

A NOTE ON CHARACTERIZATION OF HIGHER DERIVATIONS AND THEIR PRODUCT

S.Kh. Ekrami [©] 🖾

Article type: Research Article

(Received: 20 April 2023, Received in revised form 30 August 2023) (Accepted: 06 October 2023, Published Online: 12 October 2023)

ABSTRACT. There exists a one to one correspondence between higher derivations $\{d_n\}_{n=0}^{\infty}$ on an algebra \mathcal{A} and the family of sequences of derivations $\{\delta_n\}_{n=1}^{\infty}$ on \mathcal{A} . In this paper, we obtain a relation that calculates each derivation $\delta_n(n \in \mathbb{N})$ directly as a linear combination of products of terms of the corresponding higher derivation $\{d_n\}_{n=0}^{\infty}$. Also, we find the general form of the family of inner derivations corresponding to an inner higher derivation.

We show that for every two higher derivations on an algebra \mathcal{A} , the product of them is a higher derivation on \mathcal{A} . Also, we prove that the product of two inner higher derivations is an inner higher derivation.

Keywords: Derivation, Higher derivation, Inner higher derivation. 2020 MSC: 16W25, 47L57, 47B47.

1. Introduction

Let \mathcal{A} be an algebra. A linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ satisfying the Leibniz rule $\delta(xy) = \delta(x)y + x\delta(y)$ for each $x, y \in \mathcal{A}$, is called a *derivation* on \mathcal{A} . For a fixed element $a \in \mathcal{A}$, the linear mapping δ_a defined by $\delta_a(x) = ax - xa$ on \mathcal{A} is a derivation on \mathcal{A} , which is called the *inner derivation* implemented by a.

A sequence of linear mappings $\mathbf{d} = \{d_n : \mathcal{A} \to \mathcal{A}\}_{n=0}^{\infty}$ with $d_0 = I$ (where I is the identity mapping on \mathcal{A}), satisfying the generalized Leibniz rule $d_n(xy) = \sum_{i=0}^n d_i(x)d_{n-i}(y)$ for each $n = 0, 1, 2, \ldots$ and $x, y \in \mathcal{A}$, is called a higher derivation on \mathcal{A} .

For example, when $\delta : \mathcal{A} \to \mathcal{A}$ is a derivation, the sequence $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ of linear mappings on \mathcal{A} defined by $d_0 = I$ and $d_n = \frac{\delta^n}{n!}$, is a higher derivation on \mathcal{A} . Such a sequence is called an *ordinary higher derivation*. An ordinary higher derivation is a typical example and is not the only example of a higher derivation.

Mirzavaziri in Theorem 2.5 of [11] showed that there exists a one to one correspondence between higher derivations and the family of sequences of derivations on torsion free algebras. Let \mathcal{A} be a torsion free algebra and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be a higher derivation on \mathcal{A} . Then there is a sequence $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ of derivations

⊠ ekrami@pnu.ac.ir, ORCID: 0000-0002-6233-5741

DOI: 10.22103/jmmr.2023.21376.1432

Publisher: Shahid Bahonar University of Kerman

How to cite: S.Kh. Ekrami, A note on characterization of higher derivations and their product, J. Mahani Math. Res. 2024; 13(1): 403 - 415.

© the Author(s)

on \mathcal{A} such that

$$d_n = \sum_{i=1}^n \Big(\sum_{\sum_{j=1}^i r_j = n} \Big(\prod_{j=1}^i \frac{1}{r_j + \dots + r_i} \Big) \, \delta_{r_1} \dots \delta_{r_i} \Big),$$

where the inner summation is taken over all positive integers r_j with $\sum_{j=1}^{i} r_j = n$. Moreover the sequence $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ is unique. If we denote this higher derivation by $\mathbf{d}_{\boldsymbol{\delta}}$, then we can say that each higher derivation on a torsion free algebra \mathcal{A} is of the form $\mathbf{d}_{\boldsymbol{\delta}}$ for some sequence $\boldsymbol{\delta}$ of derivations on \mathcal{A} .

A notion of an inner higher derivation is given in [12]. The authors characterized all uniformly bounded inner higher derivations on Banach algebras and showed that each uniformly bounded higher derivation on a Banach algebra \mathcal{A} is inner, provided that each derivation on \mathcal{A} is inner.

In section 2, we obtain a relation that calculates each derivation $\delta_n (n \in \mathbb{N})$ directly as a linear combination of products of terms of the corresponding higher derivation $\{d_n\}_{n=0}^{\infty}$. Also, we find the general form of the family of inner derivations corresponding to an inner higher derivation.

