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Abstract. In this paper, a new algorithm is proposed for solving a multi-
criteria optimization problem where the feasible set is an m−dimensional

cube. In fact, the idea of the multicriteria big cube small cube method

is employed to develop the new algorithm. It is proved that, for a given
epsilon vector, the output of the suggested algorithm involves all epsilon

efficient solutions as well as all efficient solutions. Furthermore, the algo-

rithm is applied to a multicriteria location problem. The results show that
the recommended algorithm can obtain more epsilon efficient solutions in

comparison with the main multicriteria big cube small cube method.
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1. Introduction

The current research focuses on multicriteria optimization problems where
the feasible set is an m−dimensional cube. A multicriteria optimization prob-
lem optimizes several, often conflicting and incommensurate, objective func-
tions over a feasible set [7, 28]. Many studies and applications of multicriteria
problems have been reported in literature [7, 27]. It is due to the fact that
most of real world decision making problems involve more than one objective
function (see, e.g., [22, 29]). There are many methods and algorithms to solve
a multicriteria optimization problem [7, 27]. For instance in [9], Eichfelder
and Warnow introduce an approximation with a simple structure respecting
the natural ordering. In particular, they compute a box-coverage of the non-
dominated set. Usually, the algorithms are applicable to only special types
of objective functions such as linear, quadratic, convex, smooth, etc. On the
other hand, a special structure of the feasible set is another important fea-
ture of the existing algorithms. In literature, the feasible set is assumed to
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be polyhedral, convex, bounded, cube, etc. This paper deals with multicriteria
optimization problems with arbitrary objective functions which should be opti-
mized over an m−dimensional cube with sides parallel to the axes. These kinds
of problems are considered by Schobel and Scholz [24] and Scholz [25]. They
proposed an algorithm called the multicriteria big cube small cube (MBCSC).
In fact, they have extended the idea of the big square small square (BSSS)
technique, suggested by Hansen et al. [15], to the multicritera case. Indeed,
the BSSS technique considers only a single objective function. The BSSS and
MBCSC algorithms are applied to facility location problems as real world ap-
plications [15,24].

The aim of facility location theory is to find an optimal location for a new
facility which might be a desirable or an undesirable one [4]. One of the most
obvious areas for application of facility location problems is city and regional
planning. For instance, in residental area, a new facility may be either a fire
station, a shopping center, a bus station, a hospital, or other public facilities.
First, Hansen et al. [15] applied BSSS to some location problems on the plane
with two variables. Plastria extended this method to the generalized big square
small square method [21]. Drezner and Suzuki [5] suggested the big triangle
small triangle method. Indeed, they used triangles instead of squares to propose
a global optimization method for solving location problems. It should be noted
that all these techniques are branch and bound approaches for single objective
facility location problems on the plane with two variables and require lower
bounds for each square or triangle [24]. On the other hand, in reality for finding
a good location more than one objective function should be considered [14]. For
example, consider the problem of locating an airport. Some customers would
like the airport to be close to the residental areas so that they do not need to
travel a long distance to receive service. On the other hand, they may want
the airport to be far away because it generates noise and pollution. Eiselt and
Laporte [10] have reviewed different objective functions and their classifications
in facility location models.

McGinnis and White [18] have done one of the first investigations in mul-
ticriteria location theory. They considered a single facility rectilinear location
problem with multiple criteria. Nickel et al. [19] presented the ordered median
problems for modeling multicriteria location problems on the plane. Badri et
al. [1] proposed a multiple objective model for a set covering problem of locating
fire stations. Rakas et al. [23] developed a multiobjective model for determin-
ing locations of undesirable facilities. Concretely, the number of multicriteria
location problems with different objective functions reported in literature is too
large. A complete description of a multicritteria location problem is presented
by Hekmatfar and SteadieSeifi [16]. Moreover, a good survey on these problems
is given by Current et al. [3]. They classified litrature, based on their types
of objectives, into four categories: dealing cost, demand coverage, profit maxi-
mization, and environmental issues. Farahani et al. [13] provided another good
survey in multicriteria location problems. They discussed multicriteria location
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literature based on their classic operational research families: Weber, median,
covering, constrained, uncapacitated, location-allocation, location-routing, dy-
namic, competitive, network, and undesirable location problems.

