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Abstract. In this note, we obtain a reverse version of the Haagerup

Theorem. In particular, if A ∈ Mn has a 2 × 2− principal submatrix as[
1 α

β 1

]
with β 6= ᾱ, then ‖SA‖ > 1 where the operator

SA : Mn −→ Mn is defined by SA(B) := A ◦ B where ” ◦ ” stands for

Schur product.
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1. Introduction

Let Mn denote the C∗−algebra of all n× n complex matrices. A Hermitian
matrix A ∈Mn is called positive if x∗Ax ≥ 0 for all x ∈ Cn
( we write A ≥ 0 ) and is called strictly positive if x∗Ax > 0 for all nonzero
x ∈ Cn ( we write A > 0 ).
For Hermitian matrices A,B ∈ Mn a partial order is defined as A ≥ B if
A−B ≥ 0.
Let ‖A‖ and ω(A) denote the spectral norm (or operator norm ) and the
numerical radius of A, respectively. Recall that the numerical radius is defined
as follows:

ω(A) = max{|x∗Ax| : x ∈ Cn, x∗x = 1}.
It is well-known that ω(.) defines a norm on Mn, which is equivalent to the
spectral norm ‖.‖. In fact, for every A ∈Mn, the following inequality holds:

1

2
‖A‖ ≤ ω(A) ≤ ‖A‖.

Also, if A is normal, then ‖A‖ = ω(A).
The Schur or entrywise product of A = [aij ], B = [bij ] ∈ Mn is defined by
A ◦B = [aijbij ]. With this multiplication, Mn becomes a commutative algebra
for which the matrix with all entries equal to one is the unit. Given A ∈ Mn,
the Schur multiplier operator or for brevity the Schur map SA : Mn −→ Mn

is defined by SA(B) := A ◦ B. We say that SA is unital if SA(I) = I for the
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identity matrix I ∈ Mn. In [2], the induced norms of SA with respect to the
spectral norm and numerical radius were defined respectively, by

(1) ‖SA‖ = sup
B 6=0

‖A ◦B‖
‖B‖

,

(2) ‖SA‖ω = sup
B 6=0

ω(A ◦B)

ω(B)
.

It is well known that

(3) ‖SA‖ ≤ ‖SA‖ω.
The study of the norm of the Schur map has been interesting for some

researchers. One of the best research in this field was done by Ando and
Okubo in [2]. They showed that ‖SA‖ω ≤ 1 if and only if there exists positive

semidefinite matrix X ∈ Mn such that

[
X A
A∗ X

]
≥ 0, where X ◦ I ≤ I and

they give other equivalent characterizations and derive similar results for ‖SA‖.
For more information about the norm of the Schur multiplier operator and its
applications see [1,5,6,9,10]. Let A ∈Mn. For index sets λ, µ ⊆ {1, , . . . , n}, we
denote by A[λ, µ] the (sub)matrix of entries that lie in the rows of A indexed
by λ and the columns indexed by µ. If λ = µ, the submatrix A[λ, λ] is denoted
by A[λ] and it is called a principal submatrix of A.

2. Main results

In 1991, Ando and Okubo proved the following theorem [2, Theorem 1 and
Corollary 3] which is well known as the Haagerup Theorem:

Theorem 2.1. Let A ∈Mn. The following assertions are equivalent.
(i) ‖SA‖ ≤ 1.
(ii) There exist 0 ≤ X,Y ∈Mn such that[

X A
A∗ Y

]
≥ 0, X ◦ I ≤ I and Y ◦ I ≤ I.

In addition, if A is Hermitian,
(iii) ‖SA‖ = ‖SA‖ω.

Also, they proved a similar theorem [2, Theorem 2 and Corollary 4] for
‖SA‖ω as follows.

Theorem 2.2. Let A ∈Mn. The following assertions are equivalent.
(i) ‖SA‖ω ≤ 1.
(ii)There exists 0 ≤ X ∈Mn such that[

X A
A∗ X

]
≥ 0 and X ◦ I ≤ I.

Moreover, if A = [aij ] ≥ 0,
(iii) ‖SA‖ω = max{aii : 1 ≤ i ≤ n}.
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To prove the main results, we need the following lemma, which is known as
the Schur complement theorem.

Lemma 2.3 ( [4], Theorem 1.3.3). Let A,B be strictly positive matrices. Then

the block matrix

[
A X
X∗ B

]
is positive if and only if B ≥ X∗A−1X.

Now, we state one of the main results of this section in the following theorem.

Theorem 2.4. Let A = [aij ] ∈ Mn such that ‖SA‖ = 1. If ass = att = 1 for
some 1 ≤ s < t ≤ n, then ast = āts.

Proof. By the use of Theorem 2.1, there exist positive n× n matrices
X = [xij ], Y = [yij ] with 0 ≤ xii, yii ≤ 1, (1 ≤ i ≤ n), such that[

X A
A∗ Y

]
≥ 0.

