SCHUR MULTIPLIER OPERATOR AND MATRIX
 INEQUALITIES

A. Sheikhhosseini ${ }^{\text {® }}$

Article type: Research Article
(Received: 22 April 2023, Received in revised form 31 August 2023)
(Accepted: 29 September 2023, Published Online: 04 October 2023)

Abstract. In this note, we obtain a reverse version of the Haagerup Theorem. In particular, if $A \in \mathbb{M}_{n}$ has a $2 \times 2-$ principal submatrix as $\left[\begin{array}{cc}1 & \alpha \\ \beta & 1\end{array}\right]$ with $\beta \neq \bar{\alpha}$, then $\left\|S_{A}\right\|>1$ where the operator
$S_{A}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}$ is defined by $S_{A}(B):=A \circ B$ where " \circ " stands for Schur product.

Keywords: Inequalities, Schur multiplier operator, spectral norm, numerical radius.
2020 MSC: 15A60, 47A06, 47A12.

1. Introduction

Let \mathbb{M}_{n} denote the C^{*}-algebra of all $n \times n$ complex matrices. A Hermitian matrix $A \in \mathbb{M}_{n}$ is called positive if $x^{*} A x \geq 0$ for all $x \in \mathbb{C}^{n}$
(we write $A \geq 0$) and is called strictly positive if $x^{*} A x>0$ for all nonzero $x \in \mathbb{C}^{n}$ (we write $A>0$).
For Hermitian matrices $A, B \in \mathbb{M}_{n}$ a partial order is defined as $A \geq B$ if $A-B \geq 0$.
Let $\|A\|$ and $\omega(A)$ denote the spectral norm (or operator norm) and the numerical radius of A, respectively. Recall that the numerical radius is defined as follows:

$$
\omega(A)=\max \left\{\left|x^{*} A x\right|: x \in \mathbb{C}^{n}, x^{*} x=1\right\} .
$$

It is well-known that $\omega($.$) defines a norm on \mathbb{M}_{n}$, which is equivalent to the spectral norm $\|$.$\| . In fact, for every A \in \mathbb{M}_{n}$, the following inequality holds:

$$
\frac{1}{2}\|A\| \leq \omega(A) \leq\|A\|
$$

Also, if A is normal, then $\|A\|=\omega(A)$.
The Schur or entrywise product of $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in \mathbb{M}_{n}$ is defined by $A \circ B=\left[a_{i j} b_{i j}\right]$. With this multiplication, \mathbb{M}_{n} becomes a commutative algebra for which the matrix with all entries equal to one is the unit. Given $A \in \mathbb{M}_{n}$, the Schur multiplier operator or for brevity the Schur map $S_{A}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}$ is defined by $S_{A}(B):=A \circ B$. We say that S_{A} is unital if $S_{A}(I)=I$ for the
identity matrix $I \in \mathbb{M}_{n}$. In [2], the induced norms of S_{A} with respect to the spectral norm and numerical radius were defined respectively, by

$$
\begin{align*}
\left\|S_{A}\right\| & =\sup _{B \neq 0} \frac{\|A \circ B\|}{\|B\|} \tag{1}\\
\left\|S_{A}\right\|_{\omega} & =\sup _{B \neq 0} \frac{\omega(A \circ B)}{\omega(B)}
\end{align*}
$$

It is well known that

$$
\begin{equation*}
\left\|S_{A}\right\| \leq\left\|S_{A}\right\|_{\omega} . \tag{3}
\end{equation*}
$$

The study of the norm of the Schur map has been interesting for some researchers. One of the best research in this field was done by Ando and Okubo in [2]. They showed that $\left\|S_{A}\right\|_{\omega} \leq 1$ if and only if there exists positive semidefinite matrix $X \in \mathbb{M}_{n}$ such that $\left[\begin{array}{cc}X & A \\ A^{*} & X\end{array}\right] \geq 0$, where $X \circ I \leq I$ and they give other equivalent characterizations and derive similar results for $\left\|S_{A}\right\|$. For more information about the norm of the Schur multiplier operator and its applications see $[1,5,6,9,10]$. Let $A \in \mathbb{M}_{n}$. For index sets $\lambda, \mu \subseteq\{1,, \ldots, n\}$, we denote by $A[\lambda, \mu]$ the (sub)matrix of entries that lie in the rows of A indexed by λ and the columns indexed by μ. If $\lambda=\mu$, the submatrix $A[\lambda, \lambda]$ is denoted by $A[\lambda]$ and it is called a principal submatrix of A.