The current research aims to develop an algorithm based on MBCSC method
for a multicriteria optimization problem. Moreover, its application to a mul-
ticriteria facility location problem is discussed. Rest of the paper is organized
as follows. Section 2 reviews some definitions and notations. Section 3 pro-
poses an Algorithm to solve a multicriteria optimization problem. Properties
of output set of the proposed algorithm are discussed in Section 4. Section
5 provides an application of the proposed algorithm to a bicriteria location
problem. Finally, Section 6 is devoted to concluding remarks.

2. Definitions and notations

In this section a brief description of a multicriteira optimization problem
and some basic definitions are given. For more details the reader is referred
to [7]. A multicritria optimization problem can be formulated as [7]:

(1) min
x∈X

f(x) = (f1(x), ..., fp(x)),

where X ⊂ Rm is the feasible set, and fi : Rm → R for i = 1, ..., p are objective
functions.

For a given x ∈ X , the vector y = f(x) is called the outcome vector or
the criterion vector. Let Y = f(X ) ⊂ Rp denote the set of all outcomes. To
compare two feasible solutions, an order for comparing their criterion vectors
is needed. The common orders are as follows [7]:
Let y1, y2 ∈ Rp. Then:

• y1 5 y2 ⇔ y1i 6 y
2
i ∀ i = 1, . . . , p, (weak componentwise order);

• y1 ≤ y2 ⇔ y1i 6 y
2
i ∀ i = 1, . . . , p and y1 6= y2, (componentwise order);

• y1 < y2 ⇔ y1i < y2i ∀ i = 1, . . . , p, (strict componentwise order).

Rp
= := {x ∈ Rp : x = 0} denotes the set of all nonnegative vectors in Rp. Note

that Rp
≥ and Rp

> can be defined analogously.

Definition 2.1. ( [7]) A solution x̂ ∈ X is called an efficient solution of Problem
(1) if there does not exist x ∈ X such that f(x) ≤ f(x̂). XE denotes the set of
all efficient solutions of Problem (1).

To test the efficiency of a given solution x̂ ∈ X , an efficiency test can be
used. Benson’s efficiency test [27] is one the popular tests which solves a single
objective optimization problem as follows:

max z = l1 + l2 + · · ·+ lp

s.t.

fi(x) + li = fi(x̂), i = 1, ..., p,(2)

x ∈ X ; li > 0, i = 1, ..., p.
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The following theorem introduces a criterion for efficiency of a feasible solution
x̂ ∈ X .

Theorem 2.2. ( [7]) A solution x̂ ∈ X is an efficient solution of Problem (1)
if and only if the optimal objective value of Problem (2) is zero.

Often, attaining the exact efficient solutions is not an easy task. Thus,
approximating them is of interest. Next definition introduces the concept of
epsilon efficiency.

Definition 2.3. ( [11, 17]) For a given ε ∈ Rp
=, a solution x̂ ∈ X is called

an ε−efficient solution of Problem (1) if there does not exist x ∈ X such that
f(x) + ε ≤ f(x̂). X ε

E denotes the set of all ε−efficient solutions of Problem (1).

It is obvious that XE ⊆ X ε
E for all ε ∈ Rp

= and for 0 = ε ∈ Rp
=, XE = X 0

E .

Definition 2.4. ( [25]) Let X ⊆ Rn be a nonempty and compact set. Then
the length of the Euclidean diameter of X, denoted by δ(X), defines as:

δ(X) = max{‖x′ − x′′‖2 : x′, x′′ ∈ X},

where ‖.‖2 is the Euclidean norm.

3. A new algorithm

This section focuses on a multicriteria optimization problem such as Problem
(1) in which the feasible set is assumed to be an m−dimensional cube with sides
parallel to the axes (or, for simplicity, a box). In other words, the multicriteria
optimization problem is as follows:

min f(x) = (f1(x), ..., fp(x))

s.t.(3)

x ∈ X = [x1min, x
1
max]× · · · × [xmmin, x

m
max].

