THE COMPLETE CLASSIFICATION OF QUARTER-SYMMETRIC MAGNETIC CURVES IN S-MANIFOLDS

Ş. Güvenç
Article type: Research Article
Received: 25 April 2022, Received in revised form: 17 June 2022)
(Accepted: 03 July 2022, Published Online: 03 July 2022)

Abstract

In this paper, we consider S-manifolds endowed with a quartersymmetric metric connection. We obtain the condition for a curve to be magnetic with respect to this connection. We show that quartersymmetric magnetic curves are θ_{α}-slant curves of osculating order $r \leq 3$ with constant quarter-symmetric curvature functions. Finally, we give the classification theorem

Keywords: Magnetic curve, θ_{α}-slant curve, S-manifold, Quarter-symmetric metric connection.
2020 MSC : Primary 53C25, 53C40, 53A04

1. Introduction

Let (M, g) be a $(2 n+s)$-dimensional Riemann manifold. M is called framed metric φ-manifold [21] with a framed metric structure $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in$ $\{1, \ldots, s\}$, if this structure satisfies the following equations:

$$
\begin{gathered}
\varphi^{2}=-I+\sum_{\alpha=1}^{s} \eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, \\
\varphi\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ \varphi=0, \\
g(\varphi X, \varphi Y)=g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y), \\
d \eta^{\alpha}(X, Y)=g(X, \varphi Y)=-d \eta^{\alpha}(Y, X), \quad \eta^{\alpha}(X)=g\left(X, \xi_{\alpha}\right),
\end{gathered}
$$

where, φ is a $(1,1)$ tensor field of rank $2 n ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms and g is a Riemannian metric on $M ; X, Y \in \chi(M)$ and $\alpha, \beta \in\{1, \ldots, s\}$.
$\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is said to be an S-structure, if the Nijenhuis tensor of φ is equal to $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$, where $\alpha \in\{1, \ldots, s\}$ [2]. In this case, $\left(M, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called an S-manifold. When $s=1$, a framed metric structure turns into an almost
® sguvenc@balikesir.edu.tr, ORCID: 0000-0001-6254-4693
(C) the Author

DOI: 10.22103/jmmr.2022.19400.1244
Publisher: Shahid Bahonar University of Kerman
How to cite: Ş. Güvenç, The Complete Classification of Quarter-Symmetric Magnetic
Curves in S-Manifolds, J. Mahani Math. Res. 2023; 12(1): 151-160.
contact metric structure and an S-structure turns into a Sasakian structure. For an S-structure, the following equations are satisfied [2], [5]:

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right)(Y)=\sum_{\alpha=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{\alpha}+\eta^{\alpha}(Y) \varphi^{2} X\right\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} \xi_{\alpha}=-\varphi X, \alpha \in\{1, \ldots, s\} \tag{2}
\end{equation*}
$$

If M is Sasakian $(s=1)$, (2) can be directly calculated from (1). Note that the term " S-manifold" has been used by A. J. Ledger and others as a generalisation of E. Cartan's symmetric spaces, e.g. [15], [16] and [19].

Now, let us consider an S-manifold endowed with a quarter-symmetric metric connection and obtain a condition (conditions) under which a curve is magnetic with respect to this connection in the sense of Ozgur and Guvenc (the present author).

Definition 1.1. A pseudo-Hermitian magnetic curve in a Sasakian manifold is a curve satisfying one of the following equations:

- Ozgur and Guvenc's sense: [12]

$$
\widehat{\nabla}_{T} T=(-q+2 \cos \theta) \varphi T
$$

- Lee's sense: [17]

$$
\widehat{\nabla}_{T} T=-q \varphi T
$$

where $\widehat{\nabla}$ is the Tanaka-Webster connection, q is non-zero constant, θ is the contact angle of the curve and T is the unit tangent vector field along the curve. Here, the minus sign $(-)$ is for orientation purposes.

It is a straightforward motivation to replace another metric connection and study in the same direction of the above papers. For this achievement, we will choose the following quarter-symmetric metric connection in an S-manifold: [9]

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{\alpha=1}^{s} \eta_{\alpha}(X) \varphi Y \tag{3}
\end{equation*}
$$

where ∇ is the Levi-Civita connection and $X, Y \in \chi(M)$.

1.1. Magnetic curves.

Definition 1.2. Let (M, g) be a Riemannian manifold, F a closed 2 -form and let us denote the Lorentz force on M by Φ, which is a (1,1)-type tensor field. If F is associated by the relation

$$
g(\Phi X, Y)=F(X, Y), \quad \forall X, Y \in \chi(M)
$$

then it is called a magnetic field ([1], [4] and [6]).