2. Main results

In 1991, Ando and Okubo proved the following theorem [2, Theorem 1 and Corollary 3] which is well known as the Haagerup Theorem:
Theorem 2.1. Let $A \in \mathbb{M}_{n}$. The following assertions are equivalent.
(i) $\left\|S_{A}\right\| \leq 1$.
(ii) There exist $0 \leq X, Y \in \mathbb{M}_{n}$ such that

$$
\left[\begin{array}{ll}
X & A \\
A^{*} & Y
\end{array}\right] \geq 0, \quad X \circ I \leq I \quad \text { and } \quad Y \circ I \leq I
$$

In addition, if A is Hermitian, (iii) $\left\|S_{A}\right\|=\left\|S_{A}\right\|_{\omega}$.

Also, they proved a similar theorem [2, Theorem 2 and Corollary 4] for $\left\|S_{A}\right\|_{\omega}$ as follows.
Theorem 2.2. Let $A \in \mathbb{M}_{n}$. The following assertions are equivalent.
(i) $\left\|S_{A}\right\|_{\omega} \leq 1$.
(ii) There exists $0 \leq X \in \mathbb{M}_{n}$ such that

$$
\left[\begin{array}{ll}
X & A \\
A^{*} & X
\end{array}\right] \geq 0 \quad \text { and } \quad X \circ I \leq I
$$

Moreover, if $A=\left[a_{i j}\right] \geq 0$,
(iii) $\left\|S_{A}\right\|_{\omega}=\max \left\{a_{i i}: 1 \leq i \leq n\right\}$.

To prove the main results, we need the following lemma, which is known as the Schur complement theorem.

Lemma 2.3 ([4], Theorem 1.3.3). Let A, B be strictly positive matrices. Then the block matrix $\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right]$ is positive if and only if $B \geq X^{*} A^{-1} X$.

Now, we state one of the main results of this section in the following theorem.
Theorem 2.4. Let $A=\left[a_{i j}\right] \in \mathbb{M}_{n}$ such that $\left\|S_{A}\right\|=1$. If $a_{s s}=a_{t t}=1$ for some $1 \leq s<t \leq n$, then $a_{s t}=\overline{a_{t s}}$.

Proof. By the use of Theorem 2.1, there exist positive $n \times n$ matrices $X=\left[x_{i j}\right], Y=\left[y_{i j}\right]$ with $0 \leq x_{i i}, y_{i i} \leq 1,(1 \leq i \leq n)$, such that

$$
\left[\begin{array}{cc}
X & A \\
A^{*} & Y
\end{array}\right] \geq 0
$$

Letting $\tilde{X}:=\left[\tilde{x_{i j}}\right]$ such that $\tilde{x_{i j}}=x_{i j}$ if $i \neq j$ and $\tilde{x_{i i}}=1$, and $\tilde{Y}:=\left[\tilde{y_{i j}}\right]$ such that $\tilde{y_{i j}}=y_{i j}$ if $i \neq j$ and $\tilde{y_{i i}}=1$, we have

$$
\left[\begin{array}{cc}
\tilde{X} & A \\
A^{*} & \tilde{Y}
\end{array}\right] \geq\left[\begin{array}{cc}
X & A \\
A^{*} & Y
\end{array}\right] \geq 0
$$

It is known that any principal submatrix of a positive matrix is positive, so it follows that

$$
C=\left[\begin{array}{cccc}
1 & x & 1 & a_{s t} \\
\bar{x} & 1 & a_{t s} & 1 \\
1 & \overline{a_{t s}} & 1 & y \\
\overline{a_{s t}} & 1 & \bar{y} & 1
\end{array}\right] \geq 0 \quad \text { where } x:=\tilde{x_{s t}}=x_{s t}, y:=\tilde{y_{s t}}=y_{s t} .
$$