In the following, an algorithm for solving Problem (3) is suggested. In
multicriteria optimization the common favorable solutions are efficient ones.
However, finding the exact efficient set is not an easy task in most of real world
problems. Therefore, ε−efficient solutions are of interest. Some methods for
generating ε−efficient solutions in multiobjective programming are proposed by
Engau and Wiecek [12]. They introduced some scalarizing methods and then
used epsilon optimal solutions of the scalarized single objective optimization
problems to generate ε−efficient solutions.

The current research does not use the scalarization technique. In fact, the
proposed algorithm gets an arbitrary ε ∈ Rp

=. Then, it divides the feasible

set to smaller boxes and tries to discard the boxes which do not involve any
ε−efficient solutions. In each iteration of the algorithm some single objective
optimization problems are solved for attaining the lower and upper bounds of
the objective functions over the new boxes. Further, some comparisons help
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us to discard some of the existing boxes. In fact, the new algorithm uses a
similar idea as the MBCSC algorithm [25]. However, the discarding process in
the new algorithm is completely changed. Moreover, since the set of ε−efficient
solutions is not closed [12], the MBCSC algorithm tries to find a subset of it.
But, the output of the new algorithm contains all ε−efficient solutions.

Let us first introduce some sets which will be used in the new algorithm.
Consider Problem (3). Suppose that B ⊆ X is a box and ε ∈ Rp

=. Then:

• L = (L1, ..., Lp)t, where Li = minx∈X fi(x) for i = 1, ..., p;
• LB(B) = (LB1(B), ..., LBp(B))t, where LBi(B) = minx∈B fi(x) for
i = 1, ..., p;
• UB(B) = (UB1(B), ..., UBp(B))t, where UBi(B) = maxx∈B fi(x) for
i = 1, ..., p;

• Ei(B) = {x ∈ X : Li 6 fi(x) 6 UBi(B)−εi}, and E(B) = ∩pi=1Ei(B);
• E0(B) = {x ∈ X : f(x) = UB(B)− ε};
• Fi(B) = {x ∈ X : Li 6 fi(x) 6 LBi(B)− εi}, and F (B) = ∩pi=1Fi(B);
• F0(B) = {x ∈ X : f(x) = LB(B)− ε};

where t denotes the transpose operator.

Assumption 1: We assume that, for Problem (3), the vectors L,LB(B), and
UB(B) exist for all B ⊆ X .

Note that Assumption 1 is necessay for the next results which make the pro-
posed algorithm applicable to Problem (3). Next, we present two propositions
which are needed for building the algorithm.

Proposition 3.1. Suppose that B ⊆ X is a box. Then, E(B)�E0(B) 6= ∅ if
and only if

∃ x ∈ X 3 L 5 f(x) ≤ UB(B)− ε.

Proof. By the above definitions, the proof is straightforward. �

Proposition 3.2. Consider Problem (3) and suppose that for a box B ⊆ X ,
F (B)�F0(B) 6= ∅. Then B does not contain any efficient or ε−efficient solu-
tions.

Proof. Since F (B)�F0(B) 6= ∅, we have ∃ x̂ ∈ X 3 L 5 f(x̂) ≤ LB(B) − ε.
Now, let x0 ∈ B be arbitrary. Then, f(x̂) + ε ≤ LB(B) 5 f(x0). Therefore,
x0 is not ε−efficient and, consequently, it is not also an efficient solution. �

Algorithm 3.1.
Input. An instance of Problem (3) as the given multicritteria optimization
problem and ε, ε0 ∈ Rp

=.

