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Abstract. In this paper, an attempt has been taken to develop a method
to solve the neutrosophic multiobjective linear fractional programming

(NMOLFPP) problem. In the first step of our method, the problem is

linearized based on some transformations. Then, the linearized model is
reduced to a crisp multi-objective programming problem with the help

of the accuracy function for each objective. In the following, we extend

Zimmerman’s approach to maximize the truth membership and minimize
the indeterminacy and falsity membership functions in the solution pro-

cedure. Finally, to illustrate the proposed approach, a numerical example

is included.
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1. Introduction

In the real world, many problems involve two or more objective functions
that address certain constraints. These problems are called multi-objective pro-
gramming problems. In this type of problem, the objective functions are often
in conflict with each other, that is, the improvement of one objective function
may lead to the deterioration of at least one of the other functions. Thus, there
is no single optimal solution in multi-objective problems to optimize all of the
objective functions contemporaneously, rather there is a set of inferior (Pareto
optimal) solutions which the Decision Maker (DM) must choose a preferred
solution or best compromise solution as a satisfactory solution. The multi-
objective linear fractional (MOLF) optimization problem is a generalization
of the multi-objective linear (MOL) optimization problems in which there are
multiple ratios of physical quantities and/or economic quantities that must be
optimized simultaneously.
Recently, authors such as Nuran Guzel [17], Chakraborty and Gupta [7], D.
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Dutta et. al. [9], Hosseinzadeh et. al. [10] and Luhandjula [14] have proposed
several methods to solve MOLFP. Because real-world problems are so com-
plex, one of the major challenges faced by DMs and practitioners is that DM
may not be able to accurately determine parameter values in MOLF. There-
fore, Zadeh [27] initially presented the theory of fuzzy sets (FSs) to solve these
problems, in which it is possible to describe observations imprecisely and un-
certainly. FS theory has also been developed in many fields and different gen-
eralizations have been presented that are able to deal with different types of
uncertainties. Among the generalizations of fuzzy sets are type-2 fuzzy sets,
interval-valued fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets and etc.
Then, several authors used these concepts of FSs theory for solving MOLF op-
timization problems in the environment of ambiguous and hesitance. Such as,
Yang and Li presented an algorithm to solve fuzzy MOLF problems through
an approach based on superiority and inferiority measures method [25]. The
MOLF problems with fuzzy number were analyzed in [18–20], and under the
concept of α-Pareto optimality, nonsmooth multi-objective nonlinear fractional
programming problems with fuzzy numbers were analyzed by Ammar [2]. The
solving of MOLF optimization problem with fuzzy variables and parameters is
most difficult. To the best of our knowledge, Rubi Arya et. al. [3], for the first,
presented an algorithm for solving fully fuzzy multi-objective linear fractional
(FFMOLF) optimization problem where all the coefficients and variables are
assumed to be the triangular fuzzy numbers (TFNs).
In the real world, suppose that when choosing a candidate in a voting system,
in addition to confirming the choice or not choosing, there are also options to
opt out or not to decide. Such situations are not governed by intuitionistic
characters. Therefore, in these cases, neutrosophic set (NS) and neutrosophic
logical concept originated and were successfully applied by Smarandache [22].
It is a generalization of intuitionistic fuzzy set [4]. The complexity of real life
often creates uncertain situations or neutral thoughts when making optimal
decisions. Apart from the degrees of acceptance and rejection in the decision-
making process, the degree of indeterminacy is also very important. Therefore,
to mask neutral thoughts or the degree of indeterminacy of the element in the
set of feasible solutions, Smarandach [22] investigated a neutrosophic set. NS
considers three types of membership functions such as truth, indeterminacy and
falsity degrees in the set of feasible solutions. Due to the inclusion of the idea of
independent and neutral thoughts in Neutrosophic sets, this set is different from
other uncertain decision sets such as FS and IFS. The NS is growing rapidly
and it is used in different directions. Some of the contributions of neutrosophic
set mentioned in [5,6,11,16,21]. Recently, the concepts of extended fuzzy such
as intuitionistic, hesitant, Pythagorean, and bipolar fuzzy environments have
been applied to a wide range of decision-making problems [1, 12,15,24,28].
Although the main concept of our proposed approach is based on the Zimmer-
man’s approach, it is extended to neutrosophic environment which, the best of
our knowledge, is not investigated in the literature. The novelty of the paper
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is due to that, any paper does not exist to obtain a solution to the general
multiobjective linear fractional programming problems in neutrosophic fuzzy
environment by optimizing truth-membership, indeterminacy-membership, and
falsity-membership functions, simultaneously.
In this paper, we present a method for solving the fuzzy multi-objective linear
fractional (FMOLF) optimization problem in neutrosophic environment where
all the coefficients are assumed to be the neutrosophic. The paper is classi-
fied as follows: After the introduction, Section 2 presents some concepts and
preliminaries. In the next section, mathematical formulation of neutrosophic
multiobjective linear fractional programming problem (NMOLFPP) was in-
troduced. Section 3 was divided into three subsections. Section (3.1) deals
with linearization process of of (NMOLFPP) to (NMOLPP) and Section 3.2
deals with the conversion process of (NMOLPP) to (crisp MOLPP) using ac-
curacy function. In Section (3.3), we discussed Zimmermann fuzzy technique
to convert (MOLPP) to (LPP). The development of the proposed method and
an algorithm for solution procedures are described in Section 4. Section 5
presents a numerical example to demonstrate the applicability of the proposed
approach. Finally, some results are included in Section 6.