Let ∇ be the Riemannian connection associated to the Riemannian metric g and $\gamma: I \rightarrow M$ a smooth curve. If γ satisfies the Lorentz equation

$$
\begin{equation*}
\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}(t)=\Phi\left(\gamma^{\prime}(t)\right) \tag{4}
\end{equation*}
$$

then it is called a magnetic curve or a trajectory for the magnetic field F.
The Lorentz equation is a generalization of the equation for geodesics. A curve which satisfies the Lorentz equation is called magnetic trajectory. Magnetic trajectories have constant speed. If the speed of the magnetic curve γ is equal to 1 , then it is called a normal magnetic curve [7]. For extensive information about almost contact metric manifolds and Sasakian manifolds, we refer to Blair's book [3].

1.2. Quarter-symmetric metric connection.

Definition 1.3. A linear connection $\bar{\nabla}$ on an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$ is called a quarter-symmetric connection [8] if its torsion tensor T satisfies

$$
T(X, Y)=\pi(Y) f(X)-\pi(X) f(Y),
$$

where π is a 1 -form and f is a (1,1)-type tensor field. If, moreover, the connection $\bar{\nabla}$ satisfies

$$
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0,
$$

for all vector fields $X, Y, Z \in \chi(M)$, then it is called quarter-symmetric metric connection.

Let $\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an S-manifold. Let us take

$$
\pi=-\sum_{\alpha=1}^{s} \eta_{\alpha}, f=\varphi
$$

Then, the affine metric connection defined by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{\alpha=1}^{s} \eta_{\alpha}(X) \varphi Y \tag{5}
\end{equation*}
$$

becomes a quarter-symmetric metric connection [9]. Here, ∇ denotes the LeviCivita connection. It is noteworthy that Vanlı also used another quartersymmetric metric connection in her recent paper [20], where she chose $\pi=$ $\sum_{\alpha=1}^{s} \eta_{\alpha}, f=\varphi$. In our work, we use the connection given in (5), which will effect our equations only with a minus sign.

2. Quarter-symmetric Magnetic curves

2.1. Frenet curves.

Definition 2.1. Let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold and $\gamma: I \rightarrow M$ a curve parametrized by arc-length. If there exists g-orthonormal vector fields $T=E_{1}, E_{2}, \ldots, E_{r}$ along γ such that

$$
\begin{align*}
T= & E_{1}=\gamma^{\prime} \\
\bar{\nabla}_{T} T= & \bar{k}_{1} E_{2} \\
\bar{\nabla}_{T} E_{2}= & -\bar{k}_{1} T+\bar{k}_{2} E_{3} \tag{6}\\
& \cdots \\
\bar{\nabla}_{T} E_{j}= & -\bar{k}_{j-1} E_{j-1}+\bar{k}_{j} E_{j+1}, \quad(2<j<r) \\
& \cdots \\
\bar{\nabla}_{T} E_{r}= & -\bar{k}_{r-1} E_{r-1}
\end{align*}
$$

then γ is called a Frenet curve for $\bar{\nabla}$ of osculating order r, $(1 \leq r \leq n)$ [14]. Here $\bar{k}_{1}, \ldots, \bar{k}_{r-1}$ are called quarter-symmetric curvature functions of γ and these functions are positive valued on I.

- A geodesic for $\bar{\nabla}$ (or quarter-symmetric geodesic) is a Frenet curve of osculating order 1 for $\bar{\nabla}$.
- If $r=2$ and \bar{k}_{1} is a constant, then γ is called a quarter-symmetric circle.
- A quarter-symmetric helix of order $r, r \geq 3$, is a Frenet curve for $\bar{\nabla}$ of osculating order r with non-zero positive constant quarter-symmetric curvatures $\bar{k}_{1}, \ldots, \bar{k}_{r-1}$.
- If we shortly state quarter-symmetric helix, we mean its osculating order is 3 .
Let $M=\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an S-manifold endowed with the quartersymmetric metric connection $\bar{\nabla}$. Let us denote the fundamental 2-form of M by Ω. Then, we have

$$
\Omega(X, Y)=g(X, \varphi Y)
$$

(see [3]). In an S-manifold, since $\Omega=d \eta^{\alpha}$ and $d^{2}=0$ (famous Poincaré identity), Ω is obviously closed. Thus, we can define a magnetic field F_{q} on M by

$$
F_{q}(X, Y)=q \Omega(X, Y)
$$

namely the contact magnetic field with strength q, where $X, Y \in \chi(M)$ and $q \in \mathbb{R}[\mathbf{1 3}]$. We will assume that $q \neq 0$ to avoid the absence of the strength of magnetic field (see [5] and [7]).