Step 1. Set S = {X}, T1 = T2 = T3 = T4 = ∅, and calculate the vector of
lower bounds L = (L1, ..., Lp).
Step 2. Select a box B ∈ S and split it into n = 2m subboxes B1, ..., Bn.
Then, calculate LB(Bi) and UB(Bi) for i = 1, ..., n and set S = (S�{B}) ∪
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{B1, ..., Bn}.
Step 3. For each box B ∈ S, if one of the conditions (4) - (6) holds, then set
T1 = T1 ∪ {B} and S = S�{B}:

∃ j ∈ {1, ..., p} 3 (UBj(B)− Lj) < εj ;(4)

(UBj(B)− Lj) = εj ,∀ j ∈ {1, ..., p};(5)

E(B)�E0(B) = ∅.(6)

Step 4. For each box B ∈ S, if

F (B)�F0(B) 6= ∅,
then set T3 = T3 ∪ {B} and S = S�{B}.
Step 5. For each box B ∈ S, if

∃ j ∈ {1, ..., p} 3 (UBj(B)− LBj(B)) > ε0j ,

then set T4 = T4∪{B} and S = S�{B}. Else T2 = T2∪{B} and S = S�{B}.
Step 6. If T4 6= ∅ then:

(a) for each box B ∈ T4, if

∃ B′ ∈ T1 3 UB(B) 5 LB(B′),

then set T1 = T1 ∪ {B} and T4 = T4�{B};
(b) for each box B ∈ T4, if

∃ B′ ∈ T3 3 UB(B′) 5 LB(B),

then set T3 = T3 ∪ {B} and T4 = T4�{B};
(c) set S = S ∪ T4 and T4 = ∅.

Step 7. If S 6= ∅, then go to Step 2. Otherwise, stop.
Output. The output is the set:

Xε
A = T1 ∪ T2.

In the next section, it will be proved that T1 in the output of Algorithm 3.1
contains ε−efficient solutions and T2 contains some (ε+ε0)−efficient solutions.
Moreover, T3 contains neither ε−efficient nor efficient solutions, and T4 has the
role of a temporary set.

Remark 3.3. Notice that Algorithm 3.1 is also suitable for more general shapes
of the feasible region. In fact, if the feasible region can be approximated by a
union of boxes X1, ..., Xr, then in Step 1 of Algorithm 3.1 the set S should be
set as S = {X1, ..., Xr}.

Remark 3.4. Since B ⊂ Rm, splitting it in Step 2 of Algorithm 3.1 to 2m

subboxes is possible by dividing all its sides to equal segments and then con-
sidering all end vertexes for building the subboxes. Following this process a
square in R2 splits to 4 subsquares and a cube in R3 splits to 8 subcubes, and so
on. Moreover, in Algorithm 3.1, each box should be removed or needs further
splitting until the stopping criterion in Step 7 is satisfied. The large number
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of boxes make the algorithm inefficient or instable. The number of boxes is
affected by input data ε and ε0. By our experiments,

0.01(ximax−ximin) ≤ εi ≤ 0.1(ximax−ximin), i = 1, ...,m& ε0 = αε, (0 < α < 1)

are appropriate in many instances. Although in the other cases, the algorithm
will work, but it may take considerable time to stop.

Now, we solve some examples by Algorithm 3.1.

Example 3.5. Consider a multicriteria optimization problem as follows:

min f1((x1, x2)t) = (x1 − 1)2

min f2((x1, x2)t) = (x2 − 1)2(7)

s.t. x ∈ X = [0, 2]× [0, 2] ⊂ R2.

Since (f1(x), f2(x))t > (0, 0)t = (f1((1, 1)t), f2((1, 1)t))t for all (1, 1)t 6= (x1, x2)t

∈ X , the only efficient solution is (1, 1)t. Consequently, for ε = (0.04, 0.04)t, if

(f1(x), f2(x))t ≥ (f1((1, 1)t), f2((1, 1)t))t + (0.04, 0.04)t = (0.04, 0.04)t

then x is not an ε−efficient solution. Therefore, x ∈ X is an ε−efficient solu-
tion if it satisfies to the following relations:{

f1(x) > ε1
f2(x) < ε2

⇔
{

(x1 − 1)2 > 0.04
(x2 − 1)2 < 0.04

⇔
{
x1 > 1.2 or x1 6 0.8
0.8 < x2 < 1.2

,(8)

