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ABSTRACT. The generalization of asymmetric Laplace (AL) distribution has re-
cently received considerable attention in dealing with skewed and long-tailed data. In
this article, we introduce a new family of distributions based on the location mixture
of asymmetric Laplace (LM-AL) distribution. Some properties of this family, such
as density function, moments, skewness and kurtosis coefficients are derived. We
show that this family of distributions is quite flexible because it has wider ranges of
skewness and kurtosis than the other skew distributions introduced in the literature.

We also generalize the weighted exponential distribution introduced by Gupta
and Kundo (2009) and show that truncated LM-AL distribution in zero belongs to
this family. This family of distributions represents a suitable alternative to existing
models such as Weibull, log-normal, log-logistic, gamma, and Lindley distributions.
The performance and applicability of the proposed model in survival analysis are
illustrated by analyzing a simulation study and two real data sets. To compute the
maximum likelihood (ML) estimation of the parameters in the LM-AL distribution,
an EM-type algorithm is developed and the estimation of the parameters of the model
in survival analysis is performed using a maximization algorithm, due to the problem
complexity.

Keywords: Asymmetric Laplace distribution, Location mixture distribution, EM-algorithm,
Survival analysis.
2020 MSC: 62Nxx.

1. Introduction

Few real-world phenomena that need to be studied statistically are symmetric.
Thus, the symmetric models will not be useful for studying all phenomena. In the
last few decades, data sets in financial studies, image processing, signal processing,
reliability, and survival analysis have shown that following the rules of normal distri-
bution is an exception rather than a rule. The existence of asymmetric observations
in various scientific fields has led researchers to construct and generalize distributions
that can provide a good fit for modeling this type of phenomenon.

During the last three decades, several important classes of distributions have been
discussed extensively in this regard, such as the families of mean mixture, variance
mixture, and mean-variance mixture of normal distributions (see Pourmousa et al.
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(2015), Naderi et al. (2018), and Naderi et al. (2023)). In variance mixtures of
normal distributions, it is assumed that the variance is not constant for all members
of the population. But in some cases, in addition to the inequality of variance, it
may also have a non-constant mean. To model such data sets variance mixture of
normal distributions were extended to variance–mean mixture of normal distributions.
Recently Negarestani et al. (2018) introduced a general class of skewed distributions
based on mean-mixtures of normal distribution.

This idea became a motivation for us to extend this family to long-tailed distribu-
tions such as Laplace. Among the family of important symmetric distributions such
as normal, logistic, uniform, Laplace, t-student, etc., the Laplace distribution is very
popular due to its towering peak, heavy tails and attractive possibilities. A generalized
family of Laplace distribution is the asymmetric Laplace distribution. In this paper,
we use a version of the asymmetric Laplace distribution that possesses many impor-
tant statistical properties such as infinite divisibility, geometric infinite divisibility,
and stability with respect to geometric summation and can accommodate asymme-
try, peakedness, and tail heaviness. One of the aims of this paper is to increase the
flexibility and introduce a specific class of skewed distributions based on the loca-
tion mixtures of asymmetric Laplace (LM-AL) distribution, using a similar idea to
Negarestani et al. (2018).

Another goal of this article is to generalize the family of weighted exponential
distributions using the location mixture of exponential distribution and find its rela-
tionship with the LM-AL distribution, which is our main motivation for writing this
paper. It should be noted that this distribution, which is a generalization of the distribu-
tion introduced by Gupta and Kundo (2009), has a much better fit than other common
models in survival analysis.

The weighted exponential distribution, which is a competitor to the Weibull, gamma,
and generalized exponential distributions, has a significant application in engineering
and medical fields, which was proposed by Gupta and Kundo (2009) as a generaliza-
tion of the exponential distribution. The importance of this distribution, in addition to
its application, is in its introduction method. Different methods may be used to intro-
duce a shape parameter in the generalization of the exponential model and may lead
to a variety of weighted exponential distributions. Gupta and Kundo (2009) used the
idea of Azzalini (1985) to introduce a shape parameter to an exponential distribution,
which led to a new class of weighted exponential distributions that are more flexible
than other models. We show that this distribution can also be produced based on the
location mixture of the exponential distribution in addition to Azzalini’s method. The
weight function in this distribution is based on the cumulative distribution function.
We also were able to generalize this function in terms of the survival function, so
that the distribution introduced by Gupta and Kundo (2009) becomes a special case
of it. This feature has made our model more flexible and adaptable than the model
introduced by Gupta and Kundo (2009). We also showed that the zero-truncated dis-
tribution of the LM-AL distribution belongs to this family.
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The rest of this paper is organized as follows: In Section 2, the asymmetric Laplace
(AL) distribution and several of its related representations and properties were ex-
plored. In Section 3, we first discussed the location mixture of the exponential and the
weighted exponential in terms of the survival function (WES) distributions, and then
use it to introduce the location mixture of the asymmetric Laplace (LM-AL) family.
An ECM algorithm is developed to get parameter estimates of the LM-AL model in
Section 4. In Section 5, we have examined the application of the LM-AL family in
survival analysis and introduced a new model for the analysis of time-to-event data,
which belongs to the family of WES distribution. We also develop an MCECM algo-
rithm for maximum likelihood estimation of the parameters of the WES distribution
in Section 5. In Section 6, two simulation studies are conducted to examine the per-
formance of the maximum likelihood estimators of the parameters of the models and
finally, the applicability of the proposed model in survival analysis is demonstrated
using two real data sets.

