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Article type: Research Article

(Received: 25 April 2022, Received in revised form: 17 June 2022)

(Accepted: 03 July 2022, Published Online: 03 July 2022)

Abstract. In this paper, we consider S-manifolds endowed with a quarter-

symmetric metric connection. We obtain the condition for a curve to
be magnetic with respect to this connection. We show that quarter-

symmetric magnetic curves are θα−slant curves of osculating order r ≤ 3

with constant quarter-symmetric curvature functions. Finally, we give
the classification theorem.
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1. Introduction

Let (M, g) be a (2n+ s)-dimensional Riemann manifold. M is called framed
metric ϕ−manifold [21] with a framed metric structure (ϕ, ξα, η

α, g), α ∈
{1, ..., s} , if this structure satisfies the following equations:

ϕ2 = −I +
s∑

α=1
ηα ⊗ ξα, ηα(ξβ) = δαβ ,

ϕ (ξα) = 0, ηα ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ),

dηα(X,Y ) = g(X,ϕY ) = −dηα(Y,X), ηα(X) = g(X, ξα),

where, ϕ is a (1, 1) tensor field of rank 2n; ξ1, ..., ξs are vector fields; η1, ..., ηs are
1-forms and g is a Riemannian metric on M ; X,Y ∈ χ (M) and α, β ∈ {1, ..., s}.

(ϕ, ξα, η
α, g) is said to be an S-structure, if the Nijenhuis tensor of ϕ is equal

to −2dηα ⊗ ξα, where α ∈ {1, ..., s} [2]. In this case, (M,ϕ, ξα, η
α, g) is called

an S-manifold. When s = 1, a framed metric structure turns into an almost
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contact metric structure and an S-structure turns into a Sasakian structure.
For an S-structure, the following equations are satisfied [2], [5]:

(1) (∇Xϕ) (Y ) =

s∑
α=1

{
g(ϕX,ϕY )ξα + ηα(Y )ϕ2X

}
,

(2) ∇Xξα = −ϕX, α ∈ {1, ..., s} .

If M is Sasakian (s = 1), (2) can be directly calculated from (1). Note that the
term ”S-manifold” has been used by A. J. Ledger and others as a generalisation
of E. Cartan’s symmetric spaces, e.g. [15], [16] and [19].

Now, let us consider an S-manifold endowed with a quarter-symmetric met-
ric connection and obtain a condition (conditions) under which a curve is mag-
netic with respect to this connection in the sense of Ozgur and Guvenc (the
present author).

Definition 1.1. A pseudo-Hermitian magnetic curve in a Sasakian manifold
is a curve satisfying one of the following equations:

• Ozgur and Guvenc’s sense: [12]

∇̂TT = (−q + 2 cos θ)ϕT,

• Lee’s sense: [17]

∇̂TT = −qϕT,

where ∇̂ is the Tanaka-Webster connection, q is non-zero constant, θ is the
contact angle of the curve and T is the unit tangent vector field along the curve.
Here, the minus sign (−) is for orientation purposes.

It is a straightforward motivation to replace another metric connection and
study in the same direction of the above papers. For this achievement, we will
choose the following quarter-symmetric metric connection in an S-manifold: [9]

(3) ∇XY = ∇XY +

s∑
α=1

ηα (X)ϕY,

where ∇ is the Levi-Civita connection and X,Y ∈ χ(M).

1.1. Magnetic curves.

Definition 1.2. Let (M, g) be a Riemannian manifold, F a closed 2-form and
let us denote the Lorentz force on M by Φ, which is a (1, 1)-type tensor field.
If F is associated by the relation

g(ΦX,Y ) = F (X,Y ), ∀X,Y ∈ χ(M),

then it is called a magnetic field ( [1], [4] and [6]).
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Let ∇ be the Riemannian connection associated to the Riemannian metric
g and γ : I →M a smooth curve. If γ satisfies the Lorentz equation

(4) ∇γ′(t)γ
′(t) = Φ(γ′(t)),

then it is called a magnetic curve or a trajectory for the magnetic field F .
The Lorentz equation is a generalization of the equation for geodesics. A

curve which satisfies the Lorentz equation is called magnetic trajectory. Mag-
netic trajectories have constant speed. If the speed of the magnetic curve γ
is equal to 1, then it is called a normal magnetic curve [7]. For extensive in-
formation about almost contact metric manifolds and Sasakian manifolds, we
refer to Blair’s book [3].