{
f2(x) > ε2
f1(x) < ε1

⇔
{

(x2 − 1)2 > 0.04
(x1 − 1)2 < 0.04

⇔
{
x2 > 1.2 or x2 6 0.8
0.8 < x1 < 1.2

,(9)

{
f1(x) 6 ε1
f2(x) 6 ε2

⇔
{

(x1 − 1)2 6 0.04
(x2 − 1)2 6 0.04

⇔
{

0.8 6 x1 6 1.2
0.8 6 x2 6 1.2

.(10)

Hence, the set of all ε−efficient solutions is as follows:

X ε
E = {(x1, x2)t ∈ R2 | 0.8 6 x1 6 1.2, 0.8 6 x2 6 1.2}
∪ {(x1, x2)t ∈ R2 | 0.8 < x1 < 1.2, (x2 > 1.2 or x2 6 0.8)}
∪ {(x1, x2)t ∈ R2 | (x1 > 1.2 or x1 6 0.8), 0.8 < x2 < 1.2}.

Problem (7) is solved by Algorithm 3.1 which is coded by MATLAB. To solve
it, ε = (0.04, 0.04)t and ε0 = (0.01, 0.01)t are used. Figure 1 shows the output
set of Algorithm 3.1. In Figure 1, the small boxes (yellow color) are (ε +
ε0)−efficient and the big ones (cyan color) are ε−efficient solutions. It can be
seen from Figure 1 that Algorithm 3.1 finds all ε−efficient solutions.

Example 3.6. We consider a multicriteria optimization problem taken from
[28]:

min f1((x1, x2)t) = x21 + x22

min f2((x1, x2)t) = (x1 − 5)2 + (x2 − 5)2(11)

s.t. x ∈ X = [−5, 10]× [−5, 10] ⊂ R2.
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Figure 1. The output set obtained by Algorithm 3.1 for
Problem (7).

Problem (11) is solved by Algorithm 3.1 with ε = (0.5, 0.5) and ε0 = 2
3ε. Figure

2 shows the ε-efficients and (ε+ε0)−efficient solutions of Problem (11). Figure
3 shows the image of the points in Figure 2 in the objective space ((f1, f2)
space). These two sets are compatible with the results of [28] to Problem (11).

4. Main results

In the sequel, some results related to Algorithm 3.1 are summarized in some
theorems.

Theorem 4.1. Algorithm 3.1 terminates after a finite number of iterations for
every ε ∈ Rp

= and ε0 ∈ Rp
>, if there exist fixed constants C1, ..., Cp > 0 such

that:
UBi(B)− LBi(B) 6 Ciδ(B), ∀ B ⊆ X , ∀ i = 1, ..., p.

Proof. By the split rule in Step 2, there is a finite number of iterations such
that:

UBi(B)− LBi(B) 6 Ciδ(B) 6 ε0i , ∀ B ∈ S, ∀ i = 1, ..., p.

Hence, after a finite number of iterations:

UB(B)− LB(B) 5 ε0 ∀ B ∈ S.
Now, Steps 5 and 7 ensure termination of Algorithm 3.1 after a finite number
of iterations. �
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Figure 2. The out-
put set obtained by Al-
gorithm 3.1.

Figure 3. The image
of the points in Fig-
ure 2 in the objective
space.

Theorem 4.2. Let X ε
A be the output set obtained by Algorithm 3.1. Then,

X ε
E ⊆ X ε

A.

Proof. It suffices to show that Algorithm 3.1 does not delete any ε−efficient
solutions. Since X ε

A does not contain the sets T3 and T4, the elements of these
two sets should be considered. T4 is a temporary set. Thus, it is only enough
to consider the elements of T3. In other words, Step 4 and Step 6 should
be analyzed. Rest of the proof is by induction on the number of iterations.
Initially, T3 = ∅ and therefore it has neither efficient nor ε−efficient solutions.
Suppose that T3 has not any ε−efficient solutions before the k−th iteration
and consider the k−th iteration of Algorithm 3.1. Now:
In Step 4: Suppose that B ∈ S is a box and x̂ ∈ B is an ε−efficient solution.
Therefore, B ∈ S should not be discarded. On the contrary, assume that Step
4 removes B from S and adds it into T3. It occurs when F (B)�F0(B) 6= ∅.
Now, Proposition 3.2 implies that B does not contain any ε−efficient solutions,
which is a contradiction. Hence, Step 4 does not insert any ε−efficient solutions
into T3.
Also, on the contrary, suppose that Step 6(b) removes B from S and adds it
into T3, where B is a box which involves at least an ε−efficient solution x̂ ∈ X .
It occurs when:

∃ B′ ∈ T3 3 UB(B′) 5 LB(B).