Let \mathcal{A} be an associative algebra with identity element $1_{\mathcal{A}}$. A sequence of linear mappings $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ on \mathcal{A} defined by

(1)
$$d_n(x) = \sum_{i=0}^n p_i x q_{n-i}$$

for all $x \in \mathcal{A}$ and each non-negative integer n, is called an *inner higher deriva*tion on \mathcal{A} , in which $\mathbf{p} = \{p_n\}_{n=0}^{\infty}$ and $\mathbf{q} = \{q_n\}_{n=0}^{\infty}$ are two sequences in \mathcal{A} satisfying the conditions $p_0 = q_0 = 1_{\mathcal{A}}$,

$$(\mathbf{p} * \mathbf{q})_n = \sum_{i=0}^n p_i q_{n-i} = 0, \quad (\mathbf{q} * \mathbf{p})_n = \sum_{i=0}^n q_i p_{n-i} = 0$$

for all $n \in \mathbb{N}$ (to see this, refer to [14,15]). Nowicki proved in [13] that if every derivation of \mathcal{A} is inner, then every higher derivation of \mathcal{A} is inner. Xu and Xiao proved in [15] that if every Jordan derivation of \mathcal{A} is inner, then every Jordan higher derivation of \mathcal{A} is also inner.

In this paper, we show that if $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ is an inner higher derivation on \mathcal{A} of the form (1), then the corresponding sequence of derivations $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ defined on \mathcal{A} by

$$\delta_n(x) = \sum_{i=1}^n \Big(\sum_{\substack{\sum_{j=1}^i r_j = n \\ i = 1}} (-1)^{i-1} r_1 p_{r_1} p_{r_2} \dots p_{r_i} \Big) x$$
$$+ x \sum_{i=1}^n \Big(\sum_{\substack{\sum_{j=1}^i r_j = n \\ \sum_{j=1}^i r_j = n}} (-1)^{i-1} r_i q_{r_1} q_{r_2} \dots q_{r_i} \Big)$$

for all $n \in \mathbb{N}$.

In Section 3, we investigate that for every two higher derivations $\mathbf{a} = \{a_n\}_{n=0}^{\infty}$ and $\mathbf{b} = \{b_n\}_{n=0}^{\infty}$ on algebra \mathcal{A} , the sequence $\mathbf{a} * \mathbf{b} = \{(a * b)_n\}_{n=0}^{\infty}$ defined by

$$(a * b)_n(x) = \sum_{i=0}^n a_i(b_{n-i}(x))$$

for each n = 0, 1, 2, ... and $x \in A$, is a higher derivation on A. Also, we prove that if **a** and **b** are two inner higher derivations, then $\mathbf{a} * \mathbf{b}$ is an inner higher derivation.

For a discussion about derivations, Jordan derivations, higher derivations, Jordan higher derivations and their generalizations the reader is referred to [1-8] and [9].

2. On characterization of higher derivations

Throughout the paper, \mathcal{A} denotes an algebra over a field of characteristic zero, and I is the identity mapping on \mathcal{A} . Let $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be a higher derivation on \mathcal{A} and $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ be the corresponding sequence of derivations to \mathbf{d} . In the next proposition, we obtain a relation that calculates each derivation $\delta_n (n \in \mathbb{N})$ directly as a linear combination of products of terms of the higher derivation \mathbf{d} .

Proposition 2.1. Let $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be a higher derivation on \mathcal{A} . Then the corresponding sequence of derivations to \mathbf{d} denoted by $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ defined on \mathcal{A} by

(2)
$$\delta_n = \sum_{i=1}^n \left(\sum_{\sum_{j=1}^i r_j = n} (-1)^{i-1} r_1 d_{r_1} d_{r_2} \dots d_{r_i} \right)$$

for all $n \in \mathbb{N}$.

Proof. By Proposition 2.1 of [11], for higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ there exists a sequence of derivations $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ such that

(3)
$$(n+1)d_{n+1} = \sum_{k=0}^{n} \delta_{k+1}d_{n-k}$$

for each non-negative integer n. So, we get

(4)
$$\delta_{n+1} = (n+1)d_{n+1} - \sum_{k=0}^{n-1} \delta_{k+1}d_{n-k} \quad (n \in \mathbb{N}).$$

Now we use induction on n. For n = 1 we have $\delta_1 = d_1$. Suppose that δ_k is defined for $k \leq n$ as equation (2). For n + 1 the right side of equation (2) is

equal to

$$\begin{split} \sum_{k=1}^{n+1} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1} (-1)^{k-1} r_1 d_{r_1} d_{r_2} \dots d_{r_k} \Big) \\ &= (n+1) d_{n+1} + \sum_{k=2}^{n+1} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1} (-1)^{k-1} r_1 d_{r_1} d_{r_2} \dots d_{r_k} \Big) \\ &= (n+1) d_{n+1} + \sum_{k=1}^{n} \Big(\sum_{\sum_{j=1}^{k+1} r_j = n+1} (-1)^k r_1 d_{r_1} d_{r_2} \dots d_{r_k} d_{r_{k+1}} \Big) \\ &= (n+1) d_{n+1} - \sum_{k=1}^{n} \sum_{r_{k+1} = 1}^{n-(k-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1 - r_{k+1}} (-1)^{k-1} r_1 d_{r_1} d_{r_2} \dots d_{r_k} \Big) d_{r_{k+1}} \\ &= (n+1) d_{n+1} - \sum_{k=1}^{n} \sum_{i=1}^{n-(k-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1 - i} (-1)^{k-1} r_1 d_{r_1} d_{r_2} \dots d_{r_k} \Big) d_i \\ &= (n+1) d_{n+1} - \sum_{i=1}^{n} \sum_{k=1}^{n-(i-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n-(i-1)} (-1)^{k-1} r_1 d_{r_1} d_{r_2} \dots d_{r_k} \Big) d_i \\ &= (n+1) d_{n+1} - \sum_{i=1}^{n} \delta_{n-(i-1)} d_i \\ &= (n+1) d_{n+1} - \sum_{i=0}^{n-1} \delta_{n-i} d_{i+1} \\ &= (n+1) d_{n+1} - \sum_{k=0}^{n-1} \delta_{k+1} d_{n-k} = \delta_{n+1}. \end{split}$$