In fact, $C=\left[\begin{array}{cc}\tilde{X} & A \\ A^{*} & \tilde{Y}\end{array}\right][\lambda]$, where $\lambda=\{s, t, n+s, n+t\}$.
So, in view of Lemma 2.3, we get

$$
\left[\begin{array}{ccc}
1 & a_{t s} & 1 \\
\overline{a_{t s}} & 1 & y \\
1 & \bar{y} & 1
\end{array}\right]-\left[\begin{array}{c}
\bar{x} \\
1 \\
\overline{a_{s t}}
\end{array}\right]\left[\begin{array}{lll}
x & 1 & a_{s t}
\end{array}\right]=\left[\begin{array}{ccc}
1-|x|^{2} & a_{t s}-\bar{x} & 1-\bar{x} a_{s t} \\
\overline{a_{t s}}-x & 0 & y-a_{s t} \\
1-x a_{s t} & \bar{y}-\overline{a_{s t}} & 1-\left|a_{s t}\right|^{2}
\end{array}\right] \geq 0 .
$$

Since the determinant of principal submatrices of the above matrix is positive, we obtain $\overline{a_{t}}-x=y-a_{s t}=0$ and hence

$$
C=\left[\begin{array}{cccc}
1 & \overline{a_{t s}} & 1 & a_{s t} \\
a_{t s} & 1 & a_{t s} & 1 \\
1 & \overline{a_{t s}} & 1 & a_{s t} \\
\overline{a_{s t}} & 1 & \overline{a_{s t}} & 1
\end{array}\right]
$$

By a simple calculation, the characteristic polynomial of C is as follows:

$$
f(\lambda)=\lambda^{4}-4 \lambda^{3}+\left(4-2\left|a_{s t}\right|^{2}-2\left|a_{t s}\right|^{2}\right) \lambda^{2}+2\left(\left|a_{s t}\right|^{2}+\left|a_{t s}\right|^{2}-2 \Re\left(a_{s t} a_{t s}\right)\right) \lambda,
$$

where $\Re\left(a_{s t} a_{t s}\right)$ is the real part of $a_{s t} a_{t s}$. Now, if $a_{s t} \neq \overline{a_{t s}}$, we obtain that the coefficient of λ is positive and then $f(\lambda)$ has a negative root, which is in contradiction with $C \geq 0$, and hence $a_{s t}=\overline{a_{t s}}$.

The next corollary is easily deduced from Theorem 2.4.
Corollary 2.5. If $S_{A}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}$ is an unital map with $\left\|S_{A}\right\|=1$, then A is Hermitian.

The following corollary is convenient to be as a reverse of the Haagerup theorem.
Corollary 2.6. If $A \in \mathbb{M}_{n}$ has a 2×2-principal submatrix as $\left[\begin{array}{cc}1 & \alpha \\ \beta & 1\end{array}\right]$ with $\beta \neq \bar{\alpha}$, then $\left\|S_{A}\right\|>1$.

Employing a strategy similar to the proof of Theorem 2.4, we obtain the following result.

Theorem 2.7. Let $A=\left[a_{i j}\right] \in \mathbb{M}_{n}$ such that $\left\|S_{A}\right\|_{\omega}=1$. If $a_{s s}=1$, then $a_{s j}=a_{j s}^{-}$for all $1 \leq j \leq n$.

Proof. From Theorem 2.2, it follows that there exists a positive matrix $X=\left[x_{i j}\right] \in \mathbb{M}_{n}$ with $0 \leq x_{i i} \leq 1(1 \leq i \leq n)$ such that

$$
\left[\begin{array}{ll}
X & A \\
A^{*} & X
\end{array}\right] \geq 0
$$

Setting $\tilde{X}:=\left[\tilde{x_{i j}}\right]$ such that $\tilde{x_{i j}}=x_{i j}$ for $i \neq j$ and $\tilde{x_{i i}}=1$, we have

$$
\left[\begin{array}{cc}
\tilde{X} & A \\
A^{*} & \tilde{X}
\end{array}\right] \geq\left[\begin{array}{cc}
X & A \\
A^{*} & X
\end{array}\right] \geq 0
$$