Since B′ ∈ T3 is augmented to T3 in Step 4 or before the k−th iteration, all of
the elements of B′ are not ε−efficient solutions. Let x′ ∈ B. Then:

∃ x0 ∈ X 3 f(x0) + ε ≤ f(x′) 5 UB(B′) 5 LB(B) 5 f(x̂).
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Thus, f(x0) + ε ≤ f(x̂). This means that x̂ is not an ε−efficient solution,
which is a contradiction. Therefore, T3 in Algorithm 3.1 does not contain any
ε−efficient solutions and thus X ε

E ⊆ X ε
A. �

Corollary 4.3. Let X ε
A be the output set obtained by Algorithm 3.1. Then,

XE ⊆ X ε
A.

Proof. By Theorem 4.2 and the fact that XE ⊆ X ε
E for all ε ∈ Rp

=, the proof is

obvious. �

Corollary 4.3 proves that the output set of Algorithm 3.1, X ε
A = T1 ∪ T2,

involves all efficient solutions. Moreover, the properties of the sets T1 and T2
are given in the next two theorems.

Theorem 4.4. Let X ε
A = T1 ∪ T2 be the output set obtained by Algorithm 3.1.

Then T1 ⊆ X ε
E .

Proof. It is needed to show that every point of T1 is an ε−efficient solution of
Problem (3). Let x̂ ∈ B ∈ T1. Then, according to the steps of Algorithm 3.1,
four possible cases may be occurred as follows:

(1) (UBj(B)−Lj) < εj for some j ∈ {1, ..., p}, (due to Step 3 - condition
(4));

(2) (UB(B)− L) = ε, (due to Step 3 - condition (5));
(3) (UB(B)− L) ≥ ε, E(B)�E0(B) = ∅, (due to Step 3 - condition (6));
(4) ∃ B′ ∈ T1 3 UB(B) 5 LB(B′), (due to Step 6(a)).

(1)- Suppose that there exists j0 ∈ {1, ..., p} 3 (UBj0(B) − Lj0) < εj0 ,
and on the contrary x̂ ∈ B is not an ε−efficient solution. Then, there exists
x̄ ∈ X 3 f(x̄) + ε ≤ f(x̂). Thus:

fj0(x̄) + εj0 6 fj0(x̂) 6 UBj0(B) < εj0 + Lj0 .

Therefore, fj0(x̄) < Lj0 , which is a contradiction. Hence, in this case x̂ ∈ X ε
E .

(2)- On the contrary suppose that x̂ ∈ B is not an ε−efficient solution. Then:

∃ x̄ ∈ X 3 f(x̄) + ε ≤ f(x̂) 5 UB(B) = ε+ L,

Thus, f(x̄) ≤ L, which is a contradiction. Hence, x̂ ∈ X ε
E .

(3)- Suppose that x̂ ∈ B is not an ε−efficient solution. Then, there exists
x̄ ∈ X 3 f(x̄) + ε ≤ f(x̂). Thus, f(x̄) ≤ f(x̂) − ε 5 UB(B) − ε. Therefore,
there exists x̄ ∈ X 3 L 5 f(x̄) ≤ UB(B) − ε. Now, Proposition 3.1 implies
that E(B)�E0(B) 6= ∅, which is a contradiction. Hence, x̂ ∈ X ε

E .