2. Preliminaries

In this section, some basic concepts and definitions about neutrosophic sets
and single-valued trapezoidal numbers from the literature are reviewed.

Definition 2.1. [22] Let X be a non-empty set. A neutrosophic set (NS) ÃN

is defined as:

ÃN = {〈x : TA(x), IA(x), FA(x)〉 : x ∈ X,TA(x), IA(x), FA(x) ∈]0−, 1+[}

where TA(x), IA(x) and FA(x) are called truth-membership function, indeterminacy-
membership function and falsity-membership function, respectively, and there
is no restriction on the summation of them, so 0− ≤ TA(x)+IA(x)+FA(x) ≤ 3+

and ]0−, 1+[ is non-standard unit interval.

As NSs are difficult to apply to practical problems, Wang et. al. [25] in-
troduced the concept of a single-valued neutrosophic set (SVNS), which is an
example of a NS and can be used in real scientific and engineering applications.

Definition 2.2. A single valued trapezoidal neutrosophic number (SVTNN)
ãN = 〈(a, b, c, d);wã, uã, yã〉 is a special neutrosophic set on the real num-
ber set R, whose truth-membership, indeterminacy-membership, and falsity-
membership are given as follows:

µã(x) =


wã(x−a)
b−a a ≤ x ≤ b

wã b ≤ x ≤ c
wã(d−x)
d−c c < x ≤ d

0 otherwise,
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λã(x) =


b−x+uã(x−a)

b−a a ≤ x ≤ b
uã b ≤ x ≤ c
x−c+uã(d−x)

d−c c < x ≤ d
1 otherwise,

νã(x) =


b−x+yã(x−a)

b−a a ≤ x ≤ b
yã b ≤ x ≤ c
x−c+yã(d−x)

d−c c < x ≤ d
1 otherwise,

where, wã, uã and yã are the maximum truth, minimum indeterminacy, and
minimum falsity membership degrees, respectively. The set of all neutrosophic
numbers is denoted by NF (R).

Here is an example (see Figure ??) of a graphical representation of a single-
valued trapezoidal neutrosophic number ãN = 〈(1, 3, 5, 7); 0.9, 0.2, 0.4〉.

Figure 1. Graphical representation of a single-valued trape-
zoidal neutrosophic set

Definition 2.3. Let ãN = 〈(a1, a2, a3, a4);wã, uã, yã〉 and b̃N = 〈(b1, b2, b3, b4);wb̃, ub̃, yb̃〉
be two arbitrary SVTNNs and γ 6= 0 be any real number. Then

• ãN + b̃N = 〈(a1 + b1, a2 + b2, a3 + b3, a4 + b4);wã ∧wb̃, uã ∨ ub̃, yã ∨ yb̃〉
• ãN − b̃N = 〈(a1 − b4, a2 − b3, a3 − b2, a4 − b1);wã ∧wb̃, uã ∨ ub̃, yã ∨ yb̃〉

• γãN =

{
〈(γa1, γa2, γa3, γa4);wã, uã, yã〉 γ > 0
〈(γa4, γa3, γa2, γa1);wã, uã, yã〉 γ < 0

Definition 2.4. [13] Let ãN = 〈(a1, a2, a3, a4);wã, uã, yã〉 be a SVTNN. Then,
the score function ψ(ãN ) and accuracy function φ(ãN ) of a SVTNN are defined
as follows:

• ψ(ãN ) = 1
16 (a1 + a2 + a3 + a4)(wã + (1− uã) + (1− yã))

• φ(ãN ) = 1
16 (a1 + a2 + a3 + a4)(wã + (1− uã) + (1 + yã))

Definition 2.5. Suppose ãN = 〈(a1, a2, a3, a4);wã, uã, yã〉 and b̃N = 〈(b1, b2, b3, b4);
wb̃, ub̃, yb̃〉 be any two SVTNNs. Then, we define a ranking method as follows:

• If ψ(ãN ) > ψ(b̃N ) then ãN > b̃N .
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• If ψ(ãN ) = ψ(b̃N ), and if φ(ãN ) > φ(b̃N ) then ãN > b̃N ,

φ(ãN ) < φ(b̃N ) then ãN < b̃N ,

φ(ãN ) = φ(b̃N ) then ãN = b̃N ,

3. Neutrosophic multiobjective linear fractional programming
problem

The general form of neutrosophic multiobjective linear fractional program-
ming problem (NMOLFPP) can be written as:

Maximize Zr(x) = Fr(x)
Gr(x)

=
c̃Nr x+p̃

N
r

d̃Nr x+q̃
N
r

, r = 1, . . . , k

subject to x ∈ ∆ = {x : ÃNx ≤ b̃N , x ≥ 0}(1)

where c̃Nr , d̃
N
r ∈ NF (Rn), p̃Nr , q̃

N
r , b̃

N ∈ NF (R) for all r = 1, . . . , k, and

ÃN =
[
ãNij
]
∈ NF (Rm×n) for all i = 1, . . . ,m , j = 1, . . . , n.

To improve the presentation and easy understanding of the topic, this sec-
tion was divided into three subsections. Section (3.1) deals with linearization
process of (NMOLFPP) to (NMOLPP) and Section (3.2) deals with the con-
version process of (NMOLPP) to (crisp MOLPP) using accuracy function. In
Section (3.3), we discussed Zimmermann fuzzy technique to convert (MOLPP)
to (LPP).

3.1. Linearization of (NMOLFPP) to (NMOLPP). In this part, a brief
description of Charnes and Cooper [8] linear transformation is presented and
a linear programming problem equivalent to NMOLPP is also presented.
For this purpose, let ∆ be the set of all feasible solution of (1). For some value of

x ∈ ∆ , Gr(x) = d̃Nr x+ q̃Nr may be equal to zero. To avoid this case we required
that either L = {r : Gr(x) > 0 for x ∈ ∆} or Lc = {r : Gr(x) < 0 for x ∈ ∆}.
In this circumstance, we consider the least value of 1

Gr(x)
and −1

Fr(x)
is t for

r ∈ L and r ∈ Lc, respectively, i.e.,

(2)
⋂
r∈L

1

d̃Nr x+ q̃Nr
= t ,

⋂
r∈Lc

−1

c̃Nr x+ p̃Nr
= t

which is equivalent to

(3) t ≤ 1

d̃Nr x+ q̃Nr
for r ∈ L , t ≤ −1

c̃Nr x+ p̃Nr
for r ∈ Lc
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With the help of the transformation t = 1
Gr(x)

, y = tx, and using the above

mentioned inequalities (3), NMOLFP problem (1) may be written as follows:

Maximize Zr(y, t) = {tFr(yt ), for r ∈ L; tGr(
y
t ), for r ∈ Lc}

Subject to tGr(
y
t ) ≤ 1, for r ∈ L

−tFr(yt ) ≤ 1, for r ∈ Lc(4)

ÃN (yt )− b̃N ≤ 0,

t, y ≥ 0.

Definition 3.1. [20] Let D be the set of feasible solution of (4). A feasible
solution (ȳ, t̄) ∈ D is said to be efficient solution of (4) if there is no (y∗, t∗) ∈ D
such that Zr(y

∗, t∗) ≥ Zr(ȳ, t̄), r = 1, . . . , k and Zs(y
∗, t∗) > Zs(ȳ, t̄) for at least

one s ∈ D.

Theorem 3.2. The solution x∗ is an efficient solution for problem (1) if and

only if the solution (y∗, t∗) with x∗ = y∗

t∗ is an efficient solution for problem
(4).

Proof. Contrarily, suppose that x∗ = y∗

t∗ is an efficient solution for problem
(1), but (y∗, t∗) is not an efficient solution for the problem (4). Then, there
must exist (ŷ, t̂) ∈ D (where D is the feasible space of problem (4)) such that

t∗Fr(
y∗

t∗
) ≤ t̂Fr(

ŷ

t̂
) for r ∈ L and t∗Fs(

y∗

t∗
) < t̂Fs(

ŷ

t̂
) for at least one index

s ∈ L, also t∗Gr(
y∗

t∗
) ≤ t̂Gr(

ŷ

t̂
) for r ∈ LC and t∗Gs(

y∗

t∗
) < t̂Gs(

ŷ

t̂
) for at least

one index s ∈ LC .
Using the definition of chakraborty and Gupta [7], that extended by Arya et.

al. [3], we conclude that t∗Fr(x
∗) ≤ t̂Fr(

ŷ

t̂
) for r ∈ L and t∗Gr(x

∗) ≤ t̂Gr(
ŷ

t̂
)

for r ∈ LC , and t∗Fs(x
∗) < t̂Fs(

ŷ

t̂
) for at least one index s ∈ L and t∗Gs(x

∗) <

t̂Gs(
ŷ

t̂
) for at least one index s ∈ LC . This implies that

Fr(x
∗)

Gr(x∗)
≤ Fr(x̂)

Gr(x̂)
for

r = 1, 2, . . . , k and
Fr(x

∗)

Gr(x∗)
<
Fr(x̂)

Gr(x̂)
for at least one s ∈ {1, . . . , k}.

