0̃,

−∞ < x <∞, t > 0,(7)

(8) FICs :

{
ũ(x, 0) = γ̃ � f(x) = f̃(x),
∂gH
∂t ũ(x, 0) = β̃ � g(x) = g̃(x),

where γ̃, β̃ ∈ RF and f, g : R −→ R, f of twice and g is once continuously

differentiable and c ∈ (0,+∞), c2 =
τ

ρ
is the coefficient constant where the

tension τ is force per unit length and ρ is the mass of the undeflected mem-
brane per unit area. Now by considering the type of [(gH)−p]-differentiability

for Ũ(ξ, η), the following cases are obtained.

Case(i). Let ũ(x, t) and ∂ũ
∂t are [(i)−p]-differentiable fuzzy functions w.r.t. x, t

then
• If Ũ(ξ, η) is [(i)−gH]-differentiable w.r.t. t and ∂Ũ

∂ξ is [(ii)−gH]-differentiable

w.r.t. t and ∂Ũ
∂η is [(i) − gH]-differentiable w.r.t. t fuzzy function without any

switching points then
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∂ũi.gH
∂t

=
∂Ũii.gH
∂ξ

� ∂ξ

∂t
⊕ ∂Ũi.gH

∂η
� ∂η

∂t
= (−1)c� ∂Ũii.gH

∂ξ
⊕ c� ∂Ũi.gH

∂η
.

• If Ũ(ξ, η) is [(i)− gH]-differentiable w.r.t. x and ∂Ũ
∂ξ and ∂Ũ

∂η are [(i)− gH]-

differentiable w.r.t. x fuzzy functions, then

∂ũi.gH
∂x

=
∂Ũi.gH
∂ξ

� ∂ξ

∂x
⊕ ∂Ũi.gH

∂η
� ∂η

∂x
=
∂Ũi.gH
∂ξ

⊕ ∂Ũi.gH
∂η

.

• If Ũ(ξ, η) is [(i)− gH]-differentiable w.r.t. t and ∂2Ũ
∂ξ2 and ∂2Ũ

∂η2 are [(i)− gH]-

differentiable w.r.t. t fuzzy functions, then

∂2ũi.gH
∂t2

=c2 � ∂2Ũi.gH
∂ξ2

⊕ (−1)c2 � ∂

∂η

(∂Ũii.gH
∂ξ

)
⊕ (−1)c2 � ∂

∂ξ

(∂Ũi.gH
∂η

)
⊕ c2 � ∂2Ũi.gH

∂η2
.(9)

• If Ũ(ξ, η) is [(i)−gH]-differentiable w.r.t. x and ∂2Ũ
∂ξ2 and ∂2Ũ

∂η2 are [(i)−gH]-

differentiable w.r.t. x fuzzy functions, then

∂2ũi.gH
∂x2

=
∂2Ũi.gH
∂ξ2

⊕ ∂

∂η

(∂Ũi.gH
∂ξ

)
⊕ ∂

∂ξ

(∂Ũi.gH
∂η

)
⊕ ∂2Ũi.gH

∂η2
.(10)

Substituting derivatives (9) and (10) into the FPDE (7) yields therefore

−2c2 � ∂

∂ξ

(∂Ũi.gH
∂η

(ξ, η)
)

= 0̃.

By using Definition 2.8, we have

−2c2 � ∂

∂ξ

(∂Ũi.gH
∂η

(ξ, η)
)

= 0,(11)

integrating the form (11) w.r.t. ξ gives∫ ξ

0

∂

∂ξ

(∂i.gH Ũ
∂η

)
(s, η)ds = 0,

by using Lemma 2.29, we have

(12)
∂Ũ

∂η
(ξ, η)�gH

∂Ũ

∂η
(0, η) = 0,

by integrating the form (12) w.r.t. η gives∫ η

0

∂Ũ

∂η
(ξ, l)dl �gH

∫ η

0

∂Ũ

∂η
(0, l)dl = 0,

by using Lemma 2.29, we have(
Ũ(ξ, η)�gH Ũ(ξ, 0)

)
�gH

(
Ũ(0, η)�gH Ũ(0, 0)

)
= 0,
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where U(0, 0) = 0·. Therefore, we have

Ũ(ξ, η)�gH
(
Ũ(ξ, 0)⊕ Ũ(0, η)

)
= 0.

By Definition 2.4, we have

Ũ(ξ, η) = ψ̃(ξ)⊕ φ̃(η).

Substituting for ξ and η from (6) and recalling that ũ(x, t) = Ũ(ξ, η) gives

ũ(x, t) = Ũ(ξ, η) = ψ̃(x− ct)⊕ φ̃(x+ ct).

The forward wave is the function ψ̃(x − ct) which represents a traveling wave
in the positive x-direction with scaled velocity c. In physical coordinates, the
function depends on x− ct and the speed of the wave is c =

√
τ/ρ. The shape

of the wave is determined by the function ψ̃(x) and the motion is governed by
the line x− ct = const. The wave moves forward in time along the string. The
backward wave is the function φ̃(x + ct) which represents a traveling wave in
the negative X-direction with scaled speed c.
The fuzzy solution to the wave equation is the fuzzy superposition of a forward
wave ψ̃(x− ct) and a backward wave φ̃(x+ ct), both with c speed.

• If ũ(x, t) is [(i) − p]-differentiable w.r.t. t, then ψ̃ and φ̃ are [(i) − gH]-
differentiable w.r.t. (x − ct) and w.r.t. (x + ct), respectively. In general, it
follows that any solution to the fuzzy wave equation can be obtained as a
superposition of two traveling waves

ũ(x, t) = ψ̃(x− ct)⊕ φ̃(x+ ct).(13)

Now we would like to satisfy the initial conditions

ũ(x, 0) = f̃(x),(14)

∂ũ

∂t
(x, 0) = g̃(x).(15)

Since equation (13) is a fuzzy solution for equation (7), it must apply to the
fuzzy initial conditions of the equation (8), hence the fuzzy initial condition

ũ(x, 0) = f̃(x) concludes

ũ(x, 0) = ψ̃(x)⊕ φ̃(x) = f̃(x).(16)

By differentiating (13) w.r.t. t, we have

∂i.gH ũ

∂t
(x, t) = (−1)c� ∂ii.gH ψ̃

∂t
(x− ct)⊕ c� ∂i.gH φ̃

∂t
(x+ ct) = g̃(x),

so that at t = 0 by initial condition, we obtain

∂ũi.gH
∂t

(x, 0) = (−1)c� ψ̃′ii.gH(x)⊕ c� φ̃′i.gH(x)(17)

= g̃(x).
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By using Lemma 2.26, we have∫ x

0

(−1)ψ̃′ii.gH(s)ds⊕
∫ x

0

φ̃′i.gH(s)ds =

∫ 0

x

ψ̃′ii.gH(s)ds⊕
∫ x

0

φ̃′i.gH(s)ds

=
1

c

∫ x

0

g̃(s)ds.

By using Lemma 2.29, we have(
(−1)ψ̃(x)�gH (−1)ψ̃(0)

)
⊕
(
φ̃(x)�gH φ̃(0)

)
=

1

c

∫ x

0

g̃(s)ds,

thus (
(−1)ψ̃(x)⊕ φ̃(x)

)
︸ ︷︷ ︸

A

�gH
(

(−1)ψ̃(0)⊕ φ̃(0)
)

︸ ︷︷ ︸
B

=
1

c

∫ x

0

g̃(s)ds︸ ︷︷ ︸
C

,

by using Definition 2.4,
(1) (−1)ψ̃(x)⊕ φ̃(x) =

(
(−1)ψ̃(0)⊕ φ̃(0)

)
⊕ 1

c

∫ x
0
g̃(s)ds,

or

(2)
(
(−1)ψ̃(0)⊕ φ̃(0)

)
=
(
(−1)ψ̃(x)⊕ φ̃(x)

)
⊕ (−1) 1

c

∫ x
0
g̃(s)ds.

