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Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices and

a vertex v in a connected graph G, the ordered k-vector r(v|W ) :=

(d(v, w1), d(v, w2), . . . , d(v, wk)) is called the (metric) representation of
v with respect to W , where d(x, y) is the distance between the vertices

x and y. The set W is called a resolving set for G if distinct vertices of

G have distinct representations with respect to W . The minimum cardi-
nality of a resolving set for G is its metric dimension. In this paper, we

investigate the metric dimension of the lexicographic product of graphs
G and H, G[H], for some known graphs.

Keywords: Lexicographic product; Resolving set; Metric dimension; Ba-
sis; Adjacency dimension.
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1. Introduction

In this section, we present some definitions and known results which are
necessary to prove our main results. Throughout this paper, G is a simple
graph with vertex set V (G), edge set E(G) and order n(G). We use G for
the complement of graph G. The distance between two vertices u and v in
a connected graph G, denoted by dG(u, v), is the length of a shortest path
between u and v in G. Also, NG(v) is the set of all neighbors of vertex v
in G. We write these simply d(u, v) and N(v), when no confusion can arise.
The diameter of a connected graph G is diam(G) = max

u,v∈V (G)
d(u, v). The

symbols (v1, v2, . . . , vn) and (v1, v2, . . . , vn, v1) represent a path of order n, Pn,
and a cycle of order n, Cn, respectively. We also use notation 1 for the vector
(1, 1, . . . , 1) and 2 for (2, 2, . . . , 2).

For an ordered subset W = {w1, . . . , wk} of V (G) and a vertex v of a con-
nected graph G, the metric representation of v with respect to W is

r(v|W ) = (d(v, w1), . . . , d(v, wk)).

The set W is a resolving set for G if the distinct vertices of G have different
metric representations, with respect to W . A resolving set W for G with
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minimum cardinality is a metric basis of G, and its cardinality is the metric
dimension of G, denoted by dim(G).

The concepts of resolving sets and metric dimension of a graph were in-
troduced independently by Slater [13] and by Harary and Melter [7]. Resolv-
ing sets have several applications in diverse areas such as coin weighing prob-
lems [12], network discovery and verification [2], robot navigation [10], master-
mind game [5], problems of pattern recognition and image processing [11], and
combinatorial search and optimization [12]. For more results about resolving
sets and metric dimension see [1, 3–6,8].

The lexicographic product of graphs G and H, denoted by G[H], is a graph
with vertex set V (G) × V (H) := {(v, u) | v ∈ V (G), u ∈ V (H)}, where two
vertices (v, u) and (v′, u′) are adjacent whenever, v is adjacent to v′, or v = v′

and u is adjacent to u′. When the order of G is at least 2, it is easy to see that
G[H] is a connected graph if and only if G is a connected graph.

Jannesari and Omoomi [9] studied the metric dimension of the lexicographic
product of graphs using adjacency dimension of graphs. They defined the
concepts of adjacency resolving sets and adjacency dimension in graphs a the
following.

Let G be a graph, and W = {w1, . . . , wk} ⊆ V (G). For each vertex v ∈
V (G), the adjacency representation of v with respect to W is the k-vector

r2(v|W ) = (aG(v, w1), . . . , aG(v, wk)),

where aG(v, wi) = min{2, dG(v, wi)}; 1 ≤ i ≤ k. The set W is an adjacency
resolving set for G if the vectors r2(v|W ) for v ∈ V (G) are distinct. The
minimum cardinality of an adjacency resolving set is the adjacency dimension
of G, denoted by dim2(G). An adjacency resolving set of cardinality dim2(G)
is an adjacency basis of G.

We say that a set W (adjacency) resolves a set T of vertices in G if the (ad-
jacency) metric representations of vertices in T with respect to W are distinct.
To determine whether a given set W is a (an adjacency) resolving set for G,
it is sufficient to look at the (adjacency) metric representations of vertices in
V (G)\W , because w ∈W is the unique vertex of G for which d(w,w) = 0.

The main goal of this paper is to investigate the metric dimension of the
lexicographic product, for some known graphs, such as paths, cycles, complete
bipartite graphs and kneser graphs. The metric dimension of the lexicographic
product is studied in [9] for the first time. In that work the authors obtained
the metric dimension of G[H] in terms of the adjacency dimension of H and
some parameters in G. In this paper we get these parameters for the mentioned
graphs and then we get the exact value of the metric dimension of G[H] where
G and H are paths, cycles, complete bipartite graphs and kneser graphs. To
express the results of [9] we need some definitions.