Letting X̃ := [x̃ij ] such that x̃ij = xij if i 6= j and x̃ii = 1, and Ỹ := [ỹij ] such
that ỹij = yij if i 6= j and ỹii = 1, we have[

X̃ A

A∗ Ỹ

]
≥
[
X A
A∗ Y

]
≥ 0.

It is known that any principal submatrix of a positive matrix is positive, so it
follows that

C =


1 x 1 ast
x̄ 1 ats 1
1 āts 1 y
āst 1 ȳ 1

 ≥ 0 where x := x̃st = xst, y := ỹst = yst.

In fact, C =

[
X̃ A

A∗ Ỹ

]
[λ], where λ = {s, t, n+ s, n+ t}.

So, in view of Lemma 2.3, we get

 1 ats 1
āts 1 y
1 ȳ 1

−
 x̄

1
āst

 [x 1 ast] =

 1− |x|2 ats − x̄ 1− x̄ast
āts − x 0 y − ast
1− xast ȳ − āst 1− |ast|2

 ≥ 0.

Since the determinant of principal submatrices of the above matrix is positive,
we obtain āts − x = y − ast = 0 and hence

C =


1 āts 1 ast
ats 1 ats 1
1 āts 1 ast
āst 1 āst 1

 .
By a simple calculation, the characteristic polynomial of C is as follows:

f(λ) = λ4 − 4λ3 + (4− 2|ast|2 − 2|ats|2)λ2 + 2(|ast|2 + |ats|2 − 2<(astats))λ,
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where <(astats) is the real part of astats. Now, if ast 6= āts, we obtain that
the coefficient of λ is positive and then f(λ) has a negative root, which is in
contradiction with C ≥ 0, and hence ast = āts. �

The next corollary is easily deduced from Theorem 2.4.

Corollary 2.5. If SA : Mn −→ Mn is an unital map with ‖SA‖ = 1, then A
is Hermitian.

The following corollary is convenient to be as a reverse of the Haagerup
theorem.

Corollary 2.6. If A ∈Mn has a 2× 2−principal submatrix as

[
1 α
β 1

]
with

β 6= ᾱ, then ‖SA‖ > 1.

Employing a strategy similar to the proof of Theorem 2.4, we obtain the
following result.

Theorem 2.7. Let A = [aij ] ∈ Mn such that ‖SA‖ω = 1. If ass = 1, then
asj = ājs for all 1 ≤ j ≤ n.

Proof. From Theorem 2.2, it follows that there exists a positive matrix
X = [xij ] ∈Mn with 0 ≤ xii ≤ 1 (1 ≤ i ≤ n) such that[

X A
A∗ X

]
≥ 0.

Setting X̃ := [x̃ij ] such that x̃ij = xij for i 6= j and x̃ii = 1, we have[
X̃ A

A∗ X̃

]
≥
[
X A
A∗ X

]
≥ 0.

Since every principal submatrix of the above matrix is positive, it follows that
for all integer j ∈ {1, 2, . . . , n} such that j 6= s,

B =


1 x 1 asj
x̄ 1 ajs ajj
1 ājs 1 x
āsj ājj x̄ 1

 ≥ 0, where x := x̃sj = xsj .

In fact, B =

[
X̃ A

A∗ X̃

]
[λ], where λ = {j, s, n+ j, n+ s}.

Hence, using Lemma 2.3, we obtain that 1 ajs ajj
ājs 1 x
ājj x̄ 1

−
 x̄

1
āsj

 [x 1 asj ] =

 1− |x|2 ajs − x̄ ajj − x̄asj
ājs − x 0 x− asj

ājj − xāsj x̄− āsj 1− |asj |2

 ≥ 0.

Since the determinant of principal submatrices of the above matrix is nonneg-
ative, we have ājs − x = x− asj = 0 and hence asj = ājs. �

The following corollary is readily obtained.
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Corollary 2.8. If SA : Mn −→Mn is an unital map with ‖SA‖ω = 1, then A
is Hermitian.

The following straightforward result can be regarded as a reverse version of
Theorem 2.2.

Corollary 2.9. If A ∈Mn has a 2× 2−principal submatrix as

[
α β
γ θ

]
with

α = 1 or θ = 1, and β 6= γ̄, then ‖SA‖ω > 1.

3. Applications

In the following remark, we explain the way how to use Theorem 2.4, to
refuse some matrix inequalities.

Remark 3.1. Let a1, a2, . . . , an be positive real numbers. Introduce F = [fij ],

such that F ◦ I = I and fij =
M1(ai, aj)

M2(ai, aj)
, where M1,M2 are functions of

ai, aj possibly they are means. If F is not symmetric, then by Corollary 2.6,
‖SF ‖ > 1, which means the inequality ‖(M1(ai, aj)) ◦X‖ ≤ ‖(M2(ai, aj)) ◦X‖
does not hold in general or there exists X ∈Mn such that
‖(M1(ai, aj)) ◦ X‖ > ‖(M2(ai, aj)) ◦ X‖. Also we remark that if F is not
symmetric, then by Corollary 2.8, ‖SF ‖ω > 1. By the same way as before, we
can refuse some numerical radius inequalities.

As an application of Corollary 2.6, we have the following theorem.