(18)

According to the definition of gH-differentiability, either case (1) or case (2)
from (18) holds. Assume that case (1) holds, so if we achieve the solution in
this case we will not consider the case (2) anymore. From equations (16) and
the first equation (18), we have

ψ̃(x)⊕ φ̃(x) = f̃(x),

(−1) ψ̃(x)︸︷︷︸
C

⊕ φ̃(x)︸︷︷︸
A

= (−1)ψ̃(0)⊕ φ̃(0)⊕ 1

c

∫ x

0

g̃(s)ds︸ ︷︷ ︸
B

.(19)

From the second equation (19) we find ψ̃(x), therefore we have

ψ̃(x) = φ̃(x)�gH
(

(−1)ψ̃(0)⊕ φ̃(0)⊕ 1

c

∫ x

0

g̃(s)ds
)
.(20)

Now, we substituting ψ̃(x) in the first equation (19), we have

φ̃(x)︸︷︷︸
A

�gH
1

2

(
(−1)ψ̃(0)⊕ φ̃(0)⊕ 1

c

∫ x

0

g̃(s)ds
)

︸ ︷︷ ︸
B

=
1

2
f̃(x)︸ ︷︷ ︸
C

.

By using Definition 2.4, we have

(21)


(3) φ̃(x) = 1

2

(
(−1)ψ̃(0)⊕ φ̃(0)⊕ 1

c

∫ x
0
g̃(s)ds

)
⊕ 1

2 f̃(x),

or

(4) 1
2

(
(−1)ψ̃(0)⊕ φ̃(0)⊕ 1

c

∫ x
0
g̃(s)ds

)
= φ̃(x)⊕ (−1) 1

2 f̃(x).
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By substituting φ̃(x) in the first equation (20), we have

(22)


(5) ψ̃(x) = (−1) 1

2

(
(−1)ψ̃(0)⊕ φ̃(0)

)
⊕ (−1) 1

2c

∫ x
0
g̃(s)ds⊕ 1

2 f̃(x),

or

(6) 1
2 f̃(x)�gH ψ̃(x) = 1

2

(
(−1)ψ̃(0)⊕ φ̃(0)

)
⊕ 1

2c

∫ x
0
g̃(s)ds.

On the other hand, by using Lemma 2.26 in the first equation (22), we have

ψ̃(x) = (−1)
(1

2

(
(−1)ψ̃(0)⊕ φ̃(0)

)
⊕ 1

2c

∫ 0

x

g̃(s)ds⊕ 1

2
f̃(x).(23)

By substituting ψ̃(x) from equation (23) and φ̃(x) from the first equation (21)
into equation (13), we have

(24) ũ(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g̃(s)ds.

Suppose that ũ(x, t) = ũ1(x, t), therefore

(25) ũ1(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g̃(s)ds.

According to the definition of gH-differentiability, since the solution was achieved
in cases (1), (3), and (5), we do not consider cases (2), (4), and (6). Further-

more, cases (4) and (6) do not provide explicit solutions in terms of ψ̃(x) and

φ̃(x).

Case(ii). Let ũ(x, t) is [(i) − p]-differentiable w.r.t. t and ∂ũ
∂t are [(ii) − p]-

differentiable w.r.t. t fuzzy function then,

• If Ũ(ξ, η) is [(i)−gH]-differentiable w.r.t. t and ∂Ũ
∂ξ is [(i)−gH]-differentiable

w.r.t. t and ∂Ũ
∂η is [(ii)− gH]-differentiable w.r.t. t fuzzy function without any

switching points, then

∂ũii.gH
∂t

=
∂Ũi.gH
∂ξ

� ∂ξ

∂t
⊕ ∂Ũii.gH

∂η
� ∂η

∂t
= (−1)c� ∂Ũi.gH

∂ξ
⊕ c� ∂Ũii.gH

∂η
.

• If Ũ(ξ, η) is [(i)− gH]-differentiable w.r.t. x and ∂Ũ
∂ξ and ∂Ũ

∂η are [(ii)− gH]-

differentiable w.r.t. x fuzzy functions, then

∂ũii.gH
∂x

=
∂Ũii.gH
∂ξ

� ∂ξ

∂x
⊕ ∂Ũii.gH

∂η
� ∂η

∂x
=
∂Ũii.gH
∂ξ

⊕ ∂Ũii.gH
∂η

.

• If Ũ(ξ, η) is [(i)−gH]-differentiable w.r.t. t and ∂2Ũ
∂ξ2 and ∂2Ũ

∂η2 are [(ii)−gH]-

differentiable w.r.t. t fuzzy functions then,

∂2ũii.gH
∂t2

= c2 � ∂2Ũii.gH
∂ξ2

⊕ (−1)c2 � ∂

∂η

(∂Ũi.gH
∂ξ

)
⊕ (−1)c2 � ∂

∂ξ

(∂Ũii.gH
∂η

)
⊕ c2 � ∂2Ũii.gH

∂η2
.(26)
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• If Ũ(ξ, η) is [(i)−gH]-differentiable w.r.t. x and ∂2Ũ
∂ξ2 and ∂2Ũ

∂η2 are [(ii)−gH]-

differentiable w.r.t. x fuzzy functions then,

∂2ũii.gH
∂x2

=
∂2Ũii.gH
∂ξ2

⊕ ∂

∂η

(∂Ũii.gH
∂ξ

)
⊕ ∂

∂ξ

(∂Ũii.gH
∂η

)
⊕ ∂2Ũii.gH

∂η2
.(27)

Substituting derivatives (26) and (27) into the FPDE (7) yields

−2c2 � ∂

∂ξ

(∂Ũii.gH
∂η

(ξ, η)
)

= 0̃,

by using Definition 2.8, we have

−2c2 � ∂

∂ξ

(∂Ũii.gH
∂η

(ξ, η)
)

= 0,(28)

with integrating form equation (28) w.r.t. ξ gives∫ ξ

0

∂

∂ξ

(∂Ũii.gH
∂η

)
(s, η)ds = 0,

by using Lemma 2.29, we have

(29)
∂Ũ

∂η
(ξ, η)�gH

∂Ũ

∂η
(0, η) = 0,

integrating form equation (29) w.r.t. η gives∫ η

0

∂Ũ

∂η
(ξ, l)dl �gH

∫ η

0

∂Ũ

∂η
(0, l)dl = 0,

by using Lemma 2.29, we have(
(−1)Ũ(ξ, 0)�gH (−1)Ũ(ξ, η)

)
�gH

(
(−1)Ũ(0, 0)�gH (−1)(U(0, η)

)
= 0,

where U(0, 0) = 0· therefore, we have

Ũ(ξ, η)�gH
(
Ũ(ξ, 0)⊕ Ũ(0, η)

)
= 0.

By Definition 2.4, we have

Ũ(ξ, η) = ψ̃(ξ)⊕ φ̃(η).

Substituting for ξ and η from equation (6) and recalling that ũ(x, t) = Ũ(ξ, η)
gives

ũ(x, t) = Ũ(ξ, η) = ψ̃(x− ct)⊕ φ̃(x+ ct).