Two distinct vertices u, v are said twins if N(v)\{u} = N(u)\{v}. It is
called that u ≡ v if and only if u = v or u, v are twins. In [8], it is proved that
“≡” is an equivalent relation. The equivalence class of a vertex v is denoted
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by v∗. Hernando et al. [8] proved that v∗ is a clique or an independent set in
G. As in [8], we say v∗ is of type (1), (K), or (N) if v∗ is a class of size 1, a
clique of size at least 2, or an independent set of size at least 2. We denote
the number of equivalence classes of G with respect to “≡” by ι(G). We mean
by ι

K
(G) and ι

N
(G), the number of classes of type (K) and type (N) in G,

respectively. We also use a(G) and b(G) for the number of all vertices in G
which have at least an adjacent twin and a none-adjacent twin vertex in G,
respectively. On the other way, a(G) is the number of all vertices in the classes
of type (K) and b(G) is the number of all vertices in the classes of type (N).
Clearly, ι(G) = n(G)− a(G)− b(G) + ι

N
(G) + ι

K
(G).

Observation 1.1. [8] Suppose that u, v are twins in a graph G and W resolves
G. Then u or v is in W . Moreover, if u ∈W and v /∈W , then (W \ {u})∪ {v}
also resolves G.
Lemma 1.1. [6] Let G be a connected graph of order n. Then,

: (i) dim(G) = 1 if and only if G = Pn,
: (ii) dim(G) = n− 1 if and only if G = Kn.

Proposition 1.2. [9] For every connected graph G, dim(G) ≤ dim2(G).

Proposition 1.3. [9] For every graph G, dim2(G) = dim2(G).

Let G be a graph of order n. It is easy to see that, 1 ≤ dim2(G) ≤ n− 1. In
the following proposition, all graphs G with dim2(G) = 1 and all graphs G of
order n and dim2(G) = n− 1 are characterized.

Proposition 1.4. [9] If G is a graph of order n, then

: (i) dim2(G) = 1 if and only if G ∈ {P1, P2, P3, P 2, P 3}.
: (ii) dim2(G) = n− 1 if and only if G = Kn or G = Kn.

Proposition 1.5. [9] If n ≥ 4, then dim2(Cn) = dim2(Pn) = b 2n+2
5 c.

Proposition 1.6. [9] If Km1,m2,...,mt
is the complete t-partite graph, then

dim2(Km1,m2,...,mt
) = dim(Km1,m2,...,mt

) =

{
m− r − 1 if r 6= t,
m− r if r = t,

where m1,m2, . . . ,mr are at least 2, mr+1 = · · · = mt = 1, and
∑t

i=1mi = m.

The metric dimension of the lexicographic product of graphs are obtained
in [9], through the following four theorems.

Theorem 1.7. [9] Let G be a connected graph of order n and H be an
arbitrary graph. If there exist two adjacency bases W1 and W2 of H such that,
there is no vertex with adjacency representation 1 with respect to W1 and no
vertex with adjacency representation 2 with respect to W2, then dim(G[H]) =
dim(G[H]) = ndim2(H).

Theorem 1.8. [9] Let G be a connected graph of order n and H be an ar-
bitrary graph. If for each adjacency basis W of H there exist vertices with
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adjacency representations 1 and 2 with respect to W , then dim(G[H]) =
dim(G[H]) = n(dim2(H) + 1)− ι(G).

Theorem 1.9. [9] Let G be a connected graph of order n and H be an
arbitrary graph. If H has the following properties

: (i) for each adjacency basis of H there exists a vertex with adjacency
representation 1,

: (ii) there exists an adjacency basis W of H such that there is no vertex
with adjacency representation 2 with respect to W ,

then dim(G[H]) = ndim2(H) + a(G)− ι
K

(G).

Theorem 1.10. [9] Let G be a connected graph of order n and H be an
arbitrary graph. If H has the following properties

: (i) for each adjacency basis of H there exists a vertex with adjacency
representation 2,

: (ii) there exists an adjacency basis W of H such that there is no vertex
with adjacency representation 1 with respect to W ,

then dim(G[H]) = ndim2(H) + b(G)− ι
N

(G).

Corollary 1.11. [9] If G has no pair of twin vertices, then dim(G[H]) =
ndim2(H).