Theorem 3.2 ( [8], Theorem 2.3). Let A ∈Mn be a non scalar strictly positive
matrix and 0 < ν < 1 be a real number such that ν 6= 1

2 . Then there exists
X ∈Mn such that

(4) ‖ AνXA1−ν ‖>‖ νAX + (1− ν)XA ‖ .
Proof. Without loss of generality, we can assume that A = diag(a1, a2, . . . , an).

Using Lemma 2.2 in [8], the n×n matrix F =

[
aνi a

1−ν
j

νai+(1−ν)aj

]
is not symmetric,

so by Corollary 2.6, ‖SF ‖ > 1. Hence by the argument in Remark 3.1, we
conclude that there exists X ∈Mn such that
‖ AνXA1−ν ‖>‖ νAX + (1− ν)XA ‖ . �

By Theorem 3.2, we conclude that for A,B,X ∈ Mn where A,B ≥ 0, the
inequality
‖ AνXB1−ν ‖≤‖ νAX + (1− ν)XB ‖ is not true in general.
By the same way as in the proof of the above theorem and Corollary 2.8, we
get the following result:

Corollary 3.3. Let A ∈Mn be a non scalar strictly positive matrix and
0 < ν < 1 be a real number such that ν 6= 1

2 . Then there exists X ∈ Mn such
that

(5) ω(AνXA1−ν) > ω(νAX + (1− ν)XA).
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Theorem 3.4. Let A ∈ Mn be a non scalar strictly positive matrix. Then
there exists X ∈Mn such that ‖AXA−1‖ > ‖X‖.

Proof. Without loss of generality, we assume that A = diag(a1, a2, . . . , an).
Applying Corollary 2.6, for non symmetric matrix F = [aia

−1
j ] ∈ Mn, the

results is obtained. �

In view of Theorem 3.4, we conclude that the inequality ‖AXA−1‖ ≤ ‖X‖
for all A,X ∈Mn where A > 0 does not hold.
Using the proof of Theorem 3.4 and Corollary 2.8, we have the following corol-
lary.

Corollary 3.5. Let A ∈ Mn be a non scalar strictly positive matrix. Then
there exists X ∈Mn such that ω(AXA−1) > ω(X).

One can use Corollary 2.9 to show that for A,B,X ∈ Mn where A,B ≥ 0,

the inequality ω(AXB) ≤ ω(
1

p
ApX +

1

q
XAq) is not true in general.

Theorem 3.6 ( [7], Theorem 2). Let p > q > 1 such that 1
p + 1

q = 1 and let

A ∈Mn be a non scalar strictly positive matrix such that 1 ∈ σ(A). Then there
exists X ∈Mn such that

(6) ω(AXA) > ω(
1

p
ApX +

1

q
XAq).

Proof. Without loss of generality, we assume that A = diag(a1, a2, . . . , an),
such that a1 = 1, a2 6= 1. It is not difficult to show that

(7)
ap2
p

+
1

q
6= aq2

q
+

1

p
.

If F =

 aiai
api
p +

aqj
q

 , then f11 = 1 but by inequality (7), f12 6= f21. Hence

by Corollary 2.9, we conclude that ‖SF ‖ω > 1. So, by the same argument in

Remark 3.1, there exists X ∈Mn such that ω(AXA) > ω(
1

p
ApX+

1

q
XAq). �

The reverse of the classical Young inequality says that:

(8) νa+ (1− ν)b ≤ aνb1−ν ,

when a, b ≥ 0 and ν ≤ 0 or ν ≥ 1.
In [3] a matrix version of the above inequality for Hilbert -Schmidt norm by
Bakherad et al. is given as follows:
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Theorem 3.7 ( [3], Theorem 2.3). Let A,B,X ∈ Mn and let m and m′ be
positive scalars. If A ≥ mI ≥ B > 0, and ν ≥ 1, or B ≥ m′I ≥ A > 0, and
ν ≤ 0, then

(9) ‖ νAX + (1− ν)XB‖2 ≤‖ AνXB1−ν‖2.

Here we show that the conclusion of Theorem 3.7 becomes false for the
numerical radius and operator norm instead of Hilbert Schmidt norm.

Theorem 3.8. Let A ∈Mn be a non scalar strictly positive matrix and ν ≥ 1
or ν ≤ 0. Then there exists X ∈Mn such that

(10) ω(νAX + (1− ν)XA) > ω(AνXA1−ν).

Proof. Without loss of generality, we assume that A = diag(a1, a2, . . . , an)
such that a1 = 1 and a2 6= 1. It is straightforward to prove that

(11)
νa2 + (1− ν)

aν2
6= (1− ν)a2 + ν

a1−ν2

.

If F =

[
aνi a

1−ν
j

νai + (1− ν)aj

]
, then f11 = 1 but by inequality (11), f12 6= f21.

Taking the same approach as in the proof of Theorem 3.7, the result holds. �

In the proof of Theorem 3.8 since fii = 1 for all 1 ≤ i ≤ n, then by Corollary
2.6, a similar result holds for operator norm too.
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