(4)- Since B′ ∈ T1, due to Step 4, F (B′)�F0(B′) = ∅. Therefore:

@ x ∈ X 3 f(x) ≤ LB(B′)− ε.(12)

Now, on the contrary suppose that x̂ ∈ B is not an ε−efficient solution. Then,
there exists x̄ ∈ X 3 f(x̄) + ε ≤ f(x̂). Thus, f(x̄) + ε ≤ f(x̂) 5 UB(B) 5
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LB(B′). It implies that f(x̄) + ε ≤ LB(B′), which is a contradiction to (12).
Hence, in all cases, x̂ ∈ X ε

E and the proof is complete. �

Theorem 4.5. Let X ε
A = T1 ∪ T2 be the output set obtained by Algorithm 3.1.

Then T2 ⊆ X ε+ε0

E .

Proof. To show that every point of T2 is an (ε+ε0)−efficient solution of Problem
(3), let x̂ ∈ B ∈ T2. Then by Step 5, UB(B)−LB(B) 5 ε0. Also, due to Step
4, F (B)�F0(B) = ∅. Thus:

@ x ∈ X 3 f(x) ≤ LB(B)− ε.(13)

Now, on the contrary, suppose that x̂ is not an (ε+ε0)−efficient solution. Then,
there exists x̄ ∈ X 3 f(x̄) + ε+ ε0 ≤ f(x̂). Therefore:

f(x̄) + ε ≤ f(x̂)− ε0 5 UB(B)− ε0 5 LB(B).

Thus, we conclude that

L+ ε 5 f(x̄) + ε ≤ f(x̂)− ε0 5 LB(B).

It implies that

f(x̄) + ε ≤ LB(B).(14)

Note that (14) is a contradiction to (13). Hence, x̂ ∈ X ε+ε0

E and the proof is
complete. �

Notice that by Theorems 4.2-4.5, T1 in the output set of Algorithm 3.1
contains all ε−efficient solutions of Problem (3).

5. An application of Algorithm 3.1 to a facility location prob-
lem

As an application, this section applies Algorithm 3.1 to a facility location
problem. As discussed in Section 1, facility location is an important branch of
operations research which aims to find a suitable location. It has been an ac-
tive area of research since the early 1960’s [25]. Using an appropriate location
has many benefits such as saving time and cost. Consider n existing facilities
ak ∈ R2 for k = 1, ..., n. This paper considers planar 1-facility location prob-
lems. In other words, one new facility x ∈ R2 is needed to be established. Let
wk and vk be the weights of facility ak for k = 1, ..., n. Further, consider a
distance function d. The most common used objective functions in literature
are as follows [4, 10,25]:

Weber problem. Minimize the sum of service costs from each existing
facility to the new location:

minx∈X f1(x) :=

n∑
k=1

wkd(ak, x).
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Some approaches use squared distance d(ak, x)2 in instead of d(ak, x) [8, 20].
By using the Euclidean distance, the sum of squared Euclidean distances meets
the Pigou-Dalton condition of transfers [20] and can easily be minimized. Fur-
ther, in this case, the optimal solution is the well known center of gravity. On
the other hand, the squared distance measure is used where it is needed to omit
excessive distances [6]. It is due to the fact that since the objective function
should be minimized and squaring a large distance number results in larger
distance number then we expect excessive distances to be omitted.

Center problem. Minimize the distance from the new location to the
furthest existing facility:

minx∈X f2(x) := max1≤k≤nwkd(ak, x).

Obnoxious problem. Minimize the sum of the reciprocal squared distance
from each existing facility to the new location:

minx∈X f3(x) :=

n∑
k=1

vk/d(ak, x)2.

Note that sometimes d(ak, x) is used instead of d(ak, x)2 [25].

Maximin problem. Maximize the distance between the new facility and
the nearest resident:

maxx∈X f4(x) := min1≤k≤nvkd(ak, x).

In the above problems, the first two objectives represent an attractive new
location while the latter two ones describe a repulsive new facility location. The
current research assumes d is the Euclidean distance. Moreover, it considers
a bicriteria facility location problem with the attractive objective f1 and the
repulsive objective f3. It is clear that these two objectives are conflicting each
other. This problem was discussed in [2, 25, 26]. A numerical example of this
kind is given in the sequel.