2. Metric dimension of the lexicographic product of some
important graphs

In this section we investigate metric dimension of the lexicographic product
of graphs for some families of graphs. Theorems 1.7, 1.8, 1.9 and 1.10 imply
that to find the exact value of dim(G[H]), we need to compute parameters
a, b, ιN and ιK for G and adjacency dimension of H. Let start with bipartite
graphs.

Observation 2.1. It is easy to see that if G is a bipartite graph of order at least
3, then it does not have any pair of adjacent twins. Therefore, by Theorem 1.10,
dim(G[H]) = ndim2(H) + b(G)− ι

N
(G).

By Corollary 1.11 to compute the dim(G[H]), where G has no any pair of
twin vertices, it is enough to obtain the value of dim2(H). Now we consider
the family of Kneser graphs.

Definition 2.1. The Kneser graph KG(k, r) is the graph whose vertices cor-
respond to the r-element subsets of a set of k elements, and where two vertices
are adjacent if and only if the two corresponding sets are disjoint.

Lemma 2.2. If G = KG(k, r), k ≥ 2r + 1 is the Kneser graph, then G has
not any pair of twin vertices.
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Proof. If A and B are distinct twin vertices in G, then A ∩ C = ∅ if and only
if B ∩ C = ∅, for each C ∈ V (G). Since k ≥ 2r + 1, there exists a vertex
C ∈ V (G)\{A,B}. Let C ∈ V (G)\{A,B}, A ∩ C = ∅, x ∈ A\B, and y ∈ C.
Let D = C ∪ {x}\{y}. Therefore, A ∩ D 6= ∅ and B ∩ D = ∅, which is a
contradiction. �

The Kneser graphKG(5, 2) is called the Petersen graph. In the next example
we compute the adjacency dimension of the Petersen graph.

Example 2.3. If P is the Petersen graph, then dim2(P ) = dim(P ) = 3.

Proof. Since the diameter of P is 2, we have dim2(P ) = dim(P ). As we see in
Figure ??, set {a, b, c} is an adjacency resolving set for P , therefore dim2(P ) ≤
3. On the other hand, each set of at most two vertices can provide at most 8
different metric representation, hence dim2(P ) = dim(P ) = 3. �

Figure 1. Caption.

Note that the line graph of the complete graph Kn is the complement of
KG(n, 2). Since all twin vertices of a graph are twins in its complement,
as well; by Lemma 2.2, L(Kn), n ≥ 5, have no any pair of twin vertices.
Also, the path Pn, Pn, n ≥ 4, and the cycle Cn, Cn, n ≥ 5, have no any
pair of twin vertices. Thus, by Theorems 1.8 the exact value of dimG[H],
when G ∈ {Pn (n ≥ 4), Cn(n ≥ 5), L(Kn) (n ≥ 5),KG(k, r)} and H ∈
{Pm, Cm, Pm, Cm,Km,Km, P,Km1,...,mt} are obtained.
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To study the adjacency basis of a graph H, we need the following definitions.
Let S be a subset of vertices of H, where |s| ≥ 2. The set of vertices of a
nonempty connected component of the induced subgraph by V (H)\S of H is
called a gap of S. This definition agrees with the one in [4] which is given for
the cycle Cm. If Q1, Q2 are two gaps of S for which there exists a vertex x ∈ S
such that the induced subgraph by Q1∪Q2∪{x} is connected, then Q1 and Q2

are called neighboring gaps. In [4], the following observation is expressed for the
gaps of a basis of the join graph of a cycle and an isolated vertex. Particularly,
it is true for an adjacency basis of Cm.

Observation 2.2. If B is an adjacency basis of Cm, then

: (1) Every gap of B contains at most three vertices, otherwise there are
two vertices in that gap that have the same adjacency representation
2.

: (2) At most one gap of B contains three vertices, otherwise the middle
vertex of both of them has adjacency representation 2.

: (3) If a gap of B contains at least two vertices, then any neighboring
gaps of which contain one vertex, otherwise the second vertex of both
of them has adjacency representation 2.

It is easy to see the following observation for Pm.

Observation 2.3. Let B be an adjacency basis of Pm = (w1, w2, . . . , wm). If R1

and R2 are gaps of Pn with w1 ∈ R1 and wm ∈ R2, then

: (1) Every gap of B contains at most three vertices and |Ri| ≤ 2, where
1 ≤ i ≤ 2, otherwise there are two vertices in that gap that have the
same adjacency representation 2.