The Lorentz force Φ associated to the magnetic field F_{q} can be written as

$$
\Phi=-q \varphi .
$$

So the Lorentz equation (4) is

$$
\begin{equation*}
\nabla_{T} T=-q \varphi T \tag{7}
\end{equation*}
$$

where $\gamma: I \rightarrow M$ is a curve with arc-length parameter, $T=\gamma^{\prime}$ is the tangent vector field and ∇ is the Levi-Civita connection (see [7] and [13]). By the use of equations (3) and (7), we have

$$
\begin{equation*}
\bar{\nabla}_{T} T=\left[-q+\sum_{\alpha=1}^{s} \eta_{\alpha}(T)\right] \varphi T . \tag{8}
\end{equation*}
$$

Now, we can give the following definition:
Definition 2.2. Let $\gamma: I \rightarrow M$ be a unit-speed curve in an S-manifold $M=$ $\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ endowed with the quarter-symmetric metric connection $\bar{\nabla}$. Then γ is called a normal magnetic curve with respect to the quartersymmetric metric connection $\bar{\nabla}$ (or shortly quarter-symmetric magnetic curve) if it satisfies equation (8).

In [9], it is shown that

$$
\begin{gathered}
\left(\bar{\nabla}_{X} \varphi\right)(Y)=\sum_{\alpha=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{\alpha}+\eta^{\alpha}(Y) \varphi^{2} X\right\} \\
\bar{\nabla}_{X} \xi_{\alpha}=-\varphi X, \alpha \in\{1, \ldots, s\}
\end{gathered}
$$

If we apply these equations along the unit-speed curve, we have

$$
\begin{align*}
\left(\bar{\nabla}_{T} \varphi\right)(T)= & \sum_{\alpha=1}^{s}\left\{g(\varphi T, \varphi T) \xi_{\alpha}+\eta^{\alpha}(T) \varphi^{2} T\right\} \\
= & \left(1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right)\left(\sum_{\alpha=1}^{s} \xi_{\alpha}\right) \tag{9}\\
& +\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)\left(-T+\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right)
\end{align*}
$$

and

$$
\bar{\nabla}_{T} \xi_{\alpha}=-\varphi T, \alpha \in\{1, \ldots, s\}
$$

Here, $\theta_{\alpha}=\theta_{\alpha}(t)$ denotes the angle functions between T and ξ_{α}, that is,

$$
\cos \theta_{\alpha}(t)=g\left(T, \xi_{\alpha}\right)
$$

Notice that γ is called a θ_{α}-slant curve if all θ_{α} are constants [10]. It is called a slant curve if these constant angles have the same value [11]. Moreover, if this common value is $\frac{\pi}{2}$ for all $\alpha=1,2, \ldots, s$, then it is called a Legendre curve [18].

Now, we can give the following lemma:
Lemma 2.3. A quarter-symmetric magnetic curve in an S-manifold is a θ_{α} slant curve.

Proof. Let $\gamma: I \rightarrow M$ be a quarter-symmetric magnetic curve. Then, we find

$$
\begin{aligned}
\frac{d}{d t} g\left(T, \xi_{\alpha}\right) & =g\left(\bar{\nabla}_{T} T, \xi_{\alpha}\right)+g\left(T, \bar{\nabla}_{T} \xi_{\alpha}\right) \\
& =g\left(\left[-q+\sum_{\alpha=1}^{s} \eta_{\alpha}(T)\right] \varphi T, \xi_{\alpha}\right) \\
& =0 .
\end{aligned}
$$

So, $\cos \theta_{\alpha}$ are constants for all $\alpha=1,2, \ldots, s$.

Here is a direct corollary for $s=1$:
Corollary 2.4. In a Sasakian manifold endowed with $\bar{\nabla}$, a quarter-symmetric magnetic curve is slant.
2.2. Main Calculations. Now, it is time to find quarter-symmetric curvatures of quarter-symmetric magnetic curves in S-manifolds.