2. Asymmetric Laplace Distribution

The Laplace distribution and its various generalizations have been widely applied
in many different aspects of life sciences, economics, finance, and risk analysis. When
dealing with asymmetric data, skewed models are an essential tool for the ensuing
analysis. Several asymmetric forms of Laplace distribution have appeared in the liter-
ature; see, for example, Kotz et al. (2001). Their method, based on the idea of Steel’s,
converts the Laplace distribution into a skew-Laplace by postulating a scale param-
eter. In this paper, we discuss a version of asymmetric Laplace distribution that has
attracted the attention of many researchers due to its attractive probabilistic properties.

Definition 2.1. The random variable Y has an asymmetric Laplace distribution, de-
noted by AL(β ), if its PDF is given by

f (y;β ) =
1

2α
e−α|y|+βy, y ∈ R,(1)

where β ∈ R is the skewness parameter and α =
√

β 2 +1.

The asymmetric Laplace distribution introduced in (1) possesses many important
statistical properties such as infinite divisibility, geometric infinite divisibility, and
stability with respect to geometric summation. Moreover, this model has considerable
flexibility and can accommodate asymmetry, peakedness and tail heaviness, which are
commonly encountered in many data sets. The skew-Laplace distributions can also be
obtained as the difference between two exponential distributions which is introduced
in the following theorem. It can be easily shown that many of the skew Laplace
distributions introduced in the literature become special cases of it.

Proposition 2.2. Let X1 and X2 be independent exponential random variables with
mean λ . Then, for any positive-valued number τ , the random variable Y = X2− τX1
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has an asymmetric distribution, denoted by SL(λ ,τ), about the origin with PDF

f (y;λ ,τ) =
1

λ (1+ τ)

{
e

y
λτ , y < 0,

e−
y
λ , y≥ 0.

(2)

Remark 2.3. The probability density function (PDF) in (2) is a skewed Laplace distri-
bution, denoted by SL(λ ,τ), and the cases 0 < τ < 1 and τ > 1 correspond to positive
and negative skewness, respectively. We also observe that when τ = 1, (2) reduces to
the symmetric Laplace distribution.

There are several alternative parameterizations for the PDF in (2). For example, the
skew Laplace distributions introduced by Fernandez and Steel (1998) are special cases
of this family. Note that the skew Laplace distribution introduced in Proposition 2.2 is
a special case of the asymmetric Laplace distribution if τ = α−β

α+β
and λ = 1

α−β
. Some

applications of this AL distribution can be found in Fernandez and Steel (1998). Upon
adding location and scale parameters, µ ∈ R and σ > 0, respectively, and denoting it
by Y ∼ AL(µ,σ ,β ), we have its PDF as

f (y; µ,σ ,β ) =
1

2ασ
e−

α
σ
|y−µ|+ β

σ
(y−µ), y ∈ R.

Figure 1 presents the PDFs for different parameter values of the AL distribution, from
which it can be seen that β is a parameter that impacts skewness and kurtosis of the
AL distribution in the same and opposite directions, respectively.
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FIGURE 1. The asymmetric Laplace PDF for different values of β (with
µ = 0, σ = 1).

2.1. Representations and Properties of AL distribution. In this subsection, we
present some important representations of the asymmetric Laplace distribution that
can be used to simulate this distribution.
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(I) Mean-mixture representation: If W1
d
= W2 ∼ Exp(α + β ) and W1 ⊥W2,

then

Y d
=W2− (α−β )2W1 ∼ AL(β ).

(II) Variance mixture representation: Let U be a discrete random variable with
pdf

g(u;β ) =
1

2α

{
α +β if u = β +α;
α−β if u = β −α.

If W ∼ Exp(1) and W ⊥U , then, Y admits the stochastic representation Y =
UW .

(III) Mean-variance mixture representation: Let Z ∼ N(0,1) and W ∼ χ2
(2),

where Z ⊥W . Then, the random variable Y can be generated by the rep-
resentation

Y = βW +
√

WZ.

3. Location Mixture Distribution

Suppose X has an arbitrary distribution with PDF g(x;τ), where τ ∈ U ⊂ Rk is
a scalar or vector parameter indexing the distribution, and W, independently of X,
has some distribution on (0,∞) with CDF H(w;ν), ν ∈ V ⊂ Rk. Then, we say that
Y = δW +λX is a location mixture of X with a location mixing (CDF) H(w;ν), for
δ ∈ R, if its PDF is given by

f (y;δ ,λ ,τ,ν) =
1
λ

∫
∞

0
g
(

y−δw
λ

;τ

)
dH(w;ν).

It is important to mention that a stochastic representation for the skew-normal random
variable Y, with parameter λ ∈ R, has been presented by Azzalini (1985) and Henze
(1986) as follows:

Y d
= δW +

√
1−δ 2 Z,

where W and Z are independent half-normal and standard normal random variables,
respectively. This representation means that the skew-normal distribution is a mean-
mixture of normal distribution in which the mixing distribution is the half-normal dis-
tribution. Convolution of normal and a positive random variable has been considered
by many authors including Silver et al. (2009), and Krupskii et al. (2018). Recently,
Negarestani et al. (2018) introduced a general class of skewed distributions based on
the mean mixture of normal distribution, which motivates the present work. We intro-
duce a location mixture of Laplace and asymmetric Laplace distributions and discuss
their densities and properties. For this purpose, we first need to review the location
mixture of the exponential distribution, which subsequently enables the definition of
a new family of weighted distributions.
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3.1. Location Mixture of Exponential Distribution.