Example 5.1. The data of this example are taken from [25], where a bicriteria
location problem with the Weber and the obnoxious objectives is considered. In
other words, the bicriteria optimization problem is:

min f1(x) =

n∑
k=1

wkd(ak, x)2

min f3(x) =

n∑
k=1

vk/d(ak, x)(15)

s.t. x ∈ X ,

where X = [0, 1] × [0, 1] and nonnegative weights wk, vk ∈ R1
> as well as

ak ∈ R2 for k = 1, ..., 7 are given in Table 1.
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Table 1. Data for Example 5.1.

k a1k a2k wk vk
1 0.20 0.80 5.0 1.0
2 0.72 0.32 7.0 1.0
3 0.88 0.64 2.0 1.0
4 0.56 0.68 3.0 1.0
5 0.28 0.08 6.0 1.0
6 0.20 0.60 1.0 1.0
7 0.48 0.16 5.0 1.0

Let us first exam the efficiency of some feasible solutions. For instance, to
test the efficiency of (0, 0.25)t model (2) can be solved. Since f1((0, 0.25)t) =
10.72290 and f3((0, 25)t) = 13.12749, model (2) related to Problem (15) is as
follows:

max z = l1 + l2,

s.t.
7∑

k=1

wkd(ak, x) + l1 = 10.72290,(16)

7∑
k=1

vk/d(ak, x)2 + l2 = 13.12749,

x ∈ X .
Problem (16) is solved by LINGO 17. The optimal value of Problem (16) is
zero. Therefore, by Theorem 2.2, the solution (0, 0.25)t is an efficient solution
and also an ε−efficient solution for every ε ∈ Rp

=. Moreover, some solutions

in the vicinity of (0, 0.25)t should be ε−efficient solutions. The same is true
for the solutions (1, 1)t and (0.4004913, 0.4046507)t.

To solve Problem (15) by Algorithm 3.1, we set ε = (0.05, 0.05)t and ε0 =
ε/3. Algorithm 3.1 is coded by MATLAB 9.0 (R2016a) software. Figure 4
shows the output set of Algorithm 3.1 for Problem (15). Further, T1 and T2 are
depicted separately in Figures 5 and 6, respectively. It can be seen from Figure 5
that Algorithm 3.1 obtains the points (0, 0.25)t, (1, 1)t, and (0.40049, 0.40465)t

in its output set which are efficient solutions. However, these efficient solutions
have not been obtained by the main MBCSC method in [25].
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Figure 4. The output set obtained by Algorithm 3.1.

Figure 5. T1 in
the output of Al-
gorithm 3.1.

Figure 6. T2 in the
output of Algorithm
3.1.

6. Concluding Remarks

The current research developed an algorithm (Algorithm 3.1) to solve a
multicriteria optimization problem where the feasible set is an m−dimensional
cube. The output of Algorithm 3.1 is a set which contains all efficient and
all ε−efficient solutions of the problem for a given ε. Algorithm 3.1 splits the
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feasible set into smaller boxes and then deletes the boxes that have not any
efficient or ε−efficient solutions. A similar idea is used by the Multicriteria Big
Cube Small Cube (MBCSC) method [25]. The MBCSC only uses the lower
and upper bounds of the objectives over the boxes. However, Algorithm 3.1,
in addition to those bounds, uses the lower bounds of the objectives over the
entire feasible set as well. Moreover, the process of Algorithm 3.1 is different
from the MBCSC. As a matter of fact, since the set of ε−efficient solutions is
not closed, the MBCSC only attains a proper subset of ε−efficient solutions.
In contrast to the MBCSC, Algorithm 3.1 obtains all ε−efficient solutions. In-
deed, Algorithm 3.1 obtains some more solutions which are neither efficient nor
ε−efficient solutions to overcome the fact that the set of ε−efficient solutions is
not closed. Further, properties of Algorithm 3.1 are proved in a few theorems.
Furthermore, to see the validity of Algorithm 3.1, it is applied to two numerical
examples and a location problem. Extending Algorithm 3.1 for solving other
kinds of multicriteria optimization problems and applying it to more location
problems or other real world problems can be subjects for further research.
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