Let $\gamma: I \rightarrow M=\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a quarter-symmetric magnetic curve. Since it is $\theta_{\alpha}-$ slant, equation (8) becomes

$$
\begin{equation*}
\bar{\nabla}_{T} T=\left[-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right] \varphi T \tag{10}
\end{equation*}
$$

Using (6) and (10), we have

$$
\begin{equation*}
\bar{k}_{1} E_{2}=\left[-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right] \varphi T \tag{11}
\end{equation*}
$$

The norm of both sides in (11) gives us

$$
\begin{equation*}
\bar{k}_{1}=\left|-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}, \tag{12}
\end{equation*}
$$

which is a constant. If we replace (12) in (11), we find

$$
\begin{equation*}
\varphi T=\delta \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha} E_{2}} \tag{13}
\end{equation*}
$$

where $\delta=\operatorname{sign}\left(-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)$. If we differentiate both sides of (13) along the curve and use (9), we get

$$
\begin{aligned}
\bar{\nabla}_{T} \varphi T= & \left(1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right)\left(\sum_{\alpha=1}^{s} \xi_{\alpha}\right) \\
& +\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)\left(-T+\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right)+\bar{k}_{1} \varphi E_{2} \\
= & \delta \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\left(-\bar{k}_{1} T+\bar{k}_{2} E_{3}\right) .}
\end{aligned}
$$

After some calculations, we have
(14) $\bar{k}_{2} \delta \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}} E_{3}=\left(1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right)\left(\sum_{\alpha=1}^{s} \xi_{\alpha}\right)$

$$
\begin{aligned}
& +\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}+\delta . D\right)\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}\right) \\
& -\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}+\delta \cdot D \cdot \sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) \cdot T
\end{aligned}
$$

$$
=W
$$

where

$$
D=\frac{\bar{\kappa}_{1}}{\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}}=\left|-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right| .
$$

Finally, we obtain
(15) $\quad \bar{k}_{2}=\sqrt{\begin{array}{c}\left(\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) q^{2}-2\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)\left(1+\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) q \\ +\left(3+\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right)\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)^{2}+\left(1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) s\end{array}}$
and

$$
\begin{equation*}
E_{3}=\frac{1}{\bar{k}_{2} \delta \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} W \tag{16}
\end{equation*}
$$

Notice that \bar{k}_{2} is also a constant.
If we differentiate (14) once more, we have $\bar{\kappa}_{3}=0$. As a result we can state our second lemma:

Lemma 2.5. The osculating order of a quarter-symmetric magnetic curve in an S-manifold is at most 3 .

Finally, we can classify quarter-symmetric magnetic curves of S-manifolds as follows:

Theorem 2.6. Let $\gamma: I \rightarrow M=\left(M^{2 n+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be a quarter-symmetric magnetic curve. Then it belongs to the following list:
(a) quarter-symmetric non-Legendre θ_{α}-slant geodesics with $\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \neq$ 0 (including quarter-symmetric geodesics as integral curves of $\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$, where $\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1$); or
(b) quarter-symmetric θ_{α}-slant circles with

$$
\bar{k}_{1}=\left|-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}
$$

and its Frenet frame field for $\bar{\nabla}$ is

$$
\left\{T, \frac{1}{\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} \delta \varphi T\right\}
$$

or
(c) quarter-symmetric θ_{α}-slant helices with

$$
\begin{gathered}
\bar{k}_{1}=\left|-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right| \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}, \\
\bar{k}_{2}=\sqrt{\left(\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) q^{2}-2\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)\left(1+\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) q} \\
+\left(3+\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right)\left(\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right)^{2}+\left(1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}\right) s
\end{gathered}
$$

and its Frenet frame field for $\bar{\nabla}$ is

$$
\left\{T, \frac{1}{\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} \delta \varphi T, \frac{1}{\bar{k}_{2} \delta \sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} W\right\}
$$

where W is given by (14).
Otherwise, γ can not be a quarter-symmetric magnetic curve.
Proof. Let $\gamma: I \rightarrow M$ be a quarter-symmetric magnetic curve of osculating order r. Then, γ is a θ_{α}-slant curve (Lemma 2.3) and $1 \leq r \leq 3$ (Lemma 2.5). Firstly, let $r=1$, that is, $\bar{\nabla}_{T} T=0$. From equation (10), we get

$$
0=\left[-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}\right] \varphi T .
$$

So, either $-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}=0$ or $\varphi T=0$. If $-q+\sum_{\alpha=1}^{s} \cos \theta_{\alpha}=0$, then γ is a non-Legendre θ_{α}-slant curve, since $q=\sum_{\alpha=1}^{s} \cos \theta_{\alpha}$ is a non-zero constant.