Definition 3.1. Let X and W be independent exponential random variables with mean
1. Then, for δ > 0, the random variable Y = δW + λX has a location mixture of
exponential distribution with PDF

(3) f (y;δ ,λ ) = λ
∗ f (y;λ ) F

( y
δ

;λ
∗
)
, y > 0,

where λ ∗ = λ

λ−δ
, and f (.) and F(.) are the PDF and CDF of a standard exponential

random variable, respectively.

Remark 3.2. The weighted exponential distribution introduced by Gupta and Kundo
(2009) is a location mixture of the exponential distribution upon taking δ = λ

θ+1 in
(3), where denoted by WE(θ ,λ ).

The weight function in (3) is defined in terms of the distribution function. Instead,
we now change this structure and express it in terms of some other functions. Specif-
ically, in the following theorem we propose a new family of distributions, denoted as
WES distribution. Then, in the next sections, we will show that truncated LM-AL
belongs to this family of distributions.

Theorem 3.3. Let X1 ∼ SL(λ1,τ) be as defined in (2) and X2 ∼ Exp(λ2) be indepen-

dent of X1. Then, for θ > 0, the PDF of Y d
= X2|(0 < X1 ≤ θX2) is given by

(4) f (y;λ1,λ2,θ ,τ) = c f (y;λ2)

(
1− 1

1+ τ
S(θy;λ1)

)
,

where c =
(

1+ λ1
τλ1+θλ2(1+τ)

)
, f (.) and S(.) are the PDF and survival function of the

exponential random variable, respectively.

Proposition 3.4. The random variable Y, with PDF in (4), is said to have the weighted
exponential distribution in terms of the survival function, with parameters λ1,λ2,θ ,τ ∈
R+. We will denote it by Y ∼WES(λ1,λ2,θ ,τ).

Remark 3.5. If Y ∼WES(λ1,λ2,θ ,τ), then

• The Exp(λ2) distribution is a limiting case of the WES(λ1,λ2,θ ,τ), when
θ → 0 or θ → ∞.

• The weighted exponential distribution introduced by Gupta and Kundo (2009)
is belong to the family of WES(λ1,λ2,θ ,τ) distributions, when λ1 = λ2 = λ

and τ = 0.
• The location mixture of exponential distribution in (3) is a special case of the

WES(λ1,λ2,θ ,τ), when τ = 0, λ = λ2, and δ = λ1λ2
θλ2+λ1

.

So far, we have defined a location mixture of exponential distributions and used it
to introduce a new family of weighted distributions in terms of the survival function.
Now, we will use it to get a location mixture of asymmetric Laplace distribution.
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3.2. Location Mixture of Asymmetric Laplace Distribution. Let X ∼ AL(β ), de-
fined in (1), and W, independently of X, has some distribution on (0,∞) with CDF
H(w;ν). Then, we say that Y = δW + λX has a location mixture of asymmetric
Laplace distribution with a location mixing (CDF) H(w;ν) for δ ∈ R and λ > 0, de-
noted by Y ∼ LM−AL(β ,δ ,λ ), if its PDF is given by

(5) f (y;β ,λ ,δ ,ν) =
1

2αλ

∫
∞

0
e−

α

λ
|y−δw|+ β

λ
(y−δw) dH(w;ν).

The above integral has a closed form for some expression mixing distributions, such
as exponential and Lindley distributions. We consider here the distributions of W to
be exponential with mean 1. After some algebra, the PDF of Y is obtained as
(6)

f (y;β ,λ ,δ ) =
1

2α(λ +βδ +α|δ |)

e(
sign(δ )α+β

λ
)y, δy < 0

(λ+βδ+α|δ |)e−(
sign(δ )α−β

λ
)y−2|δ |αe−

y
δ

(λ−α|δ |+βδ ) , δy≥ 0,

where sign(.) denotes the sign function. To eliminate the dependence between param-
eters, we set δ = λ

sign(δ )α+β
. Subsequently, the PDF of location mixture of asymmetric

Laplace distribution, denoted by LM−AL(β ,λ ), can be expressed as

(7) f (y;β ,λ ) =
1

4αλ

e(
sign(δ )α+β

λ
)y, δy < 0

(α+sign(δ )β )e−(
sign(δ )α−β

λ
)y−αe−(

sign(δ )α+β

λ
)y

sign(δ )β , δy≥ 0.

Proposition 3.6. If Y ∼ LM−AL(β ,λ ) with PDF as in (7), the following stochastic
representations hold:

(I) If W1,W2, and W3 are three independent random variables such that W1 ∼
Exp(α− sign(δ )β ) and W2,W3 ∼ Exp(α +β ), then a representation of Y is

Y d
= λ (W1 + sign(δ )W2− (α−β )2W3)∼ LM−AL(β ,λ );

(II) If W1 ∼ Exp(α − sign(δ )β ) and W2 ∼ χ2
(2) is independent of W1, then Y has

the stochastic representation

Y d
= λ (sign(δ )W1 +βW2 +

√
W2Z)∼ LM−AL(β ,λ );

(III) If N is a discrete random variable taking values β −α and β +α with proba-
bility α−β

2α
and α+β

2α
, respectively. Also, let W1,W2 ∼ Exp(1) be independent

of N. Then

Y d
= λ

(
W1

β + sign(δ )α
+NW2

)
∼ LM−AL(β ,λ ),

where in all of these α2−β 2 = 1 and δ = λ

sign(δ )α+β
.
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Proposition 3.7. Let Y ∼ LM−AL(β ,λ ). Then, the skewness and kurtosis of Y can
be obtained as follows

γy =
µ3−3µ1µ2 +2µ3

1

(µ2−µ2
1 )

1.5 , κy =
µ4−4µ1µ3 +6µ2

1 µ2−3µ4
1

(µ2−µ2
1 )

2 −3

where

µ1 = E(Y ) = λ (β + sign(δ )α),

µ2 = E(Y 2) = 4λ
2(α2 +β

2),

µ3 = E(Y 3) = 12λ
3(α2 +β

2)(β + sign(δ )α),

µ4 = E(Y 4) = 24λ
4(3α

4 +10α
2
β

2 +3β
4).