This completes the proof.

Example 2.2. Using Proposition 2.1, the five terms of $\{\delta_n\}$ are

$$\begin{split} \delta_1 &= d_1, \\ \delta_2 &= 2d_2 - d_1^2, \\ \delta_3 &= 3d_3 - 2d_2d_1 - d_1d_2 + d_1^3, \\ \delta_4 &= 4d_4 - 3d_3d_1 - 2d_2^2 - d_1d_3 + 2d_2d_1^2 + d_1d_2d_1 + d_1^2d_2 - d_1^4, \\ \delta_5 &= 5d_5 - 4d_4d_1 - 3d_3d_2 - 2d_2d_3 - d_1d_4 + 3d_3d_1^2 + d_1d_3d_1 + d_1^2d_3 + 2d_2^2d_1 \\ &+ 2d_2d_1d_2 + d_1d_2^2 - 2d_2d_1^3 - d_1d_2d_1^2 - d_1^2d_2d_1 - d_1^3d_2 + d_1^5. \end{split}$$

Example 2.3. Let $M_n(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices and let $A \in M_n(\mathbb{C})$ be an arbitrary matrix. Define the sequences $\mathbf{P} = \{P_n\}_{n=0}^{\infty}$ and $\mathbf{Q} = \{Q_n\}_{n=0}^{\infty}$ in $M_n(\mathbb{C})$ by $P_n = \frac{(-1)^n}{n!}A^n$ and $Q_n = \frac{1}{n!}A^n$ for each non-negative integer n. Then $P_0 = Q_0 = I_n$ (the $n \times n$ identity matrix) and

$$(\mathbf{P} * \mathbf{Q})_n = \sum_{i=0}^n P_i Q_{n-i} = \sum_{i=0}^n \frac{(-1)^i}{i!(n-i)!} A^i A^{n-i}$$
$$= \sum_{i=0}^n \frac{(-1)^i}{n!} \binom{n}{i} A^n = \frac{A^n}{n!} \sum_{i=0}^n (-1)^i \binom{n}{i} = 0$$

Similarly, $(\mathbf{Q} * \mathbf{P})_n = \sum_{i=0}^n Q_i P_{n-i} = 0.$

Then the sequence of mappings $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ defined on $M_n(\mathbb{C})$ by $d_0 = I$ and

$$d_n(X) = \sum_{i=0}^n P_i X Q_{n-i} = \sum_{i=0}^n \frac{(-1)^i}{n!} \binom{n}{i} A^i X A^{n-i} \quad (n \in \mathbb{N}),$$

for all $X \in M_n(\mathbb{C})$, is an inner higher derivation on $M_n(\mathbb{C})$.

Now by Proposition 2.1, the sequence of derivations $\{\delta_n\}_{n=1}^{\infty}$ corresponding to **d**, defined by $\delta_1(X) = XA - AX$ and $\delta_k = 0$ for all $k \ge 2$.

In the next proposition, we find the general form of the family of derivations corresponding to an inner higher derivation.

Proposition 2.4. Let \mathcal{A} be an associative algebra with identity element $1_{\mathcal{A}}$ and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be an inner higher derivation on \mathcal{A} defined by

$$d_n(x) = \sum_{i=0}^n p_i x q_{n-i}$$

in which $\mathbf{p} = \{p_n\}_{n=0}^{\infty}$ and $\mathbf{q} = \{q_n\}_{n=0}^{\infty}$ are sequences in \mathcal{A} such that $p_0 = q_0 = 1_{\mathcal{A}}$ and $(\mathbf{p} * \mathbf{q})_n = (\mathbf{q} * \mathbf{p})_n = 0$ for all $n \in \mathbb{N}$. Then the corresponding sequence of derivations to **d** denoted by $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ defined on \mathcal{A} by

(5)
$$\delta_n(x) = \sum_{i=1}^n \Big(\sum_{\substack{\sum_{j=1}^i r_j = n \\ \sum_{j=1}^i r_j = n}} (-1)^{i-1} r_1 p_{r_1} p_{r_2} \dots p_{r_i} \Big) x$$
$$+ x \sum_{i=1}^n \Big(\sum_{\substack{\sum_{j=1}^i r_j = n \\ \sum_{j=1}^i r_j = n}} (-1)^{i-1} r_i q_{r_1} q_{r_2} \dots q_{r_i} \Big)$$

for all $n \in \mathbb{N}$.