Or else, $\varphi T=0$ gives us $\varphi^{2} T=0=-T+\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$. Then, we can write

$$
T=\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}
$$

i.e. γ is an integral curve of $\sum_{\alpha=1}^{s} \cos \theta_{\alpha} \xi_{\alpha}$. From the fact that γ is a unitspeed curve, we also have $g(T, T)=\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}=1$. We finished the proof of (a). Now, let $r=2$, that is, $\bar{k}_{2}=0$. In this case, the curve γ has only one non-zero quarter-symmetric curvature given by equation (12). If we denote the Frenet frame field as $\left\{T, E_{2}\right\}$, from equation (13), we can write

$$
E_{2}=\frac{1}{\sqrt{1-\sum_{\alpha=1}^{s} \cos ^{2} \theta_{\alpha}}} \delta \varphi T
$$

Note that \bar{k}_{1} is a constant and $\bar{k}_{2}=0$, so γ is a quarter-symmetric θ_{α}-slant circle. The proof of (b) is done. Finally, let $r=3$, i.e. $\bar{k}_{3}=0$. We have already calculated the quarter-symmetric curvatures \bar{k}_{1} and \bar{k}_{2} in equations (12) and (15). If we denote the Frenet frame field as $\left\{T, E_{2}, E_{3}\right\}$, we can write E_{2} and E_{3} as in equations (13) and (16). Thus, the proof of (c) is over. The osculating order r can not be greater than 3, so the list is complete. If γ does not belong to the list, it can not be a quarter-symmetric magnetic curve.

References

[1] Adachi ,T., Curvature bound and trajectories for magnetic fields on a Hadamard surface. Tsukuba J. Math. 20, 225-230, (1996).
[2] Blair, D. E., Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry, 4, 155-167, (1970).
[3] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Second edition. Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, (2010).
[4] Barros M., Romero, A., Cabrerizo, J. L., Fernández, M., The Gauss-Landau-Hall problem on Riemannian surfaces. J. Math. Phys. 46, no. 11, 112905, 15 pp, (2005).
[5] Cabrerizo, J. L., Fernandez M. and Gomez, J. S., On the existence of almost contact structure and the contact magnetic field. Acta Math. Hungar. 125, 191-199, (2009).
[6] Comtet, A., On the Landau levels on the hyperbolic plane, Ann. Physics 173, 185-209, (1987).
[7] Druţă-Romaniuc, S. L., Inoguchi, J., Munteanu, M. I., Nistor, A. I., Magnetic curves in Sasakian manifolds, Journal of Nonlinear Mathematical Physics, 22, 428-447, (2015).
[8] Golab, S., On Semi-symmetric and quarter-symmetric connections, Tensor, N.S. 29, 249-254, (1975).
[9] Göçmen, A., Quarter Symmetric Connections in S-manifolds, MSc Thesis, Supervisor: Prof. Dr. Aysel TURGUT VANLI, (2013).
[10] Güvenç, Ş., An Extended Family of Slant Curves in S-manifolds, Mathematical Sciences and Applications E-Notes 8 (1), 69-77, (2020).
[11] Güvenç, Ş., Özgür, C., On slant curves in S-manifolds, Communications of the Korean Mathematical Society 33 (1), 293-303, (2018).
[12] Güvenç, Ş., Özgür, C., On Pseudo-Hermitian Magnetic Curves in Sasakian Manifolds, Facta Universitatis, Series: Mathematics and Informatics 35 (5), 1291-1304, (2020).
[13] Jleli, M., Munteanu, M. I., Nistor, A. I., Magnetic trajectories in an almost contact metric manifold $\mathbb{R}^{2 N+1}$, Results Math. 67, 125-134, (2015).
[14] Jordan, C., , Sur la théorie des courbes dans l'espace à n dimensions, C. R. Acad. Sci. Paris 79, 795-797 (1874).
[15] Ledger, A., Espace de Riemann symetriques generalises, C. R. Acad. Sci. Paris 264, 947-948, (1967).
[16] Ledger, A., Obata, M., Affine and Riemannian s-manifolds, J. Differential Geometry 2, 451-459, (1968).
[17] Lee, J.-E., Pseudo-Hermitian magnetic curves in normal almost contact metric 3manifolds, Communications of the Korean Mathematical Society, 35 (4), 1269-1281, (2020).
[18] Özgür, C., Güvenç, Ş., On Biharmonic Legendre Curves in S-Space Forms, Turkish Journal of Mathematics 38 (3), 454-461, (2014).
[19] Tsagas, Gr., Ledger, A., Riemannian S-manifolds, J. Differential Geometry 12, 333-343, (1977).
[20] Turgut Vanlı, A., Semi-Symmetry Properties of S-Manifolds Admitting a QuarterSymmetric Metric Connection, Hagia Sophia Journal of Geometry, Vol. 2, No. 2, 38-47, 2020.
[21] Yano, K., Kon, M., Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World Scientific Publishing Co. (1984).

Şaban Güvenç
Orcid number: 0000-0001-6254-4693
Department of Mathematics
Balikesir University
Balikesir, Turkey
Email address: sguvenc@balikesir.edu.tr