To show the flexibility and supremacy of the LM-AL model in covering the skew-
ness and kurtosis of the data, we computed the maximum range of skewness and
kurtosis of the LM-AL distribution. The obtained findings indicate that the range of
skewness (-2,2) and kurtosis (5,9) for the LM-AL is wider than the other skewed dis-
tributions introduced in the literature including skew-t normal (Gómez, Venegas, and
Bolfarine (2007)).

Remark 3.8. For β = 0, Y ∼ LM−AL(β ,λ ) reduces to the location mixture of Laplace
distribution, denoted by LM−L(λ ), if and only if

Y d
=

{
sign(−δ )X1, with probability 1

4 ,

sign(δ )X2, with probability 3
4 ,

where sign(−δ )X1
d
= sign(δ )X2 ∼ Exp(λ ).

4. Parameter estimation with ECM algorithm

In this section, we propose an ECM algorithm for determining the maximum like-
lihood estimate Θ = (β ,λ ). The ECM algorithm replaces a complicated M-step of the
EM algorithm with several computationally simpler conditional maximization (CM)
steps. A CM-step might be in closed form or it might itself require iteration, but
because the CM maximizations are over smaller dimensional spaces, often they are
faster, simpler, and more stable than the corresponding full maximization required in
the M-step of the EM algorithm, especially when iteration is required (McLachlan et
al., 2004). In the following theorem, we present the conditional distribution of W,
given Y = y, which are required in the E-step of the ECM algorithm.

Theorem 4.1. Let Y = δW +λX, where W ∼ Exp(1), and X ∼ AL(β ), is indepen-
dently of W. Then, the conditional PDF of W, given Y = y, for y ∈ R, is as follows:

(a) For δy < 0,

W |(Y = y)∼ Exp
(

1
2

)
;
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(b) For δy≥ 0,

fW |Y=y(w;β ,λ ) = c

e−
sign(δ )α−β

λ
(y+2βλw), 0≤ w < β+sign(δ )α

λ
y,

e
sign(δ )α+β

λ
(y+2λw(β−sign(δ )α)), w≥ β+sign(δ )α

λ
y,

where c = 2sign(δ )β

(α+sign(δ )β )e−(
sign(δ )α−β

λ
)y−αe−(

sign(δ )α+β

λ
)y

is the normalizing constant.

Now, let Y1,Y2, ...,Yn be a random of size n from the LM-AL distribution. Then, we
use the following hierarchical representation for Yi:

(8) Yi|(Wi = wi)∼ AL(δwi,λ ,β ) and Wi ∼ Exp(1), i = 1,2, ...,n,

where δ = λ

sign(δ )α+β
. Based on the hierarchical representation in (8), we consider

random vector x = (y,w)T , where y = (y1,y2, ...,yn)
T is a random variable associ-

ated with the observed data and w = (w1, ...,wn)
T is the latent random vector. The

complete data log-likelihood is then given by
(9)

lc(Θ|y,w)=−n log(2αλ )+
β

λ

n

∑
i=1

yi−
(

2β

sign(δ )α +β

) n

∑
i=1

wi−
α

λ

n

∑
i=1

∣∣∣∣yi−
λ

sign(δ )α +β
wi

∣∣∣∣ .
As wi are unobservable, we need to compute the conditional expectation of the log-
likelihood function of complete data and then replace g(wi) with its conditional ex-
pectation, given yi. Therefore, the ECM algorithm for ML estimation of the LM-AL
distribution can be summarized through the following two iterative steps.

• E-step: At the iteration k, we compute the expected-log-likelihood function as

Q(Θ|Θ̂(k)) =−n log(2αλ )+
β

λ

n

∑
i=1

yi−
(

2β

sign(δ )α +β

) n

∑
i=1

ψ
(k)
1i −

α

λ

n

∑
i=1

ψ
(k)
2i ,

where ψ
(k)
1i = E(Wi | yi, θ̂

(k)) and ψ
(k)
2i = E(

∣∣∣yi− λ

sign(δ )α+β
Wi

∣∣∣ | yi, θ̂
(k)).

• CM-step: Maximizing Q(Θ|Θ̂(k)) over β and λ is done as follows:

λ̂
(k+1) =

α̂(k)
∑

n
i=1 ψ

(k)
2i − β̂ (k)

∑
n
i=1 yi

n
,

ana then by fixing λ̂ (k) = λ̂ (k+1), we have

β̂
(k+1) = argmax

β

Q(Θ|Θ̂(k)).

The above procedure is iterated until convergence of l(Θ̂(k+1))− l(Θ̂(k))<υ , where
the tolerance υ is considered as 10−5.

In order to provide a detailed guidance of the implementation method, a pseu-
docode of the above ECM algorithm is summarized in Algorithm 1.

The performance of the estimation method proposed in this section is examined
through a simulation study in Section 6.
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Algorithm 1 Implementation procedure of the ECM algorithm for fitting the LM-AL.