• If ũ(x, t) is [(i) − p]-differentiable w.r.t. t, then ψ̃ and φ̃ are [(i) − gH]-
differentiable w.r.t. (x − ct) and w.r.t. (x + ct), respectively. In general, it
follows that any solution to the fuzzy wave equation can be obtained as a
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superposition of two traveling waves that is called a fuzzy standing wave as in
the following form:

ũ(x, t) = ψ̃(x− ct)⊕ φ̃(x+ ct).(30)

Now we would like to satisfy the initial conditions, we have

ũ(x, 0) = f̃(x),
∂u

∂t
(x, 0) = g̃(x).(31)

Since equation (13) is a fuzzy solution for equation (7), then it must apply to
the fuzzy initial conditions of the equation (8), hence the fuzzy initial condition

ũ(x, 0) = f̃(x) concludes

ũ(x, 0) = ψ̃(x)⊕ φ̃(x) = f̃(x).(32)

Differentiating from (30) w.r.t. t yields, we have

∂ũii.gH
∂t

(x, t) = (−1)c� ∂ψ̃i.gH
∂t

(x− ct)⊕ c� ∂φ̃ii.gH
∂t

(x+ ct) = g̃(x),

so that at t = 0 by an initial condition, we obtain

∂ũii.gH
∂t

(x, 0) = (−1)c� ψ̃′i.gH(x)⊕ c� φ̃′ii.gH(x) = g̃(x).(33)

Dividing this last equation by c and by using Lemma 2.26, we have∫ x

0

(−1)ψ̃′i.gH(s)ds⊕
∫ x

0

φ̃′ii.gH(s)ds

= (−1)

∫ x

0

ψ̃′i.gH(s)ds⊕
∫ x

0

φ̃′ii.gH(s)ds =
1

c

∫ x

0

g̃(x)ds.

By using Lemma 2.29, we have(
(−1)ψ̃(x)�gH (−1)ψ̃(0)

)
⊕
(

(−1)φ̃(0)�gH (−1)φ̃(x)
)

=
1

c

∫ x

0

g̃(x)ds.

Thus (
ψ̃(0)⊕ (−1)φ̃(0)

)
︸ ︷︷ ︸

A

�gH
(
ψ̃(x)⊕ (−1)φ̃(x)

)
︸ ︷︷ ︸

B

=
1

c

∫ x

0

g̃(x)ds︸ ︷︷ ︸
C

.

By using Lemma 2.29, we have
(1) ψ̃(x)⊕ (−1)φ̃(x) = ψ̃(0)⊕ (−1)φ̃(0)⊕ (−1) 1

c

∫ x
0
g̃(x)ds,

or

(2)
(
ψ̃(0)⊕ (−1)φ̃(0)

)
=
(
ψ̃(x)⊕ (−1)φ̃(x)

)
⊕ 1

c

∫ x
0
g̃(x)ds.

(34)

According to the definition of gH-differentiability, either case (1) or case (2)
from equations (34) holds. Assume that case (1) holds, so if we achieve the
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solution in this case we will not consider the case (2) anymore.
From equation (32) and the first equation (34), we have

(35)



ψ̃(x)⊕ φ̃(x) = f̃(x),

ψ̃(x)︸︷︷︸
A

⊕(−1) φ̃(x)︸︷︷︸
C

= ψ̃(0)⊕ (−1)φ̃(0)⊕ (−1)
1

c

∫ x

0

g̃(x)ds︸ ︷︷ ︸
B

.

From the second equation (35) we find φ(x), therefore we have

φ̃(x) = ψ̃(x)�gH
(
ψ̃(0)⊕ (−1)φ̃(0)⊕ (−1)

1

c

∫ x

0

g̃(x)ds
)
.(36)

Now, we substituting ˜φ(x) in the first equation (35), we have

ψ̃(x)︸︷︷︸
A

�gH
1

2

(
ψ̃(0)⊕ (−1)φ̃(0)

)
⊕
( (−1)

2c

∫ x

0

g̃(x)ds
)

︸ ︷︷ ︸
B

=
1

2
f̃(x)︸ ︷︷ ︸
C

.

By using Definition 2.4, we have

(37)


(3) ψ̃(x) = 1

2

(
ψ̃(0)⊕ (−1)φ̃(0)

)
⊕
(

(−1)
2c

∫ x
0
g̃(x)ds

)
⊕ 1

2 f̃(x),

or

(4) 1
2

(
ψ̃(0)⊕ (−1)φ̃(0)

)
⊕
(

(−1)
2c

∫ x
0
g̃(x)ds

)
= ψ̃(x)⊕ (−1) 1

2 f̃(x).

By substituting ψ̃(x) in the first equation (35), we have

(38)


(5) φ̃(x) = (−1) 1

2

(
ψ̃(0)⊕ (−1)φ̃(0)

)
⊕ (−1) 1

2c

∫ x
0
g̃(x)ds⊕ 1

2 f̃(x),

or

(6) 1
2 f̃(x)�gH ψ̃(x) = 1

2

(
(−1)ψ̃(0)⊕ φ̃(0)

)
⊕ 1

2c

∫ x
0
g̃(x)ds.

On the other hand, by using Lemma 2.26 in the first equation of (37), we have

ψ̃(x) =
1

2

((
ψ̃(0)⊕ (−1)φ̃(0)

)
�gH

(−1)

2c

∫ 0

x

g̃(x)ds⊕ 1

2
f̃(x).(39)

By substituting ψ̃(x) from equation (39) and φ̃(x) from the first equation of
(38) into equation (13), we have

(40) ũ(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
�gH

(−1)

2c

∫ x+ct

x−ct
g̃(x)ds.

Suppose that u(x, t) = u2(x, t), therefore

(41) ũ2(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
�gH

(−1)

2c

∫ x+ct

x−ct
g̃(x)ds.
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According to the definition of gH-differentiability, since the solution was achieved
in cases (1), (3), and (5), we do not consider cases (2), (4), and (6). Further-

more, cases (4), and (6) do not provide explicit the solutions in terms of ψ̃(x)

and φ̃(x). In this section, we examine the solution of ũ1 and ũ2 by the use
of the below Tables and according to the type of gH-differentiability for the
functions of f̃ , f̃ ′ and g̃, g̃′.

Table 1. The kind of [(gH)− p]-differentiability for Ũ(ξ, η)

ũ ∂ũ
∂t

∂ũ
∂x

∂2ũ
∂t2

∂2ũ
∂x2 Ũ

∂ŨgH

∂ξ
∂ŨgH

∂η
∂2ŨgH

∂ξ2
∂2ŨgH

∂η2

(i) (i) − (i) − (i) (ii) (i) (i) (i)
(i) − (i) − (i) (i) (i) (i) (i) (i)

(i) (ii) − (ii) − (ii) (i) (ii) (ii) (ii)
(ii) − (ii) − (ii) (ii) (ii) (ii) (ii) (ii)

(ii) (i) − (ii) − (i) (ii) (i) (i) (i)
(ii) (ii) − (ii) − (ii) (ii) (ii) (ii) (ii)

(ii) (ii) − (i) − (ii) (i) (ii) (ii) (ii)
(i) − (i) − (i) (i) (i) (i) (i) (i)

Now, by using Theorem 3.1, we show that according to the gH-differentiability
of f̃ and g̃ that ũ1 and ũ2 are the solutions of FPDE 7.

Theorem 3.1. Let f̃ , g̃ : R2 → RF be two fuzzy functions such that g̃ is once
continuously generalized differentiable function, f̃ twice and c > 0. Consider

ũ1(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct

)
⊕ 1

2c

∫ x+ct

x−ct
g(s)ds,

and

ũ2(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct

)
�gH

(−1)

2c

∫ x+ct

x−ct
g(s)ds,

provided for all (x, t) ∈ R× (0,∞) the above gH-difference exists.