Since every principal submatrix of the above matrix is positive, it follows that for all integer $j \in\{1,2, \ldots, n\}$ such that $j \neq s$,

$$
B=\left[\begin{array}{cccc}
1 & x & 1 & a_{s j} \\
\bar{x} & 1 & a_{j s} & a_{j j} \\
1 & \overline{a_{j s}} & 1 & x \\
\overline{a_{s j}^{-}} & \overline{a_{j j}} & \bar{x} & 1
\end{array}\right] \geq 0, \quad \text { where } x:=\tilde{x_{s j}}=x_{s j} \text {. }
$$

In fact, $B=\left[\begin{array}{cc}\tilde{X} & A \\ A^{*} & \tilde{X}\end{array}\right][\lambda]$, where $\lambda=\{j, s, n+j, n+s\}$.
Hence, using Lemma 2.3, we obtain that

$$
\left[\begin{array}{ccc}
1 & a_{j s} & a_{j j} \\
\overline{a_{j s}} & 1 & x \\
\overline{a_{j j}^{-}} & \bar{x} & 1
\end{array}\right]-\left[\begin{array}{c}
\bar{x} \\
1 \\
\overline{a_{s j}}
\end{array}\right]\left[\begin{array}{lll}
x & 1 & a_{s j}
\end{array}\right]=\left[\begin{array}{ccc}
1-|x|^{2} & a_{j s}-\bar{x} & a_{j j}-\bar{x} a_{s j} \\
\overline{a_{j s}}-x & 0 & x-a_{s j} \\
\overline{a_{j j}^{-}}-x a_{s j}^{-} & \bar{x}-\overline{a_{s j}^{-}} & 1-\left|a_{s j}\right|^{2}
\end{array}\right] \geq 0
$$

Since the determinant of principal submatrices of the above matrix is nonnegative, we have $\overline{a_{j}}-x=x-a_{s j}=0$ and hence $a_{s j}=\overline{a_{j s}}$.

The following corollary is readily obtained.

Corollary 2.8. If $S_{A}: \mathbb{M}_{n} \longrightarrow \mathbb{M}_{n}$ is an unital map with $\left\|S_{A}\right\|_{\omega}=1$, then A is Hermitian.

The following straightforward result can be regarded as a reverse version of Theorem 2.2.
Corollary 2.9. If $A \in \mathbb{M}_{n}$ has a 2×2-principal submatrix as $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \theta\end{array}\right]$ with $\alpha=1$ or $\theta=1$, and $\beta \neq \bar{\gamma}$, then $\left\|S_{A}\right\|_{\omega}>1$.

3. Applications

In the following remark, we explain the way how to use Theorem 2.4, to refuse some matrix inequalities.

Remark 3.1. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Introduce $F=\left[f_{i j}\right]$, such that $F \circ I=I$ and $f_{i j}=\frac{M_{1}\left(a_{i}, a_{j}\right)}{M_{2}\left(a_{i}, a_{j}\right)}$, where M_{1}, M_{2} are functions of a_{i}, a_{j} possibly they are means. If F is not symmetric, then by Corollary 2.6, $\left\|S_{F}\right\|>1$, which means the inequality $\left\|\left(M_{1}\left(a_{i}, a_{j}\right)\right) \circ X\right\| \leq\left\|\left(M_{2}\left(a_{i}, a_{j}\right)\right) \circ X\right\|$ does not hold in general or there exists $X \in \mathbb{M}_{n}$ such that $\left\|\left(M_{1}\left(a_{i}, a_{j}\right)\right) \circ X\right\|>\left\|\left(M_{2}\left(a_{i}, a_{j}\right)\right) \circ X\right\|$. Also we remark that if F is not symmetric, then by Corollary 2.8, $\left\|S_{F}\right\|_{\omega}>1$. By the same way as before, we can refuse some numerical radius inequalities.