1: procedure LM-AL(y, x)
2: inputs: {yi,xi}n

i=1 - the set of input data;
3: kmax = 10000 - the maximum number of iteration; υ = 10−5- the prespecified

tolerance.
4: initialize: Set the algorithm counter to k=0.
5: Obtain the initial value of the parameter vector of θ (0).
6: Compute the initial log-likelihood as `(k)obs = `(θ̂ (k) | y).
7: E− step :
8: for k = 1 to kmax do
9: for i = 0 to n do

10: ψ
(k)
1i = E(Wi | yi, θ̂

(k)) and ψ
(k)
2i = E(

∣∣∣yi− λ

sign(δ )α+β
Wi

∣∣∣ | yi, θ̂
(k)).

11: Compute the conditional expectation, at the k−th iteration, as

Q(Θ|Θ̂(k)) =−n log(2αλ )+
β

λ

n

∑
i=1

yi−
(

2β

sign(δ )α +β

) n

∑
i=1

ψ
(k)
1i −

α

λ

n

∑
i=1

ψ
(k)
2i .

12: end for
13: CM− steps :

14: λ̂ (k+1) =
α̂(k)

∑
n
i=1 ψ

(k)
2i −β̂ (k)

∑
n
i=1 yi

n ;
15: Fix λ (k) = λ̂ (k+1) and update β̂ (k) by maximizing Q(Θ|Θ̂(k)) over β ,

β̂
(k+1) = argmax

β

Q(Θ|Θ̂(k));

16: Update k= (k+1) and Θ(k) = Θ(k+1).
17: end for
18: Repeat the above steps until convergence of l(Θ̂(k+1))− l(Θ̂(k))< υ .
19: end procedure

5. Application of the LM-AL family in survival analysis

Survival analysis is one of the most important and widely used concepts defined in
the statistical literature that is used in many fields such as medical sciences, finance
and reliability. Accelerated failure time models (AFT) are an important family in sur-
vival analysis. Let T is a positive random variable representing time of the occurrence
of an event. The AFT model can be defined based on the relationship between survival
function and a set of covariates as follows

S(t|X) = S0(te−XT γ),

where S0(t) is the baseline survival and γ=(γ1,γ2, ...,γp)
T and XT =(X1,X2, ...,Xp)

are a vector of regression coefficient and a column vector of the covariates, respec-
tively. The relationship between covariates and the survival time can be defined as a
linear relation between the logarithm of survival time and a set of covariates, that is

Y = ln(T ) = XTγ+σε,
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where σ > 0 is an unknown scale parameter and the error term ε is a random variable
that follows a certain parametric distribution. There are several types of parametric
models that conform to the AFT model, such as exponential, Weibull, log-normal,
log-logistic, gamma and generalized gamma models.

In this section, we choose a model based on the LM-AL distribution, when δ > 0.
Because survival analysis focuses on techniques based on positive random variables,
we consider the case when the LM-AL distribution introduced in Section 3 is truncated
on the left at zero.

Proposition 5.1. Let Y ∼ LM−AL(β ,λ ) with PDF defined in (7), then the random
variable T = Y |Y > 0 is said to be distributed as truncated location mixture of AL
distribution at zero, if its PDF has the following form:

(10) f (t;α,λ ) =
(α +β )e−

(α−β )
λ

t −αe−
(α+β )

λ
t

λβ (3α +β )
, t > 0.

Remark 5.2. The PDF defined in (10) belongs to the family of weighted exponential
distribution in terms of the survival function, i.e.,

T ∼WES(λ ,
λ

α−β
,2β ,

β

α
).

5.1. Parameter estimation of WES AFT model with MCECM algorithm. The
EM algorithm is an iterative method to find maximum likelihood estimates of param-
eters through the recursive implementation of the E- step (expectation) and the M-step
(maximization). The advantage of the EM algorithm is to exploit the simplicity of
the likelihood function. But sometimes, due to the complexity in calculating the Q
function, it is suggested that the Q function be estimated by the Monte Carlo (MC)
method, to avoid the analytical complexity in the E-step. Let (T ,Z) be an indepen-
dent random sample of size n from a WES(λ , λ

α−β
,2β , β

α
) distribution with PDF in

(10), where T = (t1, t2, ..., tm)T denote the observed survival times (uncensored) and
Z = (zm+1, ...,zn)

T is the missing (censored) part with zi > Ri. Then, the complete
data log-likelihood for the parameter vector Ψ= (ΘT ,γT )T , such that Θ = (β ,σ ,λ )T
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and γ = (γ1,γ2, ...,γp)
T , can be written as

Q(Ψ|Ψ(k)) = EΨ(k)(logLc(Ψ)|t,z)

∝−n log(σλβ (β +3α))− 1
σ

n

∑
i=1

XT
i γ

+
1
σ

(
m

∑
i=1

log(ti)+
n

∑
i=m+1

∫
∞

Ri

log(zi)p(zi|Ψ(k))dzi

)

+
m

∑
i=1

log((α +β )e−
(α−β )e

log(ti)−XT
i γ

σ

λ −αe−
(α+β )e

log(ti)−XT
i γ

σ

λ )

=−n log(σλβ (β +3α))− 1
σ

n

∑
i=1

XT
i γ +

1
σ

(
m

∑
i=1

log(ti)+
1
M

M

∑
j=1

n

∑
i=m+1

log(zi, j)

)

+
m

∑
i=1

log((α +β )e−
(α−β )e

log(ti)−XT
i γ

σ

λ −αe−
(α+β )e

log(ti)−XT
i γ

σ

λ ),

(11)

where z( j) = (zm+1, j, ...,zn, j), for j = 1, ..,M are generated from p(z|Ψ(k)). By deriva-
tion of (11) with respect to the parameters of model and then equating the results to
zero, we get the systems of equations which cannot be solved directly. Therefore,
the maximum likelihood estimator of the parameters have not an explicit form and
must be solved numerically using an iterative procedure. Hence, the M-step can be
summarized through the following two steps:

γ(k+1) = argmax
γ

Q(Θ,γ|Θ(k),γ(k)),

Θ
(k+1) = argmax

Θ

Q(Θ,γ|Θ(k),γ(k+1)).