This proves that the solution x∗ is not efficient solution for problem (1). This
contradicts our assumption and hence concludes that the solution (y∗, t∗) is
efficient for the problem (4).
Conversely, let (y∗, t∗) be an efficient solution to the problem (4) and x∗ is
not efficient solution to the problem (1). Then, there must exist x̂ ∈ D such

that
Fr(x

∗)

Gr(x∗)
≤ Fr(x̂)

Gr(x̂)
for r = 1, . . . , k, and

Fr(x
∗)

Gr(x∗)
≤ Fr(x̂)

Gr(x̂)
for at least one

s ∈ {1, . . . , k}.

Using the transformation y∗ = t∗x∗ we deduce that tFr(
y∗

t∗
) ≤ Fr(x̂)

Gr(x̂)
for r ∈ L
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and tFs(
y∗

t∗
) <

Fs(x̂)

Gs(x̂)
for at least one s ∈ L, and tGr(

y∗

t∗
) ≤ Fr(x̂)

Gr(x̂)
for r ∈ Lc

and tGs(
y∗

t∗
) <

Fs(x̂)

Gs(x̂)
for at least one index s ∈ Lc.

This conflicts the reality that the solution (y∗, t∗) of problem (4) is efficient
. Hence, the solution x∗ of problem (1) is efficient. This demonstrates the
theorem. �

3.2. Conversion of (NMOLPP) to (crisp MOLPP). After, linearizing
the problem based on the transformation presented in the previous section, by
introducing a new intuitionistic fuzzy variable, we apply the accuracy function
for each objective function and constraints. Thus, the NMOLPP (4) can be
converted into the following deterministic MOLPP:

Maximize Or(y, t) = {c′ry + p′rt, for r ∈ L; d′ry + q′rt, for r ∈ Lc}
Subject to d′ry + q′rt ≤ 1, for r ∈ L

−c′ry − p′rt ≤ 1, for r ∈ Lc(5) ∑n
j=1 a

′
ijyj − b′it ≤ 0, i = 1, . . . ,m

t, y ≥ 0.

where c′r = φ(c̃Nr ), p′r = φ(p̃Nr ), d′r = φ(d̃Nr ) and q′r = φ(q̃Nr ) for r = 1, . . . , k.

Also a′ij = φ(ãNij ) and b′i = φ(b̃Ni ) for all i = 1, . . . ,m, j = 1, . . . , n are the crisp
version of all parameters.

Theorem 3.3. An efficient solution of problem (5) is an efficient solution for
problem (4).

Proof. Assume that (y, t) is an efficient solution of problem (5). Then x is
feasible for problem (5), it means that the following conditions will hold:

d′ry + q′rt ≤ 1, for r ∈ L
−c′ry − p′rt ≤ 1, for r ∈ Lc∑n

j=1 a
′
ijyj − b′it ≤ 0, i = 1, . . . ,m

t, y ≥ 0.

Since the function φ is linear [11], then we have

φ(d̃Nr )y + φ(q̃Nr )t ≤ 1, for r ∈ L
−φ(c̃Nr )y − φ(p̃Nr )t ≤ 1, for r ∈ Lc∑n
j=1 φ(ãNij )yj − φ(b̃Ni )t ≤ 0, i = 1, . . . ,m

t, y ≥ 0.
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Consequently, we have

d̃Nr y + q̃Nr t ≤ 1, for r ∈ L
−c̃Nr y − p̃Nr t ≤ 1, for r ∈ Lc∑n
j=1 ã

N
ijyj − b̃Ni t ≤ 0, i = 1, . . . ,m

t, y ≥ 0.

Hence, (y, t) is a feasible solution for problem (4).
Moreover, since (y, t) is an efficient solution for problem (5), there does not
exist any (y∗, t∗) such that Or(y

∗, t∗) ≥ Or(y, t) for r ∈ L and Or(y
∗, t∗) >

Or(y, t) for at least one index s ∈ L, also Or(y
∗, t∗) ≥ Or(y, t) for r ∈ Lc and

Or(y
∗, t∗) > Or(y, t) for at least one index s ∈ Lc. Thus we have no (y∗, t∗)

such that: max φ(tFr(
y∗

t∗ )) ≥ max φ(tFr(
y
t )) for r ∈ L and max φ(tFr(

y∗

t∗ )) >
max φ(tFr(

y
t )) for at least one s ∈ L, also, there does not exist any (y∗, t∗) such

that: max φ(tGr(
y∗

t∗ )) ≥ max φ(tGr(
y
t )) for r ∈ Lc and max φ(tGr(

y∗

t∗ )) >
max φ(tGr(

y
t )) for at least one s ∈ Lc.