Proof. Put

$$A_n = \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n \\ \sum_{j=1}^i r_j = n}} (-1)^{i-1} r_1 p_{r_1} p_{r_2} \dots p_{r_i} \right),$$

$$B_n = \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n \\ \sum_{j=1}^i r_j = n}} (-1)^{i-1} r_i q_{r_1} q_{r_2} \dots q_{r_i} \right).$$

Then $\delta_n(x) = A_n x + x B_n$. First we prove the following equations, using induction on n.

(i)
$$(n+1)p_{n+1} = \sum_{k=0}^{n} A_{k+1}p_{n-k},$$

(ii) $(n+1)q_{n+1} = \sum_{k=0}^{n} q_{n-k}B_{k+1}.$

Proof of (i): For n = 1 we have $A_1 = p_1$. Suppose that A_k is defined for all k = 1, 2, ..., n as equation (i). Then for n + 1 we have

$$\begin{split} A_{n+1} &= \sum_{k=1}^{n+1} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1}^{n+1} (-1)^{k-1} r_1 p_{r_1} p_{r_2} \dots p_{r_k} \Big) \\ &= (n+1) p_{n+1} + \sum_{k=2}^{n+1} \Big(\sum_{\sum_{j=1}^{k+1} r_j = n+1}^{n+1} (-1)^{k-1} r_1 p_{r_1} p_{r_2} \dots p_{r_k} \Big) \\ &= (n+1) p_{n+1} + \sum_{k=1}^{n} \Big(\sum_{\sum_{j=1}^{k+1} r_j = n+1}^{n-(k-1)} (-1)^{k} r_1 p_{r_1} p_{r_2} \dots p_{r_k} p_{r_{k+1}} \Big) \\ &= (n+1) p_{n+1} - \sum_{k=1}^{n} \sum_{r_{k+1} = 1}^{n-(k-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1 - r_{k+1}}^{n-(k-1)} (-1)^{k-1} r_1 p_{r_1} p_{r_2} \dots p_{r_k} \Big) p_{r_{k+1}} \\ &= (n+1) p_{n+1} - \sum_{k=1}^{n} \sum_{i=1}^{n-(k-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n+1 - i}^{n-(k-1)} (-1)^{k-1} r_1 p_{r_1} p_{r_2} \dots p_{r_k} \Big) p_i \\ &= (n+1) p_{n+1} - \sum_{i=1}^{n} \sum_{k=1}^{n-(i-1)} \Big(\sum_{\sum_{j=1}^{k} r_j = n-(i-1)}^{n-(i-1)} (-1)^{k-1} r_1 p_{r_1} p_{r_2} \dots p_{r_k} \Big) p_i \\ &= (n+1) p_{n+1} - \sum_{i=1}^{n} A_{n-(i-1)} p_i = (n+1) p_{n+1} - \sum_{i=0}^{n-1} A_{n-i} p_{i+1} \\ &= (n+1) p_{n+1} - \sum_{k=0}^{n} A_{k+1} p_{n-k}. \end{split}$$

This proves the validity of equation (i).

Proof of (ii): For n = 1 we have $B_1 = q_1$. Suppose that B_k is defined for all k = 1, 2, ..., n as equation (ii). Then for n + 1 we have

$$\begin{split} B_{n+1} \\ &= \sum_{k=1}^{n+1} \left(\sum_{\sum_{j=1}^{k} r_j = n+1}^{n+1} (-1)^{k-1} r_k q_{r_1} q_{r_2} \dots q_{r_k} \right) \\ &= (n+1)q_{n+1} + \sum_{k=2}^{n+1} \left(\sum_{\sum_{j=1}^{k} r_j = n+1}^{n+1} (-1)^{k-1} r_k q_{r_1} q_{r_2} \dots q_{r_k} \right) \\ &= (n+1)q_{n+1} + \sum_{k=1}^{n} \left(\sum_{\sum_{j=1}^{k+1} r_j = n+1}^{n-(k-1)} (-1)^k r_{k+1} q_{r_1} q_{r_2} \dots q_{r_k} q_{r_{k+1}} \right) \\ &= (n+1)q_{n+1} - \sum_{k=1}^{n} \left(\sum_{r_1=1}^{n-(k-1)} q_{r_1} \sum_{\sum_{j=2}^{k+1} r_j = n+1-r_1}^{n-(k-1)} (-1)^{k-1} r_{k+1} q_{r_2} \dots q_{r_{k+1}} \right) \\ &= (n+1)q_{n+1} - \sum_{k=1}^{n} \left(\sum_{i=1}^{n-(k-1)} q_i \sum_{j=2}^{k+1} r_j = n+1-i}^{n-(k-1)} (-1)^{k-1} r_{k+1} q_{r_2} \dots q_{r_{k+1}} \right) \\ &= (n+1)q_{n+1} - \sum_{i=1}^{n} \left(q_i \sum_{k=1}^{n-(i-1)} \left(\sum_{\sum_{j=1}^{k} r_j = n-(i-1)}^{(-1)(k-1)} r_k q_{r_1} \dots q_{r_k} \right) \right) \\ &= (n+1)q_{n+1} - \sum_{i=1}^{n} q_i B_{n-(i-1)} \\ &= (n+1)q_{n+1} - \sum_{i=0}^{n-1} q_{i+1} B_{n-i} \\ &= (n+1)q_{n+1} - \sum_{k=0}^{n-1} q_{n-k} B_{k+1}. \end{split}$$