6. Empirical evaluation

In this section, a Monte Carlo simulation study is carried out for evaluating the
performance of the estimation algorithm under two scenarios. In addition, two real
data sets are analyzed to demonstrate the suitability of the proposed distribution in
data analysis.

6.1. Simulation study. In this section, a simulation study is done for evaluating the
performance of the estimation method based on the ECM algorithm proposed in Sec-
tion 4. For this purpose, we use the following simulation scheme for two different
levels of skewness in the LM-AL distribution. Firstly, we generate a random sample
with sample size n =50, 200, and 500 from LM-AL distribution with parameters (1)
β = 0.06 and λ = 1; and (2) β = 1.73,λ = 0.1, corresponding to the values of the
skewness γy = 0.50 (low), and γy = 1.99 (high), respectively. For this combination of
parameter values and sample sizes, we generated N=5000 independent data sets. In
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each iteration, the ML estimates are determined by using the ECM algorithm. Then,
for evaluating the performance of the ML estimates obtained, we computed absolute
bias (AB), variance, and root-mean-square error (RMSE). For each parameter θ , AB
and RMSE are defined as

AB =
1
N

N

∑
i=1

∣∣θ̂i−θ
∣∣ and RMSE =

√
1
N

N

∑
i=1

(θ̂i−θ)2 ,

where θ̂i are the parameter estimates of β and λ obtained from the i-th replication.
The corresponding results of this simulation are presented in Table 1, while Figure 2
shows the histogram of the simulated data with sample size n = 500 and the PDF of
LM-AL distribution for the estimated values.

TABLE 1. Simulation results for the LM-AL distribution.

Par. β = 0.06,λ = 1 β = 1.73,λ = 0.1
n β̂ λ̂ β̂ λ̂

AB 50 0.0146 0.0135 0.4768 0.0109
200 0.0038 0.0053 0.0925 0.0026
500 0.0017 0.0027 0.0333 0.0011

Var 50 0.0010 0.0152 0.7867 0.0008
200 0.0001 0.0035 0.1114 0.0002
500 0.0000 0.0014 0.0294 0.0001

RMSE 50 0.0353 0.1241 1.0069 0.0310
200 0.0093 0.0597 0.3463 0.0149
500 0.0047 0.0374 0.1746 0.0090
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FIGURE 2. The PDF of LM-AL distribution for the estimated values based
on tha different levels of skewness γy = 0.50 (a) and γy = 1.99 (b).
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TABLE 2. Simulation results for the WES distribution.

Model WES(1,3.7,3.4,1.16) WES(0.7,1.8,2.2,0.74)
Par. n γ0 γ1 γ2 β λ γ0 γ1 γ2 β λ

AB 100 0.0248 0.0824 0.1087 0.4530 0.2426 0.0452 0.0660 0.1342 0.2361 0.1813
500 0.0163 0.0651 0.1049 0.1933 0.1549 0.0131 0.0763 0.1070 0.0952 0.0855

1000 0.0088 0.0147 0.0706 0.1291 0.0511 0.0082 0.0411 0.0952 0.0281 0.0323
Var 100 0.1264 0.0632 0.0166 0.3566 0.1905 0.1211 0.0569 0.0172 0.1814 0.0704

500 0.0251 0.01331 0.0032 0.1052 0.0869 0.0271 0.0137 0.0032 0.0758 0.0132
1000 0.0123 0.0067 0.0016 0.0618 0.05621 0.0022 0.0071 0.0023 0.0068 0.0086

RMSE 100 0.3556 0.2645 0.1688 0.7164 0.4395 0.2571 0.3372 0.1973 0.4258 0.3011
500 0.1093 0.1077 0.0996 0.1596 0.1331 0.0692 0.0829 0.0668 0.17034 0.0838

1000 0.0712 0.0781 0.0542 0.0873 0.07199 0.0318 0.0573 0.0218 0.0861 0.0571

In the second scenario of the simulation study, we evaluate the performance of the
parameter estimation method in accelerated failure time models. For this purpose,
we consider the following two scenarios. Time-to-event data are generated from the
following model:

log(T ) = γ0 + γ1X1 + γ2X2 + ε,

where (γ0,γ1,γ2) = (0.1,0.7,0.8) and covariates X1 and X2 are independent random
variables, which are simulated from Bernoulli distribution with success probability
0.75 and standard normal distribution, respectively. We censor the observations Ti
that are greater than 14. This mechanism generates samples with 10%–30% censored
observations. For the distribution of the error terms ε , we suppose that ε is a random
variable such that log(ε) ∼WES with PDF as in (10) with parameters; (1) β = 1.1
and λ = 0.7, and (2) β = 1.7 and λ = 1. Table 2 presents the corresponding results of
the WES AFT model. We observe the following from these two simulation studies:

1) As the sample size increases, the mean of the estimated value approaches the
true value of the parameter;

2) AB and RMSE both decrease with increasing sample size.

6.2. Data analysis. In this subsection, we analyze two real data sets using the devel-
oped model. We then use Akaike information criteria (AIC) and Bayesian information
criteria (BIC) to compare the fitted models.