1.2. Quarter-symmetric metric connection.

Definition 1.3. A linear connection ∇ on an n-dimensional Riemannian man-
ifold (Mn, g) is called a quarter-symmetric connection [8] if its torsion tensor
T satisfies

T (X,Y ) = π(Y )f(X)− π(X)f (Y ) ,

where π is a 1−form and f is a (1, 1)-type tensor field. If, moreover, the
connection ∇ satisfies (

∇Xg
)

(Y, Z) = 0,

for all vector fields X,Y, Z ∈ χ(M), then it is called quarter-symmetric metric
connection.

Let
(
M2n+s, ϕ, ξα, η

α, g
)

be an S-manifold. Let us take

π = −
s∑

α=1

ηα, f = ϕ.

Then, the affine metric connection defined by

(5) ∇XY = ∇XY +

s∑
α=1

ηα (X)ϕY

becomes a quarter-symmetric metric connection [9]. Here, ∇ denotes the Levi-
Civita connection. It is noteworthy that Vanlı also used another quarter-
symmetric metric connection in her recent paper [20], where she chose π =∑s
α=1 ηα, f = ϕ. In our work, we use the connection given in (5), which will

effect our equations only with a minus sign.

2. Quarter-symmetric Magnetic curves

2.1. Frenet curves.
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Definition 2.1. Let (Mn, g) be an n-dimensional Riemannian manifold and
γ : I → M a curve parametrized by arc-length. If there exists g-orthonormal
vector fields T = E1, E2, ..., Er along γ such that

T = E1 = γ′,

∇TT = k1E2,

∇TE2 = −k1T + k2E3,(6)

...

∇TEj = −kj−1Ej−1 + kjEj+1, (2 < j < r) ,

...

∇TEr = −kr−1Er−1,

then γ is called a Frenet curve for ∇ of osculating order r , (1 ≤ r ≤ n) [14].
Here k1, ..., kr−1 are called quarter-symmetric curvature functions of γ and
these functions are positive valued on I .

• A geodesic for ∇ (or quarter-symmetric geodesic) is a Frenet curve of
osculating order 1 for ∇.

• If r = 2 and k1 is a constant, then γ is called a quarter-symmetric
circle.

• A quarter-symmetric helix of order r, r ≥ 3, is a Frenet curve for ∇ of
osculating order r with non-zero positive constant quarter-symmetric
curvatures k1, ..., kr−1.

• If we shortly state quarter-symmetric helix, we mean its osculating
order is 3.

Let M =
(
M2n+s, ϕ, ξα, η

α, g
)

be an S-manifold endowed with the quarter-

symmetric metric connection ∇. Let us denote the fundamental 2-form of M
by Ω. Then, we have

Ω(X,Y ) = g(X,ϕY ),

(see [3]). In an S-manifold, since Ω = dηα and d2 = 0 (famous Poincaré
identity), Ω is obviously closed. Thus, we can define a magnetic field Fq on M
by

Fq(X,Y ) = qΩ(X,Y ),

namely the contact magnetic field with strength q, where X,Y ∈ χ(M) and
q ∈ R [13]. We will assume that q 6= 0 to avoid the absence of the strength of
magnetic field (see [5] and [7]).

The Lorentz force Φ associated to the magnetic field Fq can be written as

Φ = −qϕ.

So the Lorentz equation (4) is

(7) ∇TT = −qϕT,
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where γ : I → M is a curve with arc-length parameter, T = γ′ is the tangent
vector field and ∇ is the Levi-Civita connection (see [7] and [13]). By the use
of equations (3) and (7), we have

(8) ∇TT =

[
−q +

s∑
α=1

ηα (T )

]
ϕT.

Now, we can give the following definition:

Definition 2.2. Let γ : I → M be a unit-speed curve in an S-manifold M =(
M2n+s, ϕ, ξα, η

α, g
)

endowed with the quarter-symmetric metric connection

∇. Then γ is called a normal magnetic curve with respect to the quarter-
symmetric metric connection ∇ (or shortly quarter-symmetric magnetic curve)
if it satisfies equation (8).