This proves the validity of equation (ii). Now we have

$$\sum_{k=0}^{n} \delta_{k+1} d_{n-k}(x) = \sum_{k=0}^{n} \delta_{k+1} \left(\sum_{i=0}^{n-k} p_i x q_{n-k-i} \right) = \sum_{k=0}^{n} \sum_{i=0}^{n-k} \delta_{k+1}(p_i x q_{n-k-i})$$
$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \left(A_{k+1} p_i x q_{n-k-i} + p_i x q_{n-k-i} B_{k+1} \right)$$
$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \left(A_{k+1} p_i x q_{n-k-i} + p_{n-k-i} x q_i B_{k+1} \right).$$

In the summation $\sum_{k=0}^{n} \sum_{i=0}^{n-k}$, we have $0 \le k+i \le n$. Thus if we put k+i=r, then we can write it as the form $\sum_{r=0}^{n} \sum_{k+i=r}$. Putting i = r - k, we indeed have

$$\begin{split} &\sum_{k=0}^{n} \delta_{k+1} d_{n-k}(x) \\ &= \sum_{r=0}^{n} \sum_{k=0}^{r} \left(A_{k+1} p_{r-k} x q_{n-r} + p_{n-r} x q_{r-k} B_{k+1} \right) \\ &= \sum_{r=0}^{n} \left((r+1) p_{r+1} x q_{n-r} + (r+1) p_{n-r} x q_{r+1} \right) \\ &= \sum_{r=0}^{n} (r+1) p_{r+1} x q_{n-r} + \sum_{r=0}^{n} (r+1) p_{n-r} x q_{r+1} \\ &= (n+1) p_{n+1} x + \sum_{r=0}^{n-1} (r+1) p_{r+1} x q_{n-r} + (n+1) x q_{n+1} + \sum_{r=0}^{n-1} (r+1) p_{n-r} x q_{r+1} \\ &= (n+1) p_{n+1} x + \sum_{r=0}^{n-1} (r+1) p_{r+1} x q_{n-r} + (n+1) x q_{n+1} + \sum_{r=0}^{n-1} (n-r) p_{r+1} x q_{n-r} \\ &= (n+1) p_{n+1} x + (n+1) \sum_{r=0}^{n-1} p_{r+1} x q_{n-r} + (n+1) x q_{n+1} \\ &= (n+1) p_{n+1} x + (n+1) \sum_{r=1}^{n} p_{r} x q_{n+1-r} + (n+1) x q_{n+1} \\ &= (n+1) \sum_{r=0}^{n+1} p_{r} x q_{n+1-r} \\ &= (n+1) d_{n+1}(x). \end{split}$$

This completes the proof.

Example 2.5. Using Proposition 2.4, the four terms of sequence of derivations $\{\delta_n\}$ are defined on \mathcal{A} as follows:

$$\begin{split} \delta_1(x) &= p_1 x + x q_1, \\ \delta_2(x) &= (2p_2 - p_1^2) x + x (2q_2 - q_1^2), \\ \delta_3(x) &= (3p_3 - 2p_2 p_1 - p_1 p_2 + p_1^3) x + x (3q_3 - q_2 q_1 - 2q_1 q_2 + q_1^3), \\ \delta_4(x) &= (4p_4 - 3p_3 p_1 - 2p_2^2 - p_1 p_3 + 2p_2 p_1^2 + p_1 p_2 p_1 + p_1^2 p_2 - p_1^4) x \\ &+ x (4q_4 - q_3 q_1 - 2q_2^2 - 3q_1 q_3 + q_2 q_1^2 + q_1 q_2 q_1 + 2q_1^2 q_2 - q_1^4). \end{split}$$

The next corollaries follows from Proposition 2.4.

Corollary 2.6. Let \mathcal{A} be an associative algebra with identity element $1_{\mathcal{A}}$. For every inner higher derivation $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ on \mathcal{A} , there exists a unique sequence of inner derivations $\boldsymbol{\delta} = \{\delta_n\}_{n=1}^{\infty}$ on \mathcal{A} satisfying the equation (2).