Since φ is a linear function, we have no (y∗, t∗) such that max Zr(y
∗, t∗) ≥

max Zr(y, t) for r ∈ L and max Zr(y
∗, t∗) > max Zr(y, t) for at least one s ∈ L,

also, there does not exist any (y∗, t∗) such that max Zr(y
∗, t∗) ≥ max Zr(y, t)

for r ∈ Lc and max Zr(y
∗, t∗) > max Zr(y, t) for at least one s ∈ Lc. Therefore,

(y, t) is an efficient solution for problem (4) �

The above model is the linearized version of the NMOLFPP. Thus, the ob-
tained NMOLPP can be handed by different approaches to get the efficient
solution. Since the objective functions Or(y, t), r = 1, . . . , k are to be maxi-
mized, the level of satisfaction of the DM will increases as the solution tends
towards upper bound to each objective and hence the DM will satisfy fully if
the objective reach to their upper bound. Therefore, we construct a model
by introducing NF constraints Or(y, t) ≈ Ur, r = 1, . . . , k with constraints
of (5). where, the minimum and maximum values of each objective functions
have been represented by Ur = max{Or(y, t)} and Lr = min{Or(y, t)} for all
r = 1, . . . , k.
Here, the constraint Or(y, t) ≈ Ur, r = 1, . . . , k is an neutrosophic fuzzy con-
straint that includes neutrosophic fuzzy equality that can be treated employing
a membership function. This membership function may be linear, parabolic,
or hyperbolic based on the choice of the DM. In this paper, since linear mem-
bership functions are used in the literature and practice more than other types
of membership functions [26], we choose the linear membership functions.
The bounds for r-th objective function under the neutrosophic environment
can be obtained as follows:

Uµr = Ur, Lµr = Lr for truth membership(6)

Uλr = Uµr + sr, Lλr = Lµr for indeterminacy membership(7)

Uνr = Uµr , Lνr = Lµr + tr for falsity membership(8)
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where sr and tr ∈ (0, 1) are real numbers prescribed by decision-makers.
If r ∈ L, then truth-membership function of each objective function can be
stated as:

(9) µ(Or(y, t)) =


0 φ(tFr(

y
t )) ≤ Lµr

c′ry + p′rt− Lµr
Uµr − Lµr

Lµr ≤ φ(tFr(
y
t )) ≤ Uµr

1 φ(tFr(
y
t )) ≥ Uµr ,

If r ∈ Lc, then truth-membership function of each objective function can be
stated as:

(10) µ(Or(y, t)) =


0 φ(tGr(

y
t )) ≤ Lµr

d′ry + q′rt− Lµr
Uµr − Lµr

Lµr ≤ φ(tGr(
y
t )) ≤ Uµr

1 φ(tGr(
y
t )) ≥ Uµr ,

If r ∈ L, then indeterminacy-membership function of each objective function
can be written as:

(11) λ(Or(y, t)) =


0 φ(tFr(

y
t )) ≤ Lλr

Uλr − (c′ry + p′rt)

Uλr − Lλr
Lλr ≤ φ(tFr(

y
t )) ≤ Uλr

1 φ(tFr(
y
t )) ≥ Uλr ,

If r ∈ Lc, then indeterminacy-membership function of each objective function
can be written as:

(12) λ(Or(y, t)) =


0 φ(tGr(

y
t )) ≤ Lλr

Uλr − (d′ry + q′rt)

Uλr − Lλr
Lλr ≤ φ(tGr(

y
t )) ≤ Uλr

1 φ(tGr(
y
t )) ≥ Uλr ,

If r ∈ L, then falsity-membership function of each objective function can be
written as:

(13) ν(Or(y, t)) =


1 φ(tFr(

y
t )) ≤ Lνr

Uνr − (c′ry + p′rt)

Uνr − Lνr
Lνr ≤ φ(tFr(

y
t )) ≤ Uνr

0 φ(tFr(
y
t )) ≥ Uνr ,

If r ∈ Lc, then falsity-membership function of each objective function can be
written as:

(14) ν(Or(y, t)) =


1 φ(tGr(

y
t )) ≤ Lνr

Uνr − (d′ry + q′rt)