As an application of Corollary 2.6, we have the following theorem.
Theorem 3.2 ([8], Theorem 2.3). Let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix and $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$. Then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\left\|A^{\nu} X A^{1-\nu}\right\|>\|\nu A X+(1-\nu) X A\| \tag{4}
\end{equation*}
$$

Proof. Without loss of generality, we can assume that $A=\mathbf{d} \operatorname{iag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Using Lemma 2.2 in [8], the $n \times n$ matrix $F=\left[\frac{a_{i}^{\nu} a_{j}^{1-\nu}}{\nu a_{i}+(1-\nu) a_{j}}\right]$ is not symmetric, so by Corollary 2.6, $\left\|S_{F}\right\|>1$. Hence by the argument in Remark 3.1, we conclude that there exists $X \in \mathbb{M}_{n}$ such that
$\left\|A^{\nu} X A^{1-\nu}\right\|>\|\nu A X+(1-\nu) X A\|$.
By Theorem 3.2, we conclude that for $A, B, X \in \mathbb{M}_{n}$ where $A, B \geq 0$, the inequality
$\left\|A^{\nu} X B^{1-\nu}\right\| \leq\|\nu A X+(1-\nu) X B\|$ is not true in general.
By the same way as in the proof of the above theorem and Corollary 2.8, we get the following result:
Corollary 3.3. Let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix and $0<\nu<1$ be a real number such that $\nu \neq \frac{1}{2}$. Then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\omega\left(A^{\nu} X A^{1-\nu}\right)>\omega(\nu A X+(1-\nu) X A) . \tag{5}
\end{equation*}
$$

Theorem 3.4. Let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_{n}$ such that $\left\|A X A^{-1}\right\|>\|X\|$.

Proof. Without loss of generality, we assume that $A=\mathbf{d i a g}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Applying Corollary 2.6, for non symmetric matrix $F=\left[a_{i} a_{j}^{-1}\right] \in \mathbb{M}_{n}$, the results is obtained.

In view of Theorem 3.4, we conclude that the inequality $\left\|A X A^{-1}\right\| \leq\|X\|$ for all $A, X \in \mathbb{M}_{n}$ where $A>0$ does not hold.
Using the proof of Theorem 3.4 and Corollary 2.8, we have the following corollary.

Corollary 3.5. Let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix. Then there exists $X \in \mathbb{M}_{n}$ such that $\omega\left(A X A^{-1}\right)>\omega(X)$.

One can use Corollary 2.9 to show that for $A, B, X \in \mathbb{M}_{n}$ where $A, B \geq 0$, the inequality $\omega(A X B) \leq \omega\left(\frac{1}{p} A^{p} X+\frac{1}{q} X A^{q}\right)$ is not true in general.

Theorem 3.6 ([7], Theorem 2). Let $p>q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$ and let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix such that $1 \in \sigma(A)$. Then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\omega(A X A)>\omega\left(\frac{1}{p} A^{p} X+\frac{1}{q} X A^{q}\right) \tag{6}
\end{equation*}
$$

Proof. Without loss of generality, we assume that $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, such that $a_{1}=1, a_{2} \neq 1$. It is not difficult to show that

$$
\begin{equation*}
\frac{a_{2}^{p}}{p}+\frac{1}{q} \neq \frac{a_{2}^{q}}{q}+\frac{1}{p} \tag{7}
\end{equation*}
$$

If $F=\left[\frac{a_{i} a_{i}}{\frac{a_{i}^{p}}{p}+\frac{a_{j}^{q}}{q}}\right]$, then $f_{11}=1$ but by inequality $(7), f_{12} \neq f_{21}$. Hence by Corollary 2.9, we conclude that $\left\|S_{F}\right\|_{\omega}>1$. So, by the same argument in Remark 3.1, there exists $X \in \mathbb{M}_{n}$ such that $\omega(A X A)>\omega\left(\frac{1}{p} A^{p} X+\frac{1}{q} X A^{q}\right)$.