6.2.1. Example 1: Bladder Cancer Data. As the first example, we consider the set
of data reported by Shanker et al. (2015). This data set consists of remission times
(in months) of a random sample of 128 bladder cancer patients. To evaluate the per-
formance of the proposed model, we fitted several models to this set of data. Table
3 presents the obtained results, including the MLEs of model parameters and Akaike
information criterion (AIC) and Bayesian information criteria (BIC) values for the
models. The graphical fitness of the WES model is displayed in Figure 3. It can be
seen from Table 3, that the WES model has lower AIC and BIC values than all other
models. Thus, the WES model provides a better fit for this bladder cancer data.
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TABLE 3. Bladder Cancer data: Maximum likelihood estimates
and AIC and BIC values.

Model Lindley Log-normal Weibull Gamma WE WES
β - - 1.0514 1.1851 11.5099 1.0545
λ 0.1991 - 0.1062 0.1287 0.1173 3.3800
µ - 1.7423 - - - -
σ - 1.0646 - - - -

AIC 835.7925 829.3131 827.7849 826.1691 825.4546 823.9858
BIC 838.6445 835.0171 833.489 831.8732 831.1586 829.6898
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FIGURE 3. Histogram of the Bladder Cancer data and fitted WES, WE,
Weibull, Log-normal and Lindley models (left figure) and P-P plot based
on the fitted WES model (right figure).

6.2.2. Example 2: Monoclonal Gammopathy Data. As the second example, we con-
sider the monoclonal gammopathy of undetermined significance (MGUS) data, avail-
able in the survival package of the R software. This data set contains information
on the survival time and a few known predictors of progression of 1384 patients in a
study collected at Mayo Clinic between 1994 and 1999. The survival times (futime)
indicate the time until death or last contact in months, together with an indicator vari-
able (death) associated with the status of the patient at the end of the study (0,1 for
censored and dead). This data set has been analyzed by some other authors, including
Castaneda-Avila et al. (2021) and Epstein et al. (2019). We now fit the WES model
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and compare the results with these of some other prominent lifetime models. Specif-
ically, we fit an AFT model with five covariates “age” (in years),“sex” (Female=1,
Male=2), “hgb” (hemoglobin), “creat” (creatinine), “mspike” (size of the monoclonal
serum splike) as well as an intercept. Table 4 presents the ML estimates of the param-
eters of each model with the corresponding AIC and BIC values. We observe from
Table 4 that the estimates of the regression parameters are all quite close for different
models. However, the AIC and BIC values reveal that the proposed model performs
better than other models considered.

TABLE 4. MGUS data: Maximum likelihood estimates and AIC
and BIC values.

Model Log-normal Log-logistic WE Gamma Weibull WES
Intercept 5.2362 6.1036 6.5123 6.5306 6.9845 7.1053

Age -0.0460 -0.0468 -0.0482 -0.0479 -0.0476 -0.0474
Sex -0.5402 -0.4743 -0.4474 -0.4108 -0.4025 -0.3865
Hgb 0.2166 0.1658 0.1438 0.1241 0.1189 0.1099
Creat -0.1340 -0.1702 -0.0677 -0.0463 -0.0490 -0.0507

Mspike 0.0169 -0.0147 -0.0262 -0.0376 -0.0356 -0.0394
β - - 0.0100 1.0105 1.1167 0.1417
λ - - 1.3921 0.1280 0.2352 0.7611
σ 1.4877 0.7786 0.7010 0.8786 0.9560 1.1298

AIC 10928.73 10837.01 10748.87 10697.09 10694.54 10680.55
BIC 10970.32 10878.6 10795.66 10738.95 10736.13 10727.34

From Table 4, the AFT regression model for this data set is given by

log(Tj) =7.1053−0.0474×Age j−0.3865×Sex j +0.1099×Hgb j

−0.0507×Creat j−0.0394×Mspike j +1.1298× ε j,

where Tj represents the survival time for j-th individual and ε j is an error variable such
that log(ε j) ∼WES(0.761,0.877,0.283,0.14) with PDF as in (10). The coefficient
γ̂ in Table 4 expresses the impact of a unit change in predictors on the survival time,
provided that all other variables are held constant so that one unit change in predictor
X j changes the survival time by exp(γ̂ j). For example, from Table 4, it can be seen
that a unit increase in patient age reduces survival time by 4.63%. Also, the survival
time for males is 32.06% shorter than for females, and an increase in the hemoglobin
level increases patient survival time by 11.61%.

7. Concluding remarks

In this paper, we have introduced a new family of skewed distributions based on the
location mixture of asymmetric Laplace (LM-AL) distribution. The proposed model
is long-tailed and has a wider range of skewness and kurtosis than many other known
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distributions. This distribution is especially useful for modeling unimodal and long-
tailed data. The usefulness and practicality of the proposed model and the developed
estimation method are demonstrated through detailed Monte Carlo simulations as well
as two real data sets.

Appendix A

We provide here the proofs of some theorems and also details about the derivation
of the PDF of the LM-AL distribution.

A.1. Proof of Proposition 2.2.