: (2) At most one gap of B contains three vertices and at most one of the
gaps R1 and R2 contains two vertices, otherwise the middle vertex of
both of them has adjacency representation 2.

: (3) If |Ri| = 2 for some i, 1 ≤ i ≤ 2, then all gaps of B contains at most
two vertices, otherwise the second vertex of both of them has adjacency
representation 2.

: (4) If a gap of B contains at least two vertices, then any neighboring
gap of which is neither R1 nor R2 and contains one vertex, otherwise
the second vertex of both of them has adjacency representation 2.

Theorem 2.4. Let G be a connected graph of order n and H ∈ {Pm, Cm},
m = 5k + r, where m ≥ 4 and 0 ≤ r < k.

: (i) If r is even, then dim(G[H]) = dim(G[H]) = nb 2m+2
5 c.

: (ii) If m = 6, then dim(G[H]) = dim(G[H]) = nb 2m+2
5 c+a(G)+b(G)−

ι
K

(G)− ι
N

(G).
: (iii) If r is odd and m 6= 6, then dim(G[H]) = nb 2m+2

5 c+ b(G)− ι
N

(G)

and dim(G[H]) = nb 2m+2
5 c+ a(G)− ι

K
(G).
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Proof. Let Pm = (w1, w2, . . . , wm) and Cm = (w1, w2, . . . , wm, w1). If m = 4,
then the set B4 = {w1, w4} ⊆ V (H) is an adjacency basis of H and r2(wi|B4)
is neither 1 nor 2, for each i, 1 ≤ i ≤ 4. Therefore, by Proposition 1.5 and
Theorem 1.7, dim(G[H]) = dim(G[H]) = nb 2m+2

5 c. If m = 5, then the sets
B1 = {w1, w5} and B2 = {w2, w4} are adjacency bases of H and for each i,
1 ≤ i ≤ 5, r2(wi|B1) is not 1 and r2(wi|B2) is not 2. Hence, by Lemma 1.5
and Theorem 1.7, dim(G[H]) = dim(G[H]) = nb 2m+2

5 c. If m = 6, then it
is easy to check that for each adjacency basis A of H there exist vertices
x

A
, y

A
∈ V (H) such that x

A
is adjacent to w and y

A
is not adjacent to w for

each w ∈ A. Consequently r(x
A
|A) = 1 and r(y

A
|A) = 2, so by Theorem 1.8,

dim(G[H]) = dim(G[H]) = nb 2m+2
5 c+ a(G) + b(G)− ι

K
(G)− ι

N
(G).

Now, let m ≥ 7. By Proposition 1.5, dim2(H) ≥ 3. Let B be an adjacency
basis of H. Since each vertex of H has at most two neighbors, r2(w|B) is not 1,
for each w ∈ V (H). If r is even, then, let S0 = {w5q+2, w5q+4| 0 ≤ q ≤ k − 1},
S2 = S ∪ {w5k+1}, and S4 = S ∪ {w5k+1, w5k+3}. Thus, the set St, is an
adjacency basis of H when r = t, t ∈ {0, 2, 4}. Also, r2(w|St) is neither 1
nor 2, for each w ∈ V (H) and t ∈ {0, 2, 4}. Hence, by by Lemma 1.5 and
Theorem 1.7, dim(G[H]) = dim(G[H]) = nb 2m+2

5 c.
If r is odd, then Observations 2.2 and 2.3 imply that for each adjacency basis

A of H there exists a vertex y
A
∈ V (H) such that y

A
� w for each w ∈ A.

Therefore, by Theorem 1.10, dim(G[H]) = nb 2m+2
5 c+ b(G)− ι

N
(G). Since the

adjacency bases of H and H are the same, for each adjacency basis Q of H
there exists a vertex x

Q
∈ V (H) such that x

Q
∼ u for each u ∈ Q. Hence, by

Theorem 1.9, dim(G[H]) = nb 2m+2
5 c+ a(G)− ι

K
(G). �

By computing parameters a, b, ιN and ιK for the graphs Kn, Pn, Cn and
Kn1,n2,...,nt we have the following example.

Example 2.5. Let m = 5k + r. If H ∈ {Pm, Cm}, then for all n ≥ 2,

: (1) dim(Kn[H]) =

 2n− 1 if H = P2 or H = P3,
3n− 1 if H ∈ {C3, P6, C6},
nb 2m+2

5 c otherwise.