The reverse of the classical Young inequality says that:

$$
\begin{equation*}
\nu a+(1-\nu) b \leq a^{\nu} b^{1-\nu} \tag{8}
\end{equation*}
$$

when $a, b \geq 0$ and $\nu \leq 0$ or $\nu \geq 1$.
In [3] a matrix version of the above inequality for Hilbert -Schmidt norm by Bakherad et al. is given as follows:

Theorem 3.7 ([3], Theorem 2.3). Let $A, B, X \in \mathbb{M}_{n}$ and let m and m^{\prime} be positive scalars. If $A \geq m I \geq B>0$, and $\nu \geq 1$, or $B \geq m^{\prime} I \geq A>0$, and $\nu \leq 0$, then

$$
\begin{equation*}
\|\nu A X+(1-\nu) X B\|_{2} \leq\left\|A^{\nu} X B^{1-\nu}\right\|_{2} . \tag{9}
\end{equation*}
$$

Here we show that the conclusion of Theorem 3.7 becomes false for the numerical radius and operator norm instead of Hilbert Schmidt norm.

Theorem 3.8. Let $A \in \mathbb{M}_{n}$ be a non scalar strictly positive matrix and $\nu \geq 1$ or $\nu \leq 0$. Then there exists $X \in \mathbb{M}_{n}$ such that

$$
\begin{equation*}
\omega(\nu A X+(1-\nu) X A)>\omega\left(A^{\nu} X A^{1-\nu}\right) . \tag{10}
\end{equation*}
$$

Proof. Without loss of generality, we assume that $A=\boldsymbol{d} \operatorname{iag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $a_{1}=1$ and $a_{2} \neq 1$. It is straightforward to prove that

$$
\begin{equation*}
\frac{\nu a_{2}+(1-\nu)}{a_{2}^{\nu}} \neq \frac{(1-\nu) a_{2}+\nu}{a_{2}^{1-\nu}} \tag{11}
\end{equation*}
$$

If $F=\left[\frac{a_{i}^{\nu} a_{j}^{1-\nu}}{\nu a_{i}+(1-\nu) a_{j}}\right]$, then $f_{11}=1$ but by inequality $(11), f_{12} \neq f_{21}$.
Taking the same approach as in the proof of Theorem 3.7, the result holds.
In the proof of Theorem 3.8 since $f_{i i}=1$ for all $1 \leq i \leq n$, then by Corollary 2.6 , a similar result holds for operator norm too.

4. Aknowledgement

The author would like to express her gratitude to the anonymous reviewers whose comments have significantly improved the first version of the paper.

References

[1] Aghamollaei, Gh., \& Sheikhhosseini, A. (2015). Some numerical radius inequalities with positive definite functions. Bulletin of the Iranian Mathematical Society, 41, 889-900.
[2] Ando, T., \& Okubo, K. (1991). Induced norms of the Schur multiplication operator. Linear Algebra and its Applications, 147, 181-199.
[3] Bakherad, M., Krnić, M., \& Sal Moslehian, M. (2016). Reverse Young-type inequalities for matrices and operators. Rocky Mountain Journal of Mathematics, 46, 1089-1104.
[4] Bhatia, R. (2007). Positive Definite Matrices, Princeton University Press.
[5] Khosravi, M. \& Sheikhhosseini, A. (2015). Shur multiplier norm of product of matrices. Wavelets and Linear Algebra, 2, 49-54.
[6] Sababheh, M. (2018). Heinz-type numerical radii inequalities. Linear and Multilinear Algebra, 67, 953-964.
[7] Salemi A. \& Sheikhhosseini, A. (2013). Matrix Young numerical radius inequalities. Mathematical Inequalities and Applications, 16, 783-791.
[8] Salemi, A. \& Sheikhhosseini, A. (2014). On reversing of the modified Young inequality. Annals of Functional Analysis, 5, 69-75.
[9] Sheikhhosseini, A. (2017). An AM-GM mean inequality related to numerical redius of matrices. Konuralp Journal of Mathematics, 5, 116-122.
[10] Xu, K. Pedrycz, Z., W., Li, Z. \& Nie, W. (2019). High-accuracy signal subspace separation algorithm based on Gaussian kernel soft partition, IEEE Transactions on Industrial Electronics, 66(1), 491-499.

Alemeh Sheikhhosseini
Orcid number: 0000-0002-2174-7344
Department of Pure Mathematics
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: sheikhhosseini@uk.ac.ir