Corollary 2.7. Let \mathcal{A} be an associative algebra with identity element $1_{\mathcal{A}}$ and $\mathbf{d} = \{d_n\}_{n=0}^{\infty}$ be an inner higher derivation on \mathcal{A} defined by

$$d_n(x) = \sum_{i=0}^n p_i x q_{n-i}$$

in which $\mathbf{p} = \{p_n\}_{n=0}^{\infty}$ and $\mathbf{q} = \{q_n\}_{n=0}^{\infty}$ are sequences in \mathcal{A} such that $p_0 = q_0 = 1_{\mathcal{A}}$ and $(\mathbf{p} * \mathbf{q})_n = (\mathbf{q} * \mathbf{p})_n = 0$ for all $n \in \mathbb{N}$. Then

$$\sum_{i=1}^{n} \left(\sum_{\sum_{j=1}^{i} r_j = n} (-1)^{i-1} \left(r_1 p_{r_1} p_{r_2} \dots p_{r_i} + r_i q_{r_1} q_{r_2} \dots q_{r_i} \right) \right) = 0$$

for all $n \in \mathbb{N}$.

Proof. It is an immediate consequence of the fact that $\delta_n(1_{\mathcal{A}}) = 0$ for all $n \in \mathbb{N}$.

3. The product of higher derivations

In this section, we show that the product of two higher derivations is a higher derivation. Also, we show that the product of two inner higher derivations is an inner higher derivation. To prove the main results, we first need a lemma.

Lemma 3.1. For any sequence $\{x_{i,k}\}_{i,k=0}^n$ in an algebra \mathcal{A} , we have

(i)
$$\sum_{i=0}^{n} \sum_{k=0}^{i} x_{i,k} = \sum_{i=0}^{n} \sum_{k=i}^{n} x_{k,i},$$

(ii)
$$\sum_{i=0}^{n} \sum_{k=0}^{n-i} x_{i,k} = \sum_{k=0}^{n} \sum_{i=0}^{n-k} x_{i,k}.$$

Proof. (i) The right side of the equation is equal to

$$\sum_{i=0}^{n} \sum_{k=i}^{n} x_{k,i} = \sum_{i=0}^{n} \sum_{k=0}^{n-i} x_{k+i,i}$$

In the summation $\sum_{i=0}^{n} \sum_{k=0}^{n-i}$, we have $0 \le i+k \le n$. Thus if we put i+k=r, then we can write it as the form $\sum_{r=0}^{n} \sum_{i+k=r}^{n}$. Putting k=r-i, we indeed have

$$\sum_{i=0}^{n} \sum_{k=0}^{n-i} x_{k+i,i} = \sum_{r=0}^{n} \sum_{i=0}^{r} x_{r,i}.$$

Now, renaming the indix r and i by i and k, respectively in the right side summation, we get the required result.

(ii) In the left side summation, we have $0 \le i + k \le n$. Thus if we put i + k = r, then we have

$$\sum_{i=0}^{n} \sum_{k=0}^{n-i} x_{i,k} = \sum_{r=0}^{n} \sum_{i=0}^{r} x_{i,r-i}.$$

Using Lemma 3.1 (i), we get

$$\sum_{r=0}^{n} \sum_{i=0}^{r} x_{i,r-i} = \sum_{i=0}^{n} \sum_{r=i}^{n} x_{r-i,i} = \sum_{i=0}^{n} \sum_{r=0}^{n-i} x_{r,i}.$$

Now, renaming the indix i and r by k and i, respectively on the right side summation, we get the required result.

Theorem 3.2. Suppose that $\mathbf{a} = \{a_n\}_{n=0}^{\infty}$ and $\mathbf{b} = \{b_n\}_{n=0}^{\infty}$ are two higher derivations on \mathcal{A} . Then the sequence $\mathbf{a} * \mathbf{b} = \{(a * b)_n\}_{n=0}^{\infty}$ defined by

(6)
$$(a * b)_n(x) = \sum_{i=0}^n a_i(b_{n-i}(x))$$

for each n = 0, 1, 2, ... and $x \in A$, is a higher derivation on A.

Proof. Trivially each $(a * b)_n$ is linear. Also for all $x, y \in \mathcal{A}$ we have

$$\begin{aligned} (a * b)_n(xy) &= \sum_{i=0}^n a_i(b_{n-i}(xy)) \\ &= \sum_{i=0}^n a_i\Big(\sum_{j=0}^{n-i} b_j(x)b_{n-i-j}(y)\Big) = \sum_{i=0}^n \sum_{j=0}^{n-i} a_i(b_j(x)b_{n-i-j}(y)) \\ &= \sum_{i=0}^n \sum_{j=0}^{n-i} \sum_{k=0}^i a_k(b_j(x))a_{i-k}(b_{n-i-j}(y)) \\ &= \sum_{i=0}^n \sum_{k=0}^i \sum_{j=0}^{n-i} a_k(b_j(x))a_{i-k}(b_{n-i-j}(y)). \end{aligned}$$

Using Lemma 3.1 (i), for sequence $\{x_{i,k}\} = \{\sum_{j=0}^{n-i} a_k(b_j(x))a_{i-k}(b_{n-i-j}(y))\},\$ we conclude that

$$(a * b)_n(xy) = \sum_{i=0}^n \sum_{k=i}^n \sum_{j=0}^{n-k} a_i(b_j(x)) a_{k-i}(b_{n-k-j}(y))$$