In [9], it is shown that

(∇Xϕ) (Y ) =

s∑
α=1

{
g(ϕX,ϕY )ξα + ηα(Y )ϕ2X

}
,

∇Xξα = −ϕX, α ∈ {1, ..., s} .
If we apply these equations along the unit-speed curve, we have

(∇Tϕ) (T ) =

s∑
α=1

{
g(ϕT, ϕT )ξα + ηα(T )ϕ2T

}
= (1−

s∑
α=1

cos2 θα)

(
s∑

α=1

ξα

)
(9)

+

(
s∑

α=1

cos θα

)(
−T +

s∑
α=1

cos θαξα

)
and

∇T ξα = −ϕT, α ∈ {1, ..., s} .
Here, θα = θα(t) denotes the angle functions between T and ξα, that is,

cos θα(t) = g(T, ξα).

Notice that γ is called a θα−slant curve if all θα are constants [10]. It is called a
slant curve if these constant angles have the same value [11]. Moreover, if this
common value is π

2 for all α = 1, 2, ..., s, then it is called a Legendre curve [18].
Now, we can give the following lemma:

Lemma 2.3. A quarter-symmetric magnetic curve in an S-manifold is a θα-
slant curve.
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Proof. Let γ : I →M be a quarter-symmetric magnetic curve. Then, we find

d

dt
g(T, ξα) = g(∇TT, ξα) + g(T,∇T ξα)

= g(

[
−q +

s∑
α=1

ηα (T )

]
ϕT, ξα)

= 0.

So, cos θα are constants for all α = 1, 2, ..., s. �

Here is a direct corollary for s = 1:

Corollary 2.4. In a Sasakian manifold endowed with ∇, a quarter-symmetric
magnetic curve is slant.

2.2. Main Calculations. Now, it is time to find quarter-symmetric curva-
tures of quarter-symmetric magnetic curves in S-manifolds.

Let γ : I → M =
(
M2n+s, ϕ, ξα, η

α, g
)

be a quarter-symmetric magnetic
curve. Since it is θα−slant, equation (8) becomes

(10) ∇TT =

[
−q +

s∑
α=1

cos θα

]
ϕT.

Using (6) and (10), we have

(11) k1E2 =

[
−q +

s∑
α=1

cos θα

]
ϕT.

The norm of both sides in (11) gives us

(12) k1 =

∣∣∣∣∣−q +

s∑
α=1

cos θα

∣∣∣∣∣
√√√√1−

s∑
α=1

cos2 θα,

which is a constant. If we replace (12) in (11), we find

(13) ϕT = δ

√√√√1−
s∑

α=1

cos2 θαE2,
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where δ = sign (−q +
∑s
α=1 cos θα) . If we differentiate both sides of (13) along

the curve and use (9), we get

∇TϕT =

(
1−

s∑
α=1

cos2 θα

)(
s∑

α=1

ξα

)

+

(
s∑

α=1

cos θα

)(
−T +

s∑
α=1

cos θαξα

)
+ k1ϕE2

= δ

√√√√1−
s∑

α=1

cos2 θα
(
−k1T + k2E3

)
.

After some calculations, we have

k2δ

√√√√1−
s∑

α=1

cos2 θαE3 =

(
1−

s∑
α=1

cos2 θα

)(
s∑

α=1

ξα

)
(14)

+

(
s∑

α=1

cos θα + δ.D

)(
s∑

α=1

cos θαξα

)

−

(
s∑

α=1

cos θα + δ.D.

s∑
α=1

cos2 θα

)
.T

= W,

where

D =
κ1√

1−
s∑

α=1
cos2 θα

=

∣∣∣∣∣−q +

s∑
α=1

cos θα

∣∣∣∣∣ .
Finally, we obtain

(15) k2 =

√√√√√√√
(

s∑
α=1

cos2 θα

)
q2 − 2

(
s∑

α=1
cos θα

)(
1 +

s∑
α=1

cos2 θα

)
q

+

(
3 +

s∑
α=1

cos2 θα

)(
s∑

α=1
cos θα

)2

+

(
1−

s∑
α=1

cos2 θα

)
s

and

(16) E3 =
1

k2δ
√

1−
∑s
α=1 cos2 θα

W.

