

STRUCTURE OF FINITE GROUPS WITH SOME WEAKLY S-SEMIPERMUTABLE SUBGROUPS

H. JAFARIAN DEHKORDY ⁶ ^K, G.R. REZAEEZADEH⁶, AND M. BIBAK⁶

Article type: Research Article

(Received: 19 February 2023, Received in revised form 27 June 2023) (Accepted: 17 October 2023, Published Online: 20 October 2023)

ABSTRACT. Let G be a finite group. If $A \leq G$, recall that A is weakly S-semipermutable in G provided there is $K \trianglelefteq G$ such that KA is Spermutable in G, and $K \cap A$ is S-semipermutable in G. The purpose of this paper is to demonstrate that weakly S-semipermutability of special types of subgroups in a finite group G can help us to determine structural properties of G. For example, given a prime p, a p-soluble finite group G and a Sylow p-subgroup G_p of G, we will show that G is p-supersoluble if the maximal subgroups of G_p are weakly S-semipermutability to prove new criteria for p-nilpotency of finite groups.

Keywords: *p*-nilpotent, *p*-supersoluble, Weakly *S*-semipermutable. 2020 MSC: Primary 20F18, 20D15, 20F16, 20D20, 20D10.

1. Introduction

Throughout this paper, all groups are finite. An active research area in finite group theory is the study of subgroup embedding properties. A problem of particular interest is to study the structure of a group G under the assumption that some given subgroups of G satisfy a given embedding property. The symbol $\pi(n)$ denotes the set of all primes dividing the positive integer n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G and G_p denotes a Sylow p-subgroup of G when $p \in \pi(G)$. Let G be a group and $A \leq G$. Recall that A is permutable (π -quasi-normal or S-permutable) in G if AK = KA for all subgroups (Sylow subgroups) K of G. These concepts generalize the concept of a normal subgroup and were introduced by Ore [12] in 1939 (Kegel [6] in 1962); furthermore, they were investigated by many other authors. If K is a permutable (π -quasi-normal or S-permutable) subgroup of G, then K is a subnormal subgroup of G, by Ore [12] (Kegel [6]). For all permutable subgroups L of G, $L^G/L_G \subseteq Z_\infty(G/L_G)$ where $Z_\infty(G)$ is the hypercenter of G and L^G is the intersection of all normal subgroups N of G such that $L \leq N$, Maier and Schmid [10]. We consider \mathfrak{U} to be the class of supersoluble groups. Recall that the \mathfrak{U} -hypercenter of a group G, denoted by

DOI: 10.22103/jmmr.2023.20941.1395 Publisher: Shahid Bahonar University of Kerman

How to cite: H. Jafarian Dehkordy, G.R. Rezaeezadeh, and M. Bibak, *Structure of finite groups with some weakly S-semipermutable subgroups*, J. Mahani Math. Res. 2024; 13(1): 457 - 466.

[⊠] h.jafarian.d@pnu.ac.ir, ORCID: 0000-0003-0282-9536

 $Z_{\mathfrak{U}}(G)$, is the product of all normal subgroups K of G such that all chief factors of G below K have prime order.

Let G be a group and $A \leq G$. Recall that A is S-semipermutable in G if for any $G_p \in Syl_p(G)$, where (|A|, p) = 1, we have $AG_p = G_pA$. It is clear that if $A \leq G$ is S-permutable in G, then A is S-semipermutable in G, but in general, the converse is not true. For example, let A be a Sylow 2-subgroup of S_3 , the symmetric group of degree 3. Then A is S-semipermutable in S_3 , but it is not S-permutable in S_3 .

In [5], a new subgroup embedding property generalizing S-semipermutability was introduced, namely the concept of ν -permutability. We will recall the definition of this notion in Section 2. The purpose of this paper is to show that the ν -permutability of some subgroups of Sylow subgroups of a group G can help us to prove the p-supersolubility or p-nilpotency of G.

We mention that many other generalizations of S-semipermutability appear in the literature. For example, S.E. Mirdamadi and G.R. Rezaeezadeh [11] introduced the concept of SS-semipermutability, which not only generalizes S-semipermutability, but also SS-quasinormality.

2. Preliminaries

G.R. Rezaeezadeh and H. Jafarian Dehkordy [5] define the weakly S-semipermutable (ν -permutable) subgroups.

Definition 2.1. Let G be a group and $A \leq G$. Then A is said to be *weakly* S-semipermutable (ν -permutable) in G provided there is $K \leq G$ such that KA is S-permutable in G and $K \cap A$ is S-semipermutable in G.

It is clear that if $K \leq G$ is S-semipermutable in G, then K is ν -permutable in G. However, the converse is not true. For instance, let K denote the subgroup $\langle (12) \rangle$ of S_4 , the symmetric group of degree 4. Then K is easily seen to be ν -permutable in S_4 , but K is not S-semipermutable in S_4 .

Lemma 2.2. [9, Lemma 2.1 (6)] Let G be a group, $p \in \pi(G)$ be a prime and A be a p-subgroup of G. Then A is S-permutable in G if and only if $O^{p}(G)$ normalizes A.