Uνr − Lνr
Lνr ≤ φ(tGr(

y
t )) ≤ Uνr

0 φ(tGr(
y
t )) ≥ Uνr ,

Now our problem is reduced to increase the range of acceptance and to decrease
the range of rejection subject to the given constraint. For this we can adopt
the following Zimmermann’s technique.
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3.3. Zimmerman’s technique. Let δ = min{µ(Or(y, t)), r = 1, . . . , k}, γ =
max{λ(Or(y, t)), r = 1, . . . , k} and ϑ = max{ν(Or(y, t)), r = 1, . . . , k}. In
other words µ(Or(y, t)) ≥ δ, λ(Or(y, t)) ≤ γ and ν(Or(y, t)) ≤ ϑ.
Based on Zimmerman’s approach [29] which provides simultaneous maximiza-
tion of the minimum truth degree of acceptance and minimization of the max-
imum indeterminacy degree of rejection upto some extent and minimization of
the falsity degree of rejection. Thus, we formulate the model using max-min
as the operator as follows:

max δ − γ − ϑ
s.t. c′ry + p′rt− δ(Uµr − Lµr ) ≥ Lµr , r ∈ L

d′ry + q′rt− δ(Uµr − Lµr ) ≥ Lµr , r ∈ Lc

c′ry + p′rt+ γ(Uλr − Lλr ) ≥ Uλr , r ∈ L
d′ry + q′rt+ γ(Uλr − Lλr ) ≥ Uλr , r ∈ Lc(15)

c′ry + p′rt+ ϑ(Uνr − Lνr ) ≥ Uνr , r ∈ L
d′ry + q′rt+ ϑ(Uνr − Lνr ) ≥ Uνr , r ∈ Lc

δ ≥ γ, δ ≥ ϑ, δ + γ + ϑ ≤ 3, δ, γ, ϑ ∈ (0, 1)

all the constraints of (5)

Theorem 3.4. A unique optimal solution of (15) is an efficient solution of
problem (5).

Proof. Let (ŷ, t̂, δ̂, γ̂, ϑ̂) be the unique optimal solution of (15). Then, (δ̂ − γ̂ −
ϑ̂) ≥ (δ− γ−ϑ) for any feasible solution (y, t, δ, γ, ϑ) of theproblem (15). Con-

trarily, suppose that (ŷ, t̂, δ̂, γ̂, ϑ̂) is not an efficient solution to model (5). Then,
there exist feasible solution (y∗, t∗) 6= (ŷ, t̂) such that Or(ŷ, t̂) ≤ Or(y

∗, t∗)
for r = 1, . . . , k and Or(ŷ, t̂) < Or(y

∗, t∗) for at least one index r. There-

fore,
Uνr −Or(ŷ, t̂)
Uνr − Lνr

≥ Uνr −Or(y∗, t∗)
Uνr − Lνr

and
Uνr −Or(ŷ, t̂)
Uνr − Lνr

>
Uνr −Or(y∗, t∗)

Uνr − Lνr
,

for at least one r. Thus max
r

Uνr −Or(ŷ, t̂)
Uνr − Lνr

> (≥) max
r

Uνr −Or(y∗, t∗)
Uνr − Lνr

. Let

ϑ∗ = max
r

Uνr −Or(y∗, t∗)
Uνr − Lνr

, then ϑ̂ > (≥)ϑ∗.

Similarly, consider that γ∗ = max
r

Uλr −Or(y∗, t∗)
Uλr − Lλr

, then γ̂ > (≥)γ∗.

In the same manner,
Or(ŷ, t̂)− Lµr
Uµr − Lνr

≤ Or(y
∗, t∗)− Lµr

Uµr − Lµr
and

Or(ŷ, t̂)− Lµr
Uµr − Lµr

<

Or(y
∗, t∗)− Lµr

Uµr − Lµr
, for at least one r. Thus min

r

Or(ŷ, t̂)− Lµr
Uµr − Lµr

< (≤) min
r

Or(y
∗, t∗)− Lµr

Uµr − Lµr
.

Let δ∗ = min
r

Or(y
∗, t∗)− Lµr

Uµr − Lµr
, then δ̂ < (≤)δ∗. Therefore, (δ̂ − γ̂ − ϑ̂) <

(δ∗ − γ∗ − ϑ∗) which means that the solution is not unique optimal.
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This conflict the reality that (ŷ, t̂, δ̂, γ̂, ϑ̂) is the unique optimal solution of (15),
hence, it is an efficient solution of model (5). �

4. Algorithm for solving NFMOFLPP

The step-wise solution algorithm discussed in Section (3.2) is summarized
as follows:

• Step 1. Formulate the FNMOLPP as given in problem (4).
• Step 2. Using accuracy function, obtain the crisp version of NMOLPP

as given in problem (5).
• Step 3. Solve the crisp multi-objective linear programming problem by

considering one objective function at a time with all constraints and
ignoring all other objective function. Repeat this process k times for
k different objective function. Suppose that the corresponding optimal
solutions are (y, t)(1), (y, t)(2), . . . , (y, t)(k).
• Step 4. Find the value of the objective function Or(y, t) for r =

1, 2, . . . , k at each point in (y, t). Form a payoff matrix O of order
K ×K, whose (i, j)th element is equal to Oj(y, t)

(i) = Oij .
• Step 5. Find the minimum and maximum value of each objective func-

tion, then evaluate Ur = max{O1r, . . . , Okr} and Lr = min{O1r, . . . , Okr}
for r = 1, . . . , k.
• Step 6. With the aid of Ur and Lr, calculate the upper and lower bound

for truth, indeterminacy and a falsity membership under neutrosophic
envirnment as given in Eqs (6)–(8).
• Step 7. Elicit the membership functions under neutrosophic environ-

ment by using Eqs (9)-(14).
• Step 8. Utilize Zimmerman’s approach to formulate and solve model

(15) to determine the optimal compromise outcomes by applying the
appropriate methods or different optimization software packages.

5. Numerical illustration

In this section, we present a numerical example to demonstrate the steps
of the proposed methodology. Consider the following problem having three
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objectives:

max Z̃1(x) =
6̃Nx1 + 7̃Nx2 + 5̃Nx3 + 4̃N

7̃Nx1 − 5̃Nx2 − 4̃Nx3 − 1̃N

max Z̃2(x) =
7̃Nx1 + 8̃Nx2 + 9̃Nx3

5̃Nx1 + 4̃Nx2 + 6̃Nx3 + 3̃N
(16)

max Z̃3(x) =
9̃Nx1 + 8̃Nx2 + 7̃Nx3 + 7̃N

4̃Nx1 + 6̃Nx2 + 5̃Nx3 + 6̃N

subject to 4̃Nx1 + 5̃Nx2 + 7̃Nx3 ≥ 4̃N

5̃Nx1 + 8̃Nx2 + 6̃Nx3 ≤ 2̃0
N

6̃Nx1 + 7̃Nx2 + 4̃Nx3 ≤ 1̃5
N

x1, x2, x3 ≥ 0

where 1̃ = 〈(0, 1, 2, 3); 0.8, 0.5, 0.3〉, 3̃ = 〈(2, 3, 4, 5); 0.9, 0.4, 0.5〉, 4̃ = 〈(3, 4, 5, 6); 0.6, 0.4, 0.5〉,
5̃ = 〈(4.5, 5, 6.2, 7); 0.3, 0.4, 0.8〉, 6̃ = 〈(5, 6, 7, 8); 0.75, 0.5, 0.25〉, 7̃ = 〈(6, 7, 10, 12); 0.8, 0.6, 0.5〉,
8̃ = 〈(7, 8, 10, 11); 0.8, 0.5, 0.3〉, 9̃ = 〈(8, 9, 10, 12); 0.8, 0.1, 0.4〉, 2̃0 = 〈(18, 20, 21, 22); 0.9, 0.2, 0.6〉,
1̃5 = 〈(14, 15, 16, 18); 0.4, 0.3, 0.6〉
Firstly, using the transformation y = tx the NMOLFPP (16) is converted into
NMOLPP as: (Note that r = {2, 3} ∈ L, r = {1} ∈ Lc)

max Z̃1(y, t) = 7̃Ny1 − 5̃Ny2 − 4̃Ny3 − 1̃N ,

max Z̃2(y, t) = 7̃Ny1 + 8̃Ny2 + 9̃Ny3,

max Z̃3(y, t) = 9̃Ny1 + 8̃Ny2 + 7̃Ny3 + 7̃N t,

subject to − 6̃Ny1 − 7̃Ny2 − 5̃Ny3 − 4̃N t ≤ 1̃N(17)

5̃Ny1 + 4̃Ny2 + 6̃Ny3 + 3̃N t ≤ 1̃N

4̃Ny1 + 6̃Ny2 + 5̃Ny3 + 6̃N t ≤ 1̃N

4̃Ny1 + 5̃Ny2 + 7̃Ny3 − 4̃N t ≥ 0̃N

5̃Ny1 + 8̃Ny2 + 6̃Ny3 − 2̃0
N
t ≤ 0̃N

6̃Ny1 + 7̃Ny2 + 4̃Ny3 − 1̃5
N
t ≤ 0̃N

y1, y2, y3, t ≥ 0
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Then we defuzzify problem (17) using the accuracy function and arithmetic
operations to obtain the crisp model as follows:

max O1(y, t) = 5.9063y1 − 3.831y2 − 3.0375y3 − 1.625,

max O2(y, t) = 5.9063y1 + 5.85y2 + 7.556y3,

max O3(y, t) = 7.556y1 + 5.85y2 + 5.9063y3 + 5.9063t,

subject to − 4.0625y1 − 5.9063y2 − 3.831y3 − 3.0375t ≤ 1

3.831y1 + 3.0375y2 + 4.0625y3 + 2.625t ≤ 1(18)