Notice that k2 is also a constant.
If we differentiate (14) once more, we have κ3 = 0. As a result we can state

our second lemma:

Lemma 2.5. The osculating order of a quarter-symmetric magnetic curve in
an S-manifold is at most 3.
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Finally, we can classify quarter-symmetric magnetic curves of S-manifolds
as follows:

Theorem 2.6. Let γ : I →M =
(
M2n+s, ϕ, ξα, η

α, g
)

be a quarter-symmetric
magnetic curve. Then it belongs to the following list:

(a) quarter-symmetric non-Legendre θα−slant geodesics with
∑s
α=1 cos θα 6=

0 (including quarter-symmetric geodesics as integral curves of
∑s
α=1 cos θαξα,

where
∑s
α=1 cos2 θα = 1); or

(b) quarter-symmetric θα−slant circles with

k1 =

∣∣∣∣∣−q +

s∑
α=1

cos θα

∣∣∣∣∣
√√√√1−

s∑
α=1

cos2 θα,

and its Frenet frame field for ∇ is{
T,

1√
1−

∑s
α=1 cos2 θα

δϕT

}
,

or
(c) quarter-symmetric θα−slant helices with

k1 =

∣∣∣∣∣−q +

s∑
α=1

cos θα

∣∣∣∣∣
√√√√1−

s∑
α=1

cos2 θα,

k2 =

√√√√√√√
(

s∑
α=1

cos2 θα

)
q2 − 2

(
s∑

α=1
cos θα

)(
1 +

s∑
α=1

cos2 θα

)
q

+

(
3 +

s∑
α=1

cos2 θα

)(
s∑

α=1
cos θα

)2

+

(
1−

s∑
α=1

cos2 θα

)
s

and its Frenet frame field for ∇ is{
T,

1√
1−

∑s
α=1 cos2 θα

δϕT,
1

k2δ
√

1−
∑s
α=1 cos2 θα

W

}
,

where W is given by (14).
Otherwise, γ can not be a quarter-symmetric magnetic curve.

Proof. Let γ : I → M be a quarter-symmetric magnetic curve of osculating
order r. Then, γ is a θα−slant curve (Lemma 2.3) and 1 ≤ r ≤ 3 (Lemma 2.5).
Firstly, let r = 1, that is, ∇TT = 0. From equation (10), we get

0 =

[
−q +

s∑
α=1

cos θα

]
ϕT.

So, either −q+
∑s
α=1 cos θα = 0 or ϕT = 0. If −q+

∑s
α=1 cos θα = 0, then γ is

a non-Legendre θα−slant curve, since q =
∑s
α=1 cos θα is a non-zero constant.
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Or else, ϕT = 0 gives us ϕ2T = 0 = −T +
∑s
α=1 cos θαξα. Then, we can write

T =

s∑
α=1

cos θαξα,

i.e. γ is an integral curve of
∑s
α=1 cos θαξα. From the fact that γ is a unit-

speed curve, we also have g (T, T ) =
∑s
α=1 cos2 θα = 1. We finished the proof

of (a). Now, let r = 2, that is, k2 = 0. In this case, the curve γ has only one
non-zero quarter-symmetric curvature given by equation (12). If we denote the
Frenet frame field as {T,E2}, from equation (13), we can write

E2 =
1√

1−
∑s
α=1 cos2 θα

δϕT.

Note that k1 is a constant and k2 = 0, so γ is a quarter-symmetric θα−slant
circle. The proof of (b) is done. Finally, let r = 3, i.e. k3 = 0. We have already
calculated the quarter-symmetric curvatures k1 and k2 in equations (12) and
(15). If we denote the Frenet frame field as {T,E2, E3}, we can write E2 and
E3 as in equations (13) and (16). Thus, the proof of (c) is over. The osculating
order r can not be greater than 3, so the list is complete. If γ does not belong
to the list, it can not be a quarter-symmetric magnetic curve. �
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[9] Göçmen, A., Quarter Symmetric Connections in S-manifolds, MSc Thesis, Supervisor:

Prof. Dr. Aysel TURGUT VANLI, (2013).
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