: (2) dim(Pn[H]) =


5 if n = 2 and H = C3,
2n if n 6= 2 and H = C3,
nb 2m+2

5 c+ 1 if n = 2 and H ∈ {P2, P3, P6, C6},
nb 2m+2

5 c+ 1 if n = 3, r is odd, and H 6= C3,
nb 2m+2

5 c otherwise.

: (3) dim(Cn[H]) =


8 if n = 3 and H = C3,
2n if n 6= 3 and H = C3,
nb 2m+2

5 c+ 2 if n = 3 and H ∈ {P2, P3, P6, C6},
nb 2m+2

5 c+ 2 if n = 4, r is odd, and H 6= C3,
nb 2m+2

5 c otherwise.
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: (4) dim(Kn1,n2,...,nt [H]) =

=



nb 2m+2
5 c+ t− j − 1 if H = P2 and j 6= t,

n(m− 1) + t− j − 1 if H = C3 and j 6= t,
n(m− 1) if H = C3 and j = t,
nb 2m+2

5 c+ n− j − 1 if H ∈ {P3, P6, C6} and j 6= t,
nb 2m+2

5 c+ n− t if H ∈ {P3, P6, C6} and j = t,
nb 2m+2

5 c+ n− t if m ≥ 7 and r is odd,
nb 2m+2

5 c otherwise.

where n1, n2, . . . , nj are at least 2, nj+1 = . . . = nt = 1, and
∑t

i=1 ni = n.

Proof. SinceKn does not have any pair of non-adjacent twin vertices, by Propo-
sition 2.4, dim(Kn[H]) = nb 2m+2

5 c for m /∈ {2, 3, 6}. If H = P2 or H = C3,
then Kn[H] is the complete graph and hence, dim(Kn[P2]) = 2n − 1 and
dim(Kn[C3]) = 3n− 1.

Now let H ∈ {P3, P6, C6}. Also, let Pm = (w1, w2, . . . , wm),
Cm = (w1, . . . , wm, w1), and B is a basis of Kn[H]. It is easy to see that B
contains at least dim2(H) vertices from each set Ri = {vrs ∈ V (Kn[H])|r = i},
and B ∩ Ri resolves Ri, 1 ≤ i ≤ n. Let J = {i| dim2(H) = |B ∩ Ri|}. If
|J | ≥ 2, then there exist i, j, 1 ≤ i, j ≤ n, such that |B ∩ Ri| = |B ∩ Rj | =
dim2(H). Let Ai = {ws|vis ∈ B ∩ Ri} and Aj = {ws|vjs ∈ B ∩ Rj}. Since
dKn[H](vrs, vrq) = aH(ws, wq) for each r, s, q, 1 ≤ r ≤ n, 1 ≤ s, q ≤ m,
we conclude that Ai and Aj are adjacency bases of H. On the other hand,
for each adjacency basis A of H there exist a vertex w ∈ V (H) such that
r2(w|A) = (1, 1, . . . , 1). Therefore, there exist vertices w1, w2 ∈ V (H) such
that r2(w1|Ai) = r2(w2|Aj) = (1, 1, . . . , 1). Consequently, r(vi1|B ∩ Ri) =
r(vj2|B ∩ Rj) = (1, 1, . . . , 1). Also, we have r(vi1|B\Ri) = r(vj2|B\Rj) =
(1, 1, . . . , 1). Hence, r(vi1|B) = r(vj2|B), which is a contradiction. Thus,
|J | ≤ 1. Therefore, dim(Kn[H]) ≥ ndim2(H) + n− 1. On the other hand, the
set {vrs ∈ V (Kn[P3])|s 6= 3}\{v12} is a resolving set for Kn[P3] with cardinality
ndim2(H) + n− 1 = 2n− 1. Also, the set {vrs ∈ V (Kn[H])|2 ≤ s ≤ 4}\{v13}
is a resolving set for Kn[H], for H ∈ {P6, C6}. Consequently, dim(Kn[P6]) =
dim(Kn[C6]) = 3n− 1. �

3. Conclusion

By the results of [9] to get the exact value of G[H] it is needed to compute the
adjacency dimension of H and parameters a, b, ιN and ιK for G. In this paper
we do this for some known families of graphs such as paths, cycles, complete
multipartite graphs and kneser graphs. For a future work one can do this for
other families of graphs. Specially studying the adjacency dimension of graphs
is an interesting and important work in this contex.
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