Lemma 2.3. [9, Lemma 2.2 (3)] Let G be a group and $p \in \pi(G)$ be a prime and $A \leq O_p(G)$. If A is S-semipermutable in G, then A is S-permutable in G.

Lemma 2.4. [3, Chapter III, Satz 5.2] Let G be a minimal non-nilpotent group. Then the following hold:

- (1) For some $p \in \pi(G)$, there exists $G_p \in Syl_p(G)$ such that $G_p \leq G$ and $G = G_pQ$, where Q is a cyclic non-normal Sylow q-subgroup of G for some prime $q \neq p$.
- (2) If p > 2, then G_p has exponent p. If p = 2, then G_p has exponent 2 or 4.
- (3) If G_p is abelian, then G_p is elementary abelian.

Structure of finite groups with some weakly ... – JMMR Vol. 13, No. 1 (2024)

(4) $\Phi(G_p) \leq Z(G)$.

(5)
$$G_p/\Phi(G_p)$$
 is a chief factor of G.

Lemma 2.5. [13, Lemma 2.2] Let G be a group and $p \in \pi(G)$ a prime with (|G|, p-1) = 1. Then the subsequent statements stand:

- (1) If $N \leq G$ and |N| = p, then $N \leq Z(G)$.
- (2) If G has a Sylow p-subgroup such that it is cyclic, then G is p-nilpotent.
- (3) If $M \leq G$ such that |G:M| = p, then $M \leq G$.

Lemma 2.6. [5, Lemma 2.7] Let G be a group, A be a ν -permutable subgroup of G, $N \leq G$ and $L \leq G$. Then the following hold:

- (1) If $A \leq L \leq G$, then A is ν -permutable in L.
- (2) If (|A|, |N|) = 1, then AN/N is ν -permutable in G/N.
- (3) If for some prime $p \in \pi(G)$, A is a p-subgroup of G, then AN/N is ν -permutable in G/N.

Lemma 2.7. [5, Lemma 2.8] Let $N \leq G$ be a minimal normal and elementary abelian subgroup. Then N has no nontrivial proper subgroup K such that any subgroup of N with order |K| is ν -permutable in G.

Lemma 2.8. [2, Theorem 1.8.17] Let G be a group with $\Phi(G) = 1$. Then F(G) is the direct product of all abelian minimal normal subgroups of G, where $\Phi(G)$ denotes the Frattini subgroup of G and F(G) denotes the Fitting subgroup of G.

Lemma 2.9. [1, Chapter 1, Theorem 7.19] If $K \leq G$, then $K \leq Z_{\mathfrak{U}}(G)$ if and only if $K/\Phi(K) \leq Z_{\mathfrak{U}}(G/\Phi(K))$

Lemma 2.10. [8, Lemma 2.4] Let p be a prime and G a group with (|G|, p-1) = 1. Suppose that G_p is a Sylow p-subgroup of G such that every maximal subgroup of G_p has a p-nilpotent supplement in G, then G is p-nilpotent.

Theorem 2.11. [5, Theorem 3.2] Let G be a group, $p \in \pi(G)$ with (|G|, p - 1) = 1 and G_p is a Sylow p-subgroup of G. If every maximal subgroup of G_p is ν -permutable in G, then G is p-nilpotent.

Theorem 2.12. [5, Theorem 3.3] Let G be a group, $p \in \pi(G)$ with (|G|, p - 1) = 1 and G_p be a Sylow p-subgroup of G. If every cyclic subgroup of G_p with order p or 4 (if G_p is a nonabelian 2-group) has a p-nilpotent supplement in G or is ν -permutable in G, then G is p-nilpotent.

3. Main Results

Theorem 3.1. Let G be a p-soluble group and $G_p \in Syl_p(G)$ where $p \in \pi(G)$. If each of the maximal subgroups of G_p is ν -permutable in G, then G is p-supersoluble.

Proof. Assume that the theorem is false and consider a counterexample G with minimal order.

459

Step 1. $O_{p'}(G) = 1$.

460

Assume that $O_{p'}(G) \neq 1$, then $G/O_{p'}(G)$ is *p*-supersoluble by Lemma 2.6 (2) and the choice of G, so G is *p*-supersoluble. That is a contradiction.

Step 2. $N := O_p(G)$ is the unique minimal normal subgroup of G, and we have $\Phi(G) = 1$.

Let N be a minimal normal subgroup of G, then N is an abelian p-subgroup of G by Step 1. Hence $N \leq O_p(G) \leq G_p$. If $N = G_p$, then G/N is obviously p-supersoluble. If $N < G_p$, then G/N is p-supersoluble by Lemma 2.6 (3) and the choice of G. Since the class of all p-supersoluble groups is a saturated formation, it follows that N is the unique minimal normal subgroup of G and that $\Phi(G) = 1$. Lemma 2.8 shows that $O_p(G) = N$, and so $O_p(G)$ is the unique minimal normal subgroup of G.

Step 3. Final contradiction.

There is a maximal subgroup D of G such that G = ND, $N \cap D = 1$ by Step 2. Set $D_p := G_p \cap D$. Then $G_p = ND_p$. We have $D_p < G_p$ because otherwise $N \leq G_p = D_p