3.0375y1 + 4.0625y2 + 3.831y3 + 4.0625t ≤ 1

3.0375y1 + 3.831y2 + 5.9063y3 − 3.0375t ≥ 0

3.831y1 + 5.85y2 + 4.0625y3 − 16.706t ≤ 0

4.0625y1 + 5.9063y2 + 3.0375y3 − 10.631t ≤ 0

Solving each objective function with all constraints in problem (18) at a time,
we get the pay-off matrix as follows:

Table 1. Pay-off matrix

y1 y2 y3 t O1(y, t) O2(y, t) O3(y, t)
maxO1 0.2069 0 0 0.0791 1.093 1.2218 2.03
maxO2 0 0 0.2003 0.0572 -0.7015 1.5137 1.5213
maxO3 0.1894 0 0 0.1045 0.9487 1.1186 2.0485

From the pay-off matrix (Table 1) lower bound and upper bound are esti-
mated as L1 = −0.7015, U1 = 1.093, L2 = 1.1186, U2 = 1.5137, L3 = 1.5213,
U3 = 2.0485. After constructing the truth, indeterminacy and falsity membr-
ship functions defined in relations (9-14) and using Zimmermann’s approach,
Problem (18) reduces to

max δ − γ − ϑ
s.t. O1(y, t)− δ(1.7945) ≥ −0.7015,

O2(y, t)− δ(0.3951) ≥ 1.1186,

O3(y, t)− δ(0.5273) ≥ 1.5213,

O1(y, t) + γ(1.7945 + s1) ≥ 1.093 + s1,

O2(y, t) + γ(0.3951 + s2) ≥ 1.5137 + s2,

O3(y, t) + γ(0.5273 + s3) ≥ 2.0485 + s3,(19)

O1(y, t) + ϑ(1.7945− t1) ≥ 1.093,

O2(y, t) + ϑ(0.3951− t2) ≥ 1.5137,

O3(y, t) + ϑ(0.5273− t3) ≥ 2.0485,

δ ≥ γ, δ ≥ ϑ, δ + γ + ϑ ≤ 3, δ, γ, ϑ ∈ (0, 1)

all the constraints of (18)
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For different values of sr and tr, the comparative study of the obtained optimal
solutions are given in Table 2. It is clear that for sr = tr = 0.5 we obtained
better solution for the first and second objective function, whereas for sr =
tr = 0.1, we find better solution for the third objective function. Hence it
depends on the DM that which objective has higher priority to be achieved.
Accordingly, the method should be applied.

Table 2. Optimal solution results

sr, tr X = (x1, x2, x3) Z1(x) Z2(x) Z3(x) δ γ ϑ
0.1 (2.6169, 0, 0) 0.8844 1.2218 2.1379 1 1 1
0.3 (2.5948, 0, 0.0295) 0.8987 1.2257 2.1304 1 1 1
0.5 (1.8201, 0, 1.0657) 1.9319 1.35 1.898 0.89 0.89 0.6338
0.7 (1.9381, 0, 0.9078) 1.6559 1.3326 1.9298 0.5904 0.5904 0.279
0.9 (1.9708, 0, 0.8641) 1.5921 1.3276 1.9388 0.1789 0.6632 0.6632

6. Conclusion

The formulation and analysis of an optimization problem under neutrosophic
fuzzy scenario is more realistic and has high practical applicability in compar-
ison with the problem under fuzzy environment. In this paper an effective
procedure has been suggested to solve the NMOLFP problem, where all the
coefficients and right-hand side parameters are single-valued trapezoidal neu-
trosophic numbers. In the first phase of our approach, the problem is con-
verted into a linear one using Charnes-Cooper transformation method. Then
the linearized model is reduced to a crisp multi-objective problem using the
accuracy function for each objective. We extended Zimmerman’s approach to
maximize the truth-membership and minimize the indeterminacy-membership
and falsity-membership functions in the solution procedure. Moreover, an al-
gorithm that indicates the procedures for tackling NMOLFPP is presented,
the applicability and efficiency of our approach is also indicated numerically.
The proposed approach can be used to solve real-world problems that have
imprecise and contradictory information. As future researches, the proposed
approach can be applied to various optimization problems such as supplier
selection problems, inventory control, portfolio optimization, etc.
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