Proof. As the support of the variable Y is all real numbers, it suffices to show that
Pr(X2− τX1 ≤ 0) 6= 1

2 . We specifically have

Pr(X2− τX1 ≤ 0) =
∫

∞

0
Pr(X2− τX1 ≤ 0|X1 = x) fX1(x) dx =

∫
∞

0
FX2(τx) fX1(x) dx,

where FX and fX are the cumulative distribution function (CDF) and probability den-
sity function (PDF) of the exponential random variable with mean λ , respectively.
Upon substituting fX (x) = 1

λ
e−

x
λ and FX (τx) = 1− e−

τx
λ in the above expression and

then carrying out the integration, we find

Pr(X2− τX1 ≤ 0) =
τ

1+ τ
,

It is then evident that if τ 6= 1, then Pr(X2− τX1 ≤ 0) 6= 1
2 . Also, the PDF of Y is

readily obtained as

FY (y)=Pr(X2−τX1≤ y)=
∫

∞

0
Pr(X2−τX1≤ y|X1 = x) fX1(x) dx=

∫
∞

0
FX2(y+τx) fX1(x) dx,

from which we then obtain the following:

1) If y < 0, then x≥ −y
τ

, and

fY (y) =
∫

∞

0
fX2(y+ τx) fX1(x) dx =

e−
y
λ

λ 2

∫
∞

− y
τ

e−
(τ+1)

λ
x dx =

e
y

λτ

λ (τ +1)
;

2) If y≥ 0, then x≥ 0, and

fY (y) =
∫

∞

0
fX2(y+ τx) fX1(x) dx =

e−
y
λ

λ 2

∫
∞

0
e−

(τ+1)
λ

x dx =
e−

y
λ

λ (τ +1)
.

Hence the theorem holds. �
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A.2. Proof of Theorem 3.3.

Proof. Based on the definition of conditional probability, we have

FY (y;λ1,λ2,θ ,γ) = Pr(X2 ≤ y|0 < X1 ≤ θX2) =
Pr(X2 ≤ y,0 < X1 ≤ θX2)

Pr(0 < X1 ≤ θX2)
,

It can then be easily shown that

(12) fY (y;λ1,λ2,θ ,γ) = fX2(y;λ2)
Pr(0 < X1 ≤ θX2|X2 = y)

Pr(0 < X1 ≤ θX2)
,

As γ ≥ 0, we can write

Pr(0 < X1 ≤ θX2|X2 = y) = 1− 1
1+ γ

e−
θy
λ

and

Pr(0<X1≤ θX2) =
∫

∞

0
Pr(0<X1≤ θX2|X2 = y) fX2(y;λ2) dy=

λ1γ +θ(1+ γ)λ2

(λ1 +λ2θ)(1+ γ)
.

By using the above expressions in (12), the proof gets completed. �

A.3. PDF of LM-AL distribution in (6).

Proof. As the proofs for the cases δ ≥ 0 and δ < 0 are the same, we only consider
here the case δ ≥ 0. According to the definition of the PDF of LM-AL in (5), we
have:

(1) For y¡0,

fY (y;β ,λ ) =
1

2αλ

∫
∞

0
e−

α

λ
|y−δw|+ β

λ
(y−δw)e−wdw

=
e

α+β

λ
y

2αλ

∫
∞

0
e−(

(α+β )δ+λ

λ
)wdw =

e
β+α

λ
y

2α(αδ +βδ +λ )
,

(2) For y≥ 0,

fY (y;β ,λ ) =
1

2αλ

∫
∞

0
e−

α

λ
|y−δw|+ β

λ
(y−δw)e−wdw

=
1

2αλ

(∫ y
δ

0
e

β−α

λ
(y−δw)e−wdw+

∫
∞

y
δ

e
α+β

λ
(y−δw)e−wdw

)

=
(βδ +αδ +λ ) e−

(α−β )
λ

y−2 α δ e−
y
δ

2 α (βδ +αδ +λ ) (βδ −αδ +λ )
,

Upon substituting δ = λ

α+β
in the above equations, the required result is obtained. �
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A.3. Proof of Proposition 3.6.

Proof. Consider a situation in which δ > 0. Let W1 ∼ Exp(α−β ), and α2−β 2 = 1.

Then by definition δ = λ

α+β
it can be easily shown that λW1

d
= δW , where W ∼

Exp(1). Now
(I) Let W2,W3 ∼ Exp(α +β ). Then, according to the Mean-mixture representa-

tion of the AL distribution in subsection 2.1, we can write

Y d
= λ (W1 +W2− (α−β )2W3) = δW +λX ∼ LM−AL(β ,λ ),

where X d
=W2− (α−β )2W3 ∼ AL(β ).

(II) According to the Mean-variance mixture representation of the AL distribution
in subsection 2.1, we have

Y d
= λ (W1 +βW2 +

√
W2Z) = δW +λX ∼ LM−AL(β ,λ ),

where X d
= βW2 +

√
W2Z ∼ AL(β ).

(III) According to the Variance mixture epresentation of the AL distribution in
subsection 2.1, we have

Y d
= λ

(
W1

β +α
+NW2

)
= δW +λX ∼ LM−AL(β ,λ ),

where X = NW2 ∼ AL(β ).
�

A.4. Proof of Theorem 4.1. Use of Bayes formula readily yields the following:
1) For y < 0,

f (w|y) = f (y|w) f (w)
Pr(y < 0)

=
4αλ e−

α

λ
|y−δw|+ β

λ
(y−δw)e−w

2 αλ e
α+β

λ
y

=
2 e

α+β

λ
(y−δw)−w

e
α+β

λ
y

= 2e−2w,

2) For y≥ 0, if w < y
δ

, then

f (w|y) = c f (y|w) f (w) = c
e

β−α

λ
(y−δw)−w

2αλ
,

and if w > y
δ

,

f (w|y) = c f (y|w) f (w) = c
c e

β+α

λ
(y−δw)−w

2αλ
,

where c = 1
Pr(y≥0) and δ = λ

α+β
.
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Boston. https://doi.org/10.1007/978-1-4612-0173-1 5

[9] Krupskii, P., Joe, H., Lee, D., & Genton MG. (2018). Extreme-value limit of the convolution of
exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution. Multivariate
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