=
$$\sum_{i=0}^n \sum_{k=0}^{n-i} \sum_{j=0}^{n-i-k} a_i(b_j(x)) a_k(b_{n-k-i-j}(y)).$$

Using Lemma 3.1 (ii), we can write $\sum_{k=0}^{n-i} \sum_{j=0}^{n-i-k} x_{k,j} = \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} x_{k,j}$, in which $x_{k,j} = a_i(b_j(x))a_k(b_{n-k-i-j}(y))$. Thus

$$(a * b)_n(xy) = \sum_{i=0}^n \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} a_i(b_j(x)) a_k(b_{n-k-i-j}(y)).$$

In the summation $\sum_{i=0}^{n} \sum_{j=0}^{n-i}$, we have $0 \le i+j \le n$. Thus if we put i+j=r, then we can write it as the form $\sum_{r=0}^{n} \sum_{i+j=r}$. Putting j=r-i, we indeed have

$$(a * b)_{n}(xy) = \sum_{r=0}^{n} \sum_{i=0}^{r} \sum_{k=0}^{n-r} a_{i}(b_{r-i}(x))a_{k}(b_{n-r-k}(y))$$

$$= \sum_{r=0}^{n} \left(\sum_{i=0}^{r} a_{i}(b_{r-i}(x))\right) \left(\sum_{k=0}^{n-r} a_{k}(b_{n-r-k}(y))\right)$$

$$= \sum_{r=0}^{n} (a * b)_{r}(x)(a * b)_{n-r}(y).$$

This shows that $\mathbf{a} * \mathbf{b} = \{(a * b)_n\}_{n=0}^{\infty}$ is a higher derivation and completes the proof.

Corollary 3.3. Let $\alpha, \beta : \mathcal{A} \to \mathcal{A}$ be two derivations. The sequence $\{d_n\}_{n=0}^{\infty}$ which is defined by

$$d_0 = I, \quad d_n = \sum_{i=0}^n \frac{\alpha^i \beta^{n-i}}{i!(n-i)!} \quad (n \ge 1),$$

is a higher derivation on \mathcal{A} .

Proof. Suppose that $\mathbf{a} = \{a_n\}_{n=0}^{\infty}$ is the higher derivation corresponding to the sequence of derivations $\{\alpha_n\}_{n=1}^{\infty} = \{\alpha, 0, 0, \ldots\}$ and $\mathbf{b} = \{b_n\}_{n=0}^{\infty}$ is the higher derivation corresponding to the sequence of derivations $\{\beta_n\}_{n=1}^{\infty} = \{\beta, 0, 0, \ldots\}$. Then by Theorem 3.2, the sequence $\{(a * b)_n\}_{n=0}^{\infty}$ which is defined as above, is a higher derivation on \mathcal{A} .

In the next theorem, we show that if \mathbf{a} and \mathbf{b} are two inner higher derivations, then $\mathbf{a} * \mathbf{b}$ is an inner higher derivation.

Theorem 3.4. Let \mathcal{A} be an associative algebra with identity element $1_{\mathcal{A}}$ and let $\mathbf{a} = \{a_n\}_{n=0}^{\infty}$ and $\mathbf{b} = \{b_n\}_{n=0}^{\infty}$ be two inner higher derivations on \mathcal{A} . Then $\mathbf{a} * \mathbf{b} = \{(a * b)_n\}_{n=0}^{\infty}$ is an inner higher derivation on \mathcal{A} .

Proof. By hypothesis, there exist sequences $\mathbf{p} = \{p_n\}_{n=0}^{\infty}, \mathbf{q} = \{q_n\}_{n=0}^{\infty}, \mathbf{r} = \{r_n\}_{n=0}^{\infty}$ and $\mathbf{s} = \{s_n\}_{n=0}^{\infty}$ in \mathcal{A} such that

$$a_n(x) = \sum_{i=0}^n p_i x q_{n-i}, \quad p_0 = q_0 = 1_{\mathcal{A}}, \ (\mathbf{p} * \mathbf{q})_n = (\mathbf{q} * \mathbf{p})_n = 0,$$
$$b_n(x) = \sum_{i=0}^n r_i x s_{n-i}, \quad r_0 = s_0 = 1_{\mathcal{A}}, \ (\mathbf{r} * \mathbf{s})_n = (\mathbf{s} * \mathbf{r})_n = 0,$$

for all $x \in \mathcal{A}$ and each non-negative integer n.