1. If f̃ , f̃ ′ and g̃, g̃′ are [(i)−gH]-differentiable or f̃ , f̃ ′ and g̃, g̃′ are [(ii)−gH]-
differentiable on R, then ũ1 is a solution of FPDE 7.
2. If f̃ is [(i)− gH]-differentiable and f̃ ′ is [(ii)− gH]-differentiable and g̃, g̃′

are [(i)−gH]-differentiable (or conversely) w.r.t. x and t, then ũ2 is a solution
of FPDE 7. The details of the current Theorem are given in Tabel 2.

In order to prove Theorem 3.1, it is required to state the following Lemmas.

Lemma 3.2. Let f̃ : R2 → RF be a gH-differentiable function w.r.t. x, t and
c be a positive constant real number for all (x, t) ∈ R× (0,∞). Consider

H̃(x, t) = f̃(x− ct)⊕ f̃(x+ ct).
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Table 2. The kind of [(gH)− p]-differentiability solutions of
ũ1 and ũ2 with respect to x and t

Kind of
solution
ũ1, ũ2

f̃ f̃ ′ g̃ g̃′
ũ
w.r.t.
x

ũ
w.r.t.
t

∂ũ
∂x
w.r.t.
x

∂ũ
∂t
w.r.t.
t

ũ1 (i) (i) (i) (i) (i) (i) (i) (i)
ũ1 (ii) (ii) (ii) (ii) (ii) (i) (ii) (i)
ũ2 (i) (ii) (ii) (ii) (i) (ii) (ii) (i)
ũ2 (ii) (i) (i) (i) (ii) (ii) (i) (i)

Then
1. If f̃ is gH-differentiable w.r.t. x, then the type of gH-derivative f̃ and H̃ is
the same w.r.t. x and H̃ is always gH-differentiable w.r.t. x.
2. If f̃ ′ is gH-differentiable w.r.t. t, then H̃ is gH-differentiable w.r.t. t on
R× (0,∞).

The expression of ∂H̃
∂x and ∂H̃

∂t is given in Tables 3 and 4 for practical use.

Table 3. The kind of gH-differentiability of H̃ w.r.t. x

f̃ f̃ ′ H̃ w.r.t. x ∂H̃
∂x

(i) − (i) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

(ii) − (ii) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

(i) (i) (i) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

(ii) (ii) (ii) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

(i) (ii) (i) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

(ii) (i) (ii) f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

Proof. We only demonstrate the case of 3 from Tables 3 and 4, that the rest of
the table states can be easily expressed. Using Proposition 2.15, the function
H̃ is [(i)− gH]-differentiable w.r.t. x, therefore we have

∂H̃

∂x
(x, t) =f̃ ′(x− ct)⊕ f̃ ′(x+ ct),∀(x, t) ∈ R× (0,∞).

We claim H̃(x, t) is [(i)− gH]-differentiable w.r.t. t, and we have

∂H̃

∂t
(x, t) = (−1)c� f̃ ′(x− ct)⊕ c� f̃ ′(x+ ct).
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Table 4. The kind of gH-differentiability of H̃ w.r.t. t

f̃ f̃ ′ H̃ w.r.t. t ∂H̃
∂t

(i) − − −
(ii) − − −
(i) (i) (i) c� f̃ ′(x−ct)⊕c� f̃ ′(x+ct)

(ii) (ii) (i) c� f̃ ′(x− ct)⊕ cf̃ ′(x+ ct)

(i) (ii) (ii) (−1)c�f̃ ′(x−ct)⊕f̃ ′(x+ct)

(ii) (i) (ii) (−1)c�f̃ ′(x−ct)⊕f̃ ′(x+ct)

Using Theorem 2.20, the function f̃(x − ct) is [(ii) − gH]-differentiable and

f̃(x+ ct) is [(i)− gH]-differentiable w.r.t. t, also their derivatives are

∂f̃(x− ct)
∂t

= (−1)c� f̃(x− ct),

∂f̃(x+ ct)

∂t
= c� f̃(x+ ct).

Using Remark 2.16 and Proposition 2.15, we have

∂H̃

∂t
(x, t) = c� f̃ ′(x− ct)⊕ c� f̃ ′(x+ ct).

Therefore H̃ is [(i)− gH]-differentiable w.r.t. t. �

Lemma 3.3. Let g̃ : R2 → RF be a fuzzy function and c is a positive constant
real number for (x, t) ∈ R× (0,∞) set

G̃(x, t) =

∫ x+ct

x−ct
g̃(s)ds.

If the type of gH-derivative g̃ and g̃′ are the same w.r.t. x, then the type of gH-
derivative G̃ is also proportional to the type of gH-derivative g̃ and g̃′. Also,
if the types of gH-derivative g̃ and g̃′ are different, then the gH-derivative G̃ is
proportional to the gH-derivative of g̃.

Proof. Let g̃, g̃′ be [(i)− gH]-differentiable w.r.t. x, by using Lemma 2.29 and
Theorem 2.19, then we have

∂G̃

∂x
= g̃(x+ ct)�gH g̃(x− ct),

which indicates that function G̃ is [(i)−gH]-differentiable w.r.t. x. Now if g̃, g̃′

are [(ii)− gH]-differentiable w.r.t, x, by using Lemma 2.29 and Theorem 2.19,
then we have

∂G̃

∂x
= (−1)g̃(x− ct)�gH (−1)g̃(x+ ct),
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which indicates that function G̃ is [(ii)− gH]-differentiable w.r.t. x.
The other case can be investigated similarly and we omit the details.

�

Table 5. The kind of gH-differentiability of G̃ w.r.t. x

g̃ g̃′ G̃ w.r.t. x ∂G̃
∂x

(i) (i) (i)
g̃(x+ ct)�gH g̃(x− ct)

(ii) (ii) (ii) (−1)g̃(x− ct)�gH (−1)g̃(x+ ct)
(i) (ii) (i) g̃(x+ ct)�gH g̃(x− ct)
(ii) (i) (ii) (−1)g̃(x− ct)�gH (−1)g̃(x− ct)

Now by using Lemmas 3.2 and 3.3, we prove Theorem 3.1.

Proof. Here we only show cases 1 and 2 from Theorem 3.1 are similarly proven.
Using Lemma 3.3 and according to case 3 of Table 4, as well as, using Lemma
3.3 and case 1 from Table 5, and Proposition 2.15, ũ1 is the differentiable
w.r.t. x and we have

∂ũ1
∂x

(x, t) =
1

2

(
f̃ ′(x− ct)⊕ f̃ ′(x+ ct)

)
⊕ 1

2c

(
g̃(x+ ct)�gH g̃(x− ct)

)
.

On the other hand, we conclude from case 3 of Table 3 and Proposition 2.15
that ∂ũ

∂x is [(i)− gH]-differentiable w.r.t. x, and we have

∂2ũ1
∂x2

(x, t) =
1

2

(
f̃ ′′(x− ct)⊕ f̃ ′′(x+ ct)

)
⊕ 1

2c

(
g̃′(x+ ct)�gH g̃′(x− ct)

)
.

(42)

Also, we conclude case 3 from Table 4 and case 1 from Table 6 and Proposition
2.15 that ũ1 is [(i)− gH]-differentiable w.r.t. t and

∂ũ1
∂t

(x, t) =
1

2
c�

(
f̃ ′(x− ct)⊕ f̃ ′(x+ ct

))
⊕ 1

2c

(
c� g̃′(x− ct)�gH (−1)c� g̃′(x+ ct)

)
.