By Theorem 3.2, $\mathbf{a} * \mathbf{b}$ is a higher derivation on \mathcal{A} . We show that $\mathbf{a} * \mathbf{b}$ is an inner higher derivation. Using Lemma 3.1, we have

$$(a * b)_{n}(x) = \sum_{i=0}^{n} a_{i}(b_{n-i}(x))$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} a_{i}(r_{j}xs_{n-i-j}) = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{i} p_{k}r_{j}xs_{n-i-j}q_{i-k}$$

$$= \sum_{i=0}^{n} \sum_{k=0}^{i} \sum_{j=0}^{n-i} p_{k}r_{j}xs_{n-i-j}q_{i-k} = \sum_{i=0}^{n} \sum_{k=i}^{n-i} \sum_{j=0}^{n-k} p_{i}r_{j}xs_{n-k-j}q_{k-i}$$

$$= \sum_{i=0}^{n} \sum_{k=0}^{n-i} \sum_{j=0}^{n-k-i} p_{i}r_{j}xs_{n-k-i-j}q_{k} = \sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} p_{i}r_{j}xs_{n-k-i-j}q_{k}$$

for all $x \in \mathcal{A}$ and each non-negative integer n. If we put i + j = m, then we conclude that

$$(a * b)_{n}(x) = \sum_{m=0}^{n} \sum_{i=0}^{m} \sum_{k=0}^{n-m} p_{i}r_{m-i}xs_{n-m-k}q_{k}$$
$$= \sum_{m=0}^{n} \left(\sum_{i=0}^{m} p_{i}r_{m-i}\right)x\left(\sum_{k=0}^{n-m} s_{n-m-k}q_{k}\right)$$
$$= \sum_{m=0}^{n} (\mathbf{p} * \mathbf{r})_{m}x(\mathbf{s} * \mathbf{q})_{n-m}$$

for all $x \in \mathcal{A}$ and each non-negative integer n. Since $\mathbf{a} * \mathbf{b}$ is a higher derivation, we have

$$\left((\mathbf{p} * \mathbf{r}) * (\mathbf{s} * \mathbf{q}) \right)_n = \left((\mathbf{s} * \mathbf{q}) * (\mathbf{p} * \mathbf{r}) \right)_n = 0,$$

for all $n \in \mathbb{N}$ and also $(\mathbf{p} * \mathbf{r})_0 = (\mathbf{s} * \mathbf{q})_0 = 1_{\mathcal{A}}$. This completes the proof. \Box

4. Conclusion

In this paper, we obtained a relation that calculates each derivation $\delta_n (n \in \mathbb{N})$ directly as a linear combination of products of terms of the corresponding higher derivation $\{d_n\}_{n=0}^{\infty}$. Also, we found the general form of the family of

inner derivations corresponding to an inner higher derivation. We showed that for every two higher derivations on an algebra \mathcal{A} , the product of them is a higher derivation on \mathcal{A} . Also, we proved that the product of two inner higher derivations, is an inner higher derivation.

5. Aknowledgement

We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

- Cortes, W., & Haetinger, C. (2005). On Jordan generalized higher derivations in rings. Turk. J. Math., 29, 1–10.
- [2] Ekrami, S. Kh. (2022). Approximate orthogonally higher ring derivations. Control Optimization App. Math., 7(1), 93–106. doi: 10.30473/coam.2021.59727.1166
- [3] Ekrami, S. Kh. Characterization of Hilbert C*-module Higher Derivations. Georgian Mathematical Journal, accepted.
- [4] Ekrami, S. Kh. (2022). Jordan higher derivations, a new approach. Journal Algebraic Systems, 10(1), 167–177.
- [5] Haetinger, C. (2002). Higher derivations on Lie ideals. Tendencias em Matematica Aplicada e Computacional, 3, 141–145.
- [6] Hasse, H., & Schmidt, F. K. (1937). Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten. J. Reine Angew. Math., 177, 215-237.
- [7] Jewell, N. P. (1977). Continuity of module and higher derivations. Pacific J. Math., 68, 91–98.
- [8] Johnson, B. E. (2001). Local derivations on C*-algebras are derivations. Trans. Amer. Math. Soc., 353, 313–325.
- [9] Johnson, B. E., & Sinclair, A. M. (1968). Continuity of derivations and a problem of Kaplansky. Amer. J. Math., 90, 1067–1073.
- [10] Loy, R. J. (1973). Continuity of higher derivations. Proc. Amer. Math. Soc., 5, 505-510.
- [11] Mirzavaziri, M. (2010), Characterization of higher derivations on algebras. Comm. Algebra, 38, 981–987.
- [12] Mirzavaziri, M., Naranjani, K., & Niknam, A. (2010). Innerness of higher derivations. Banach J. Math. Anal., 4(2), 99–110. DOI: 10.15352/bjma/1297117246
- [13] Nowicki, A. (1984). Inner derivations of higher orders. Tsukuba J. Math., 8, 219–225.
- [14] Roy, A., & Sridharan, R. (1968). Higher derivations and central simple algebras. Nagoya Math. J., 32, 21–30.
- [15] Xu, S., & Xiao, Z. (2014). Jordan higher derivation revisited. Gulf J. Math., 2(1), 11–21.

Sayed Khalil Ekrami

Orcid number: 0000-0002-6233-5741

Department of Mathematics

PAYAME NOOR UNIVERSITY, P.O. Box 19395-3697

Tehran, Iran.

 $Email \ address: \verb"ekrami@pnu.ac.ir", \verb"khalil.ekrami@gmail.com" \\$