Table 6. The kind of generalized differentiability of G̃ w.r.t. t

g̃ g̃′ G̃ w.r.t. t ∂G̃
∂t

(i) (i) (i) c� g̃(x+ct)�gH (−1)c� g̃(x−ct)
(ii) (ii) (ii) c� g̃(x−ct)�gH (−1)c� g̃(x+ct)
(i) (ii) (i) c� g̃(x+ct)�gH (−1)c� g̃(x−ct)
(ii) (i) (ii) c� g̃(x−ct)�gH (−1)c� g̃(x−ct)
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It is obvious from case 3 of Table 4 and Proposition 2.15 that ∂ũ
∂t is [(i)− gH]-

differentiable w.r.t. t and

∂2ũ1
∂t2

(x, t) =
1

2
c2 �

(
f̃ ′′(x− ct)⊕ f̃ ′′(x+ ct

))
⊕ 1

2c

(
c2 � g̃′(x+ ct)�gH c2 � g̃′(x− ct)

)
.(43)

By substituting (42) and (43) in the equation (7), we conclude that ũ1 satisfies
FPDE 7. �

Example 3.4. Let us consider the homogeneous one-dimensional fuzzy wave
equation

∂2ũgH(x, t)

∂t2
�gH 9� ∂2ũgH(x, t)

∂x2
= 0̃,

where the fuzzy initial conditions are as follows:{
ũ(x, 0) = f̃(x) = 〈1, 2, 5〉 � ex, −∞ < x <∞,
∂ũgH(x,0)

∂t = g̃(x) = 〈1, 3, 4〉 � ex.

The solution of the fuzzy wave equation ũ1 is

ũ1(x, t) =
1

2

(
γ � f(x− ct)⊕ γ � f(x+ ct)

)
⊕ 1

2c

∫ x+ct

x−ct
β � g(s)ds

=
1

2

(
〈1, 2, 5〉 � ex−3t ⊕ 〈1, 2, 5〉 � ex+3t

)
⊕ 1

6

∫ x+3t

x−3t
〈1, 3, 4〉 � esds

=
1

2
〈1, 2, 5〉 �

(
ex−3t ⊕ ex+3t

)
⊕ 1

6
〈1, 3, 4〉 �

(
ex+3t 	gH ex−3t

)
.

Also, the solution of ũ2 is

u2(x, t) =
1

2

(
γ � f(x− ct)⊕ γ � f(x+ ct)

)
�gH

(−1)

2c

∫ x+ct

x−ct
β � g(s)ds

=
1

2

(
〈1, 2, 5〉 � ex−3t ⊕ 〈1, 2, 5〉 � ex+3t

)
�gH

(−1)

6

∫ x+3t

x−3t
〈−4,−3,−1〉 � esds

=
1

2
〈1, 2, 5〉 �

(
ex−3t ⊕ ex+3t

)
�gH

1

6
〈1, 3, 4〉 �

(
(−1)ex−3t 	gH (−1)ex+3t

)
.

4. The Fuzzy D’Alembert Solutions for the fuzzy Wave on
an infinite string under the generalized derivative

ũ =
∂2g ỹ

∂t2
(x, t), ṽ = c2 �

∂2g ỹ

∂x2
(x, t),

w̃ =
∂2g ỹ

∂t2
(x, t)�g c

2 �
∂2g ỹ

∂x2
(x, t) = 0,
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by using Proposition 2.6 for any r ∈ [0, 1], we have[∂2g ỹ
∂t2

(x, t)�g c
2 ·

∂2g ỹ

∂x2
(x, t)

]
r

=
[

inf
λ≥r

min
{∂2y

λ

∂t2
− c2 ·

∂2y
λ

∂x2
,
∂2yλ
∂t2

− c2 · ∂
2yλ
∂x2

}
, sup
λ≥r

max
{∂2gyλ
∂t2

− c2 ·
∂2y

λ

∂x2
,
∂2yλ
∂t2

− c2 · ∂
2yλ
∂x2

}]
(44)

= [0, 0].

Therefore[
∂2g ỹ

∂t2
(x, t)

]
λ

=

[
inf
α≥λ

min

{
∂2y

α

∂t2
,
∂2yα
∂t2

}
, sup
α≥λ

max

{
∂2y

α

∂t2
,
∂2yα
∂t2

}]
,

[
∂2g ỹ

∂x2
(x, t)

]
λ

=

[
inf
α≥λ

min

{
∂2y

α

∂x2
,
∂2yα
∂x2

}
, sup
α≥λ

max

{
∂2y

α

∂x2
,
∂2yα
∂t2

}]
.

Thus for any α ∈ [0, 1], we have

∂2gyλ
∂t2

(x, t) = inf
α≥λ

min

{
∂2y

α

∂t2
,
∂2yα
∂t2

}
,(45)

∂2gyλ
∂t2

(x, t) = sup
α≥λ

max

{
∂2y

α

∂t2
,
∂2yα
∂t2

}
,(46)

∂2gyλ
∂x2

(x, t) = inf
α≥λ

min

{
∂2y

α

∂x2
,
∂2yα
∂x2

}
,(47)

∂2gyλ
∂x2

(x, t) = sup
α≥λ

max

{
∂2y

α

∂x2
,
∂2yα
∂x2

}
,(48)

with substituting derivatives (45), (46), (47), and (48) into (44) yields[
∂2g ỹ

∂t2
(x, t)�g c

2 �
∂2g ỹ

∂x2
(x, t)

]
r

=[
inf
λ≥r

min

{
inf
α≥λ

min

{
∂2y

α

∂t2
− c2

∂2y
α

∂x2
,
∂2yα
∂t2

− c2 ∂
2yα
∂x2

}
,

sup
λ≥r

max

{
sup
α≥λ

max

{
∂2y

α

∂t2
− c2

∂2y
α

∂x2
,
∂2yα
∂t2

− c2 ∂
2yα
∂x2

}]
=
[
0, 0
]
.
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Since α ≥ λ and λ ≥ r, then α ≥ r therefore, we have[
∂2gH ỹ

∂t2
(x, t)�g c

2 �
∂2gH ỹ

∂x2
(x, t)

]
r

=[
inf
α≥r

min

{
∂2y

α

∂t2
− c2

∂2y
α

∂x2
,
∂2yα
∂t2

− c2 ∂
2yα
∂x2

}
,

sup
α≥r

max

{
∂2y

α

∂t2
− c2

∂2y
α

∂x2
,
∂2yα
∂t2

− c2 ∂
2yα
∂x2

}]
=
[
0, 0
]
.

Now, let

wα =
∂2y

α

∂t2
− c2

∂2y
α

∂x2
, wα =

∂2y

∂t2
− c2 ∂

2y

∂x2
.

We assume the following cases:
1) If len(wα) ≤ len(wα), then

inf
α≥r

min
{
wα, wα

}
= inf
α≥r

wα = 0,

sup
α≥r

max
{
wα, wα

}
= sup
α≥r

wα = 0.

2) If len(wα) ≥ len(wα), then

inf
α≥r

min
{
wα, wα

}
= inf
α≥r

wα = 0,

sup
α≥r

max
{
wα, wα

}
= sup
α≥r

wα = 0.

Suppose that case 1 holds, thus we have

inf
α≥r

wα = inf
α≥r

{∂2y
α

∂t2
− c2

∂2y
α

∂x2

}
= 0,

sup
α≥r

wα = sup
α≥r

{∂2yα
∂t2

− c2 ∂
2yα
∂x2

}
= 0.

On the other hand, from (24) we have

y
r
(x, t) = inf

α≥r

{1

2

(
γ
r
.f(x− ct) + γ

r
.f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
γ
r
.g(s)ds

}
,

and

yr(x, t) = sup
α≥r

{1

2

(
γr.f(x− ct) + γr.f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
γr.g(s)ds

}
.
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Now, suppose that case 2 holds, thus we have

inf
α≥r

wα = inf
α≥r

{∂2yα
∂t2

− c2 ∂
2yα
∂x2

}
= 0,

sup
α≥r

wα = sup
α≥r

{∂2y
α

∂t2
− c2

∂2y
α

∂x2

}
= 0.

Thus, we have

yr(x, t) = inf
α≥r

{1

2

(
γr.f(x− ct) + γr.f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
γr.g(s)ds

}
and

y
r
(x, t) = sup

α≥r

{1

2

(
γ
r
.f(x− ct) + γ

r
.f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
γ
r
.g(s)ds

}
.

5. The fuzzy solutions and domain of dependence

At a given position x = x0 on the string, the fuzzy solution in case(i) at time
t = t0 is

ũ(x0, t0) =
1

2

(
f̃(x0 − ct0)⊕ f̃(x0 + ct0)

)
⊕ 1

2c

∫ x0+ct0

x0−ct0
g̃(s)ds,

and the fuzzy solution in case(ii) at time t = t0 is

ũ(x0, t0) =
1

2

(
f̃(x0 − ct0)⊕ f̃(x0 + ct0)

)
�

(−1)

2c

∫ x0+ct0

x0−ct0
g̃(s)ds.

In other words, the fuzzy solutions are found by tracing backward and forward
in time along with the characteristics x− ct = x0− ct0 and x+ ct = x0 + ct0 to
the initial state (f̃(x), g̃(x)), then applying (24) and (41) to compute ũ(x0, t0)
from the initial state. Information from the initial state from the interval
x0 − ct0 ≤ x ≤ x0 + ct0 is all that is needed to find ũ(x0, t0). In the tx-plane,
we can think of a triangle opening backward and forward in time from (x0, t0)
to the line t = 0.
In general, the function f̃(x) and g̃(x) are case functions. We need to deter-
mine various regions by plotting the salient characteristics x± ct = const. The
regions determine where x − ct and x + ct are relative to the cases for the
functions f̃(x) and g̃(x) and tells us what part of the case functions should be
used in each region.
1. Let Ũ(ξ, η) be a [(i)−gH]-differentiable fuzzy function. Then ũ(x, t), ∂tũ(x, t)

and ∂xũ(x, t) are [(i)−p]-differentiable w.r.t. t and x, also ψ̃ and φ̃ are [(i)−gH]-
differentiable w.r.t. (x − ct) and (x + ct), respectively. For example, consider

f̃(x) and g̃(x) of the following form

(49) f̃(x) =

{
φ̃(x), |x| ≤ l,
0, |x| > l,

g̃(x) =

{
ψ̃(x), |x| ≤ l,
0, |x| > l.
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Here, according to Definition 2.8, we have considered zero singleton fuzzy num-
bers.
Step 1. Write down the fuzzy D’Alembert solution, from (24) we have

ũ(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
⊕ 1

2c

∫ x+ct

x−ct
g̃(s)ds.

Step 2. Identify the regions.
The functions f̃(x) and g̃(x) are equal to functions φ̃(x) and ψ̃(x), respectively,
for |x| ≤ l and are zero for |x| > l. Thus, the regions of interest are found by
plotting the four characteristics x± ct = ±l. The regions are identified in the
plot and are given mathematically by

(50)

R1 =
{

(x, t) : −l ≤ x− ct ≤ l and − l ≤ x+ ct ≤ l},
R2 =

{
(x, t) : −l ≤ x− ct ≤ l and x+ ct ≥ l},

R3 =
{

(x, t) : x− ct ≤ −l and − l ≤ x+ t ≤ l},
R4 =

{
(x, t) : x− ct ≤ −l and x+ ct ≥ l},

R5 =
{

(x, t) : x+ ct ≤ −l},
R6 =

{
(x, t) : x− ct ≥ l}.

The regions determine where x − ct and x + ct are relative to ±l, which tells
us what part of the case functions f̃(x) and g̃(x) should be used. It is helpful
to define the lines.
xA(t) = −l − ct, xB(t) = −l + ct, xC(t) = l − ct, xD(t) = l + ct.
Step 3. Consider the fuzzy solution in each region.
In R1 region, we have |x± ct| ≤ l, so that (24) implies

f̃(x− ct) = φ̃(x− ct), f̃(x+ ct) = φ̃(x+ ct),

and ∫ x+ct

x−ct
g̃(s)ds =

∫ x+ct

x−ct
ψ̃(s)ds,

and hence

ũ(x, t) =
1

2

(
φ̃(x− ct)⊕ φ̃(x+ ct)

)
⊕ 1

2c

∫ x+ct

x−ct
ψ̃(s)ds.

In R2 region, we have −l ≤ x− ct ≤ l and x+ ct ≥ l, and so

f̃(x+ ct) = 0, f̃(x− ct) = φ̃(x− ct),
and by using Lemma 2.26 and Definition 2.8, we have∫ x+ct

x−ct
g̃(s)ds =

∫ l

x−ct
g̃(s)ds⊕

∫ x+ct

l

g̃(s)ds =

∫ l

x−ct
ψ̃(s)ds,

and hence

ũ(x, t) =
φ̃(x− ct)

2
⊕ 1

2

∫ l

x−ct
ψ̃(s)ds.
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In R3 region, we have x − ct ≤ −l and − l ≤ x + ct ≤ l so that f(x + ct) =

φ̃(x+ ct), f̃(x− ct) = 0 and by using Lemma 2.26, and Definition 2.8, we have∫ x+ct

x−ct
g̃(s)ds =

∫ x+ct

−l
ψ̃(s)ds,

and hence

ũ(x, t) =
φ̃(x+ ct)

2
⊕ 1

2

∫ x+ct

−l
ψ̃(s)ds.

In R4 region, x− ct ≤ −l and x+ ct ≥ l, so that

f̃(x+ ct) = 0, f̃(x− ct) = 0,

and by using Lemma 2.26, and Definition 2.8, we have∫ x+ct

x−ct
g̃(s)ds =

∫ l

x−ct
g̃(s)ds⊕

∫ l

−l
g̃(s)ds⊕

∫ x+ct

l

g̃(s)ds =

∫ l

−l
ψ̃(s)ds,

and hence

ũ(x, t) =
1

2

∫ x+ct

x−ct
g̃(s)ds =

1

2

∫ l

−l
ψ̃(s)ds.

In R5 and R6 regions, f̃(x + ct) = 0 = f̃(x − ct) and g̃(s) = 0 for s ∈ [x −
ct, x+ ct], hence u = 0. To summarize
(51)

ũ(x, t) =



1
2

(
φ̃(x− ct)⊕ φ̃(x+ ct)

)
⊕ 1

2c

∫ x+ct
x−ct ψ̃(s)ds, (x, t) ∈ R1,

φ̃(x−ct)
2 ⊕ 1

2

∫ l
x−ct ψ̃(s)ds, (x, t) ∈ R2,

φ̃(x+ct)
2 ⊕ 1

2

∫ x+ct
−l ψ̃(s)ds, (x, t) ∈ R3,

1
2

∫ l
−l ψ̃(s)ds, (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

Step 4. For each specific time t0, write the x-intervals corresponding to the
intersection of the sets Rn with the line t = t0.
At time 0, we use Table 7 to find the x intervals Rn corresponding to the
intersection of R′n with the line t = 0

R′5 = (−∞,−l], R′1 = (−l, l], R′6 = [l,∞).

In R1 region, we have (recall that t = 0)

ũ(x, t) =
1

2

(
φ̃(x− 0)⊕ φ̃(x+ 0)

)
⊕ 1

2c

∫ x+0

x−0
ψ̃(s)ds = φ̃(x).
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Table 7. This amounts to computing the values of
xA(t), xB(t), xC(t) and xD(t) for each time

t 0 1
2 1 2

xA(t) −l −l − 1
2c −l − c −l − 2c

xB(t) −l −l + 1
2c −l + c −l + 2c

xC(t) l l − 1
2c l − c l − 2c

xD(t) l l + 1
2c l + c l + 2c

Similarly, we can check that in the other regions, ũ = 0, so that (51) becomes

ũ(x, 0) =

{
φ̃(x), x ∈ R′1 = [−l, l],
0, x ∈ R′5 ∪R′6,

=

{
φ̃(x), |x| ≤ l
0, |x| > l

= f̃(x).

At time 1/2, we use Table 7 to find the x intervals R′n corresponding to the
intersection of Rn with the line t = 1

2

(52)

R5 =
(
−∞,−l − 1

2
c
]
, R1 =

(
− l +

1

2
c, l − ct

]
,

R6 =
[
l +

1

2
c,∞

)
, R3 =

(
− l − 1

2
c,−l +

1

2
c
]
,

R2 =
(
l − 1

2
c, l +

1

2
c
]
.

At time 1, we use Table 7 to find the x intervals R′n corresponding to the
intersection of Rn with the line t = 1

(53)
R5 =

(
−∞,−l − c

]
, R3 =

(
− l − c,−l + c

]
,

R2 =
[
l − c, l + c

]
, R6 =

[
l + c,∞

]
.

At time 2, we use Table 7 to find the x intervals R′n to the intersection of Rn
with the line t = 2

R5 =
(
−∞,−l − 2c

]
, R3 =

[
− l − 2c,−l + 2c

]
,

R4 =
[
− l + 2c, l − 2c

]
, R2 =

[
l − 2c, l + 2c

]
,

R6 =
[
l + 2c,∞

)
.(54)

Here, to illustrate the ability and reliability of the aforementioned concepts we
have solved some application examples.

Example 5.1. For an infinitely long string, consider giving the fuzzy string
zero initial displacement ũ(x, 0) = 0 and fuzzy initial velocity ∂tũ(x, 0) = g̃(x).
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Suppose that

g̃(x) =

{
γ̃ � cos2(π2x), −1 ≤ x ≤ 1,

0, otherwise.

The FICs have the form considered above for φ̃(x) = 0 and ψ̃(x) = γ̃�cos2(π2x).
Step 1.The fuzzy D’Alembert solution of (24) becomes

ũ(x, t) =
1

2

∫ x+t

x−t
g̃(s)ds.

Step 2. By (50) we determine the regions.
Step 3. Determine u(x, t) in each region. From (51) by consider c = 1, l =
1, β = 〈1, 3, 5〉, we have

ũ(x, t) =



1
2

∫ x+t
x−t 〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R1,

1
2

∫ 1

x−t〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R2,
1
2

∫ x+t
−1 〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R3,

1
2

∫ 1

−1〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

Note that
R1:

1

2

∫ x+t

x−t
〈1, 3, 5〉 � ψ(s)ds = 〈1, 3, 5〉 �

( t
2
⊕ 1

4π
sin(π(x+ t))

�gH
1

4π
sin(π(x− t))

)
,

R2:

1

2

∫ 1

x−t
〈1, 3, 5〉 � ψ(s)ds

= 〈1, 3, 5〉 �
(1

4
�gH

1

4
(x− t)

)
�gH

( 1

4π
sin(π(x− t)

)
,

R3: ∫ x+t

−1
〈1, 3, 5〉 � ψ(s)ds

= 〈1, 3, 5〉 �
(1

4
(x+ t)�gH

1

4

)
⊕ 1

4π
sin(π(x+ t)

)
,

R4:

1

2

∫ 1

−1
〈1, 3, 5〉 � ψ(s)ds = 〈1, 3, 5〉 � 1

2
,

R5 and R6:

ũ(x, t) = 0.
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Thus

ũ(x, t) =



〈1, 3, 5〉 �
(
t
2 ⊕

1
4π sin(π(x+ t))�gH 1

4π sin(π(x− t))
)
, (x, t) ∈ R1,

〈1, 3, 5〉 �
(

1
4 �gH

1
4 (x− t)

)
�gH

(
1
4π sin(π(x− t)

)
, (x, t) ∈ R2,

〈1, 3, 5〉 �
(

1
4 (x+ t)�gH 1

4

)
⊕ 1

4π sin(π(x+ t)
)
, (x, t) ∈ R3,

〈1, 3, 5〉 � 1
2 , (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

(55)

Step 4. We early consider, intermediate and later times t = 1/2, 1, 2. At
t = 1/2, the Rn regions are given by (52), and (55) becomes

ũ(x,
1

2
) =



〈1, 3, 5〉 �
( t

4
⊕ 1

2π
cosπx

)
, −1

2
≤x ≤ 1

2
,

〈1, 3, 5〉 �
(1

4
�gH

1

4
(x− 1

2
)⊕ cosπx

4π

)
,

1

2
≤x ≤ 3

2
,

〈1, 3, 5〉 �
(1

4
(x+ t)�gH

1

4

)
⊕ 1

4π
sin(π(x+

1

2
)
)
, −3

2
≤x ≤ −1

2
,

0, x ≥ 3

2
.

At time 1, the Rn regions are given by (53), and (55) becomes

ũ(x, 1) =


〈1, 3, 5〉 �

(1

2
�gH

1

4

)
�gH

1

4π
sinπx, 0 ≤x ≤ 2,

〈1, 3, 5〉 �
(1

4
x− 1

4π
sinπx

)
, −2 ≤x ≤ 0,

0, |x| ≥ 2.

At time 2, the Rn regions are given by (54), and (55) becomes

ũ(x, 2) =



〈1, 3, 5〉 �
(1

4
�gH

1

4
(x− 2)

)
�gH sinπx, 1 ≤x ≤ 3,

〈1, 3, 5〉 �
(1

4
(x+ 2)�gH

1

4

)
⊕ 1

4π
sinπx, −3 ≤x ≤ −1,

1

2
� 〈1, 3, 5〉, −1 ≤x ≤ 1,

0, |x| ≥ 3.

2. Let Ũ(ξ, η) is a [(ii)−gH]-differentiable fuzzy function, then ũ(x, t), ∂tũ(x, t)

and ∂xũ(x, t) are [(i)− p]-differentiable w.r.t. t and x, also ψ̃ and φ̃ are [(i)−
gH]-differentiable w.r.t. (x−ct) and (x+ct), respectively. For example, consider

f̃(x) and g̃(x) of the following form

(56) f̃(x) =

{
φ̃(x), |x| ≤ l,
0, |x| > l,

g̃(x) =

{
ψ̃(x), |x| ≤ l,
0, |x| > l.
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Step 1. Write down fuzzy D’Alembert solution

ũ(x, t) =
1

2

(
f̃(x− ct)⊕ f̃(x+ ct)

)
�gH

(−1)

2c

∫ x+ct

x−ct
g̃(s)ds.

Step 2. Identify the regions. (similarly, as in the previous)
Step 3. Determine the fuzzy solution in each region. In R1 region, we have
|x± ct| ≤ l, so that (41) implies

f̃(x− ct) = φ̃(x− ct), f̃(x+ ct) = φ̃(x+ ct),

and ∫ x+ct

x−ct
g̃(s)ds =

∫ x+ct

x−ct
ψ̃(s)ds,

and hence

ũ(x, t) =
1

2

(
φ̃(x− ct)⊕ φ̃(x+ ct)

)
�gH

(−1)

2c

∫ x−ct

x+ct

ψ̃(s)ds.

In R2 region, we have −l ≤ x− ct ≤ l and x+ ct ≥ l so that

f̃(x+ ct) = 0, f̃(x− ct) = φ̃(x− ct),

and ∫ x+ct

x−ct
g̃(s)ds =

∫ l

x−ct
g̃(s)ds⊕

∫ x+ct

l

g̃(s)ds =

∫ l

x−ct
ψ̃(s)ds,

and hence

ũ(x, t) =
φ̃(x− ct)

2
�gH

(−1)

2

∫ 1

x−ct
ψ̃(s)ds.

In R3 region, we have x − ct ≤ −l and − l ≤ x + ct ≤ l so that f̃(x + ct) =

φ̃(x+ ct), f̃(x− ct) = 0,∫ x+ct

x−ct
g̃(s)ds =

∫ x+ct

−l
ψ̃(s)ds,

and hence

ũ(x, t) =
φ̃(x+ ct)

2
�gH

(−1)

2

∫ x+ct

−l
ψ̃(s)ds.

In R4 region, x− ct ≤ −l and x+ ct ≥ l, so that

f̃(x+ ct) = 0, f̃(x− ct) = 0,∫ x+ct

x−ct
g̃(s)ds =

∫ −l
x−ct

g̃(s)d⊕
∫ l

−l
g̃(s)ds

∫ x+ct

l

g̃(s)ds =

∫ l

−l
ψ̃(s)ds,

and hence

ũ(x, t) = �gH
(−1)

2

∫ x+ct

x−ct
g̃(s)d = �gH

(−1)

2

∫ l

−l
ψ̃(s)ds.
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In R5 and R6 regions, f̃(x + ct) = 0 = f̃(x − ct) and g̃(s) = 0 for s ∈
[x− ct, x+ ct], hence ũ = 0. To summarize
(57)

ũ(x, t) =



1
2

(
φ̃(x− ct)⊕ φ̃(x+ ct)

)
�gH

(−1)
2c

∫ x+ct
x−ct ψ̃(s)ds, (x, t) ∈ R1,

φ̃(x−ct)
2 �gH

(−1)
2

∫ l
x−ct ψ̃(s)ds, (x, t) ∈ R2,

φ̃(x+ct)
2 �gH

(−1)
2

∫ x+ct
−l ψ̃(s)ds, (x, t) ∈ R3,

�gH
(−1)
2

∫ l
−l ψ̃(s)ds, (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

Step 4. For each specific time t0, write the x-intervals corresponding to the
intersection of the sets Rn with the line t = t0. (similarly, as in the previous
step 4)

Example 5.2. For an infinitely long string, consider giving the string zero
initial displacement ũ(x, 0) = 0 and initial velocity ∂tũ(x, 0) = g̃(x). Suppose
that

g̃(x) =

{
γ̃ � cos2(π2x), −1 ≤ x ≤ 1,

0, otherwise.

The ICs have the form considered above for φ̃(x) = 0 and ψ̃(x) = γ̃�cos2(π2x).
Step 1. The wave D’Alembert solution of (41) becomes

ũ(x, t) = �
(−1)

2

∫ x+t

x−t
g̃(s)ds.

Step 2. By (50) we determine the regions.
Step 3. Determine u(x, t) in each region. From (57) by consider c = 1, l =
1, β = 〈1, 3, 5〉, we have

ũ(x, t) =



�gH
(−1)
2

∫ x+t
x−t 〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R1,

�gH
(−1)
2

∫ 1

x−t〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R2,

�gH
(−1)
2

∫ x+t
−1 〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R3,

�gH
(−1)
2

∫ 1

−1〈1, 3, 5〉 � ψ(s)ds, (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

Note that
R1:

�gH
(−1)

2

∫ x+t

x−t
〈1, 3, 5〉 � ψ(s)ds

= �gH〈1, 3, 5〉 �
( (−1)t

2
⊕ 1

4π
sin(π(x− t))�gH

1

4π
sin(π(x+ t))

)
,
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R2:

�gH
(−1)

2

∫ 1

x−t
〈1, 3, 5〉 � ψ(s)ds

= �gH〈1, 3, 5〉 �
(1

4
(x− t)�gH

1

4
⊕ 1

4π
sin(π(x− t)

)
,

R3:

�gH
(−1)

2

∫ x+t

−1
〈1, 3, 5〉 � ψ(s)ds =

�gH 〈1, 3, 5〉 �
(1

4
�gH

1

4
(x+ t)

)
�gH

(−1)

4π
sin(π(x+ t)

)
,

R4:

�gH
(−1)

2

∫ 1

−1
〈1, 3, 5〉 � ψ(s)ds = �gH〈1, 3, 5〉 �

(−1)

2
,

R5 and R6:

ũ(x, t) = 0.

Thus

(58)

ũ(x, t) =



�gH〈1, 3, 5〉 �
(

(−1)
2 t⊕ 1

4π sin(π(x− t))�gH 1
4π sin(π(x+ t))

)
,

(x, t) ∈ R1,

�gH〈1, 3, 5〉 �
(

1
4 (x− t)�gH 1

4 ⊕
1
4π sin(π(x− t)

)
,

(x, t) ∈ R2,

�gH〈1, 3, 5〉 �
(

1
4 �gH

1
4 (x+ t)

)
�gH

(−1)
4π sin(π(x+ t)

)
,

(x, t) ∈ R3,

�gH〈1, 3, 5〉 � (−1)
2 , (x, t) ∈ R4,

0, (x, t) ∈ R5, R6.

Step 4. We early consider, intermediate and later times t = 1/2, 1, 2. At
t = 1/2, the Rn regions are given by (52), and (58) becomes

ũ(x,
1

2
) =



�gH 〈1, 3, 5〉 �
( (−1)

4
− 1

2π
cosπx

)
, −1

2
≤x ≤ 1

2
,

�gH 〈1, 3, 5〉 �
(1

4
(x− 1

2
)�gH

1

4
⊕ 1

4π
cosπx

)
,

1

2
≤x ≤ 3

2

�gH 〈1, 3, 5〉 �
(1

4
�gH

1

4
(x+

1

2
)
)
�gH

(−1)

4π
cosπx

)
, −3

2
≤x ≤ −1

2
,

0, x ≥ 3

2
.
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At time 1, the Rn regions are given by (53), and (58) becomes

ũ(x, 1) =


�gH 〈1, 3, 5〉 �

(1

4
(x− 1)�gH

1

4

)
⊕ (−1)

4π
sinπx, 0 ≤x ≤ 2,

�gH 〈1, 3, 5〉 �
(1

4
�gH

1

4
(x+ 1)�gH

1

4π
sinπx

)
, −2 ≤x ≤ 0,

0, |x| ≥ 2.

At time 2, the Rn regions are given by (54), and (58) becomes

ũ(x, 2) =



�gH 〈1, 3, 5〉 �
(1

4
(x− 2)�gH

1

4
⊕ 1

4π
sinπx

)
, 1 ≤x ≤ 3,

�gH 〈1, 3, 5〉 �
(1

4
�gH

1

4
(x+ 2)�gH

(−1)

4π
sinπx

)
, −3 ≤x ≤ −1,

�gH 〈1, 3, 5〉 �
(−1)

2
, −1 ≤x ≤ 1,

0, |x| ≥ 3.

6. Conclusion

The physics phenomena can be expressed by connecting fuzzy space and
fuzzy derivatives with time, such as wave equations in electromagnetic. In
this paper, the one-dimensional fuzzy wave and telegraph equations have been
solved by an analytical technique under generalized Hukuhara derivatives. The
basic concepts of the fuzzy theory have been presented. Considering physical
interpretations, we have discussed fuzzy wave solutions obtained in detail using
position variable restriction. Then, the fuzzy wave solutions have been clarified
by providing examples using the fuzzy D’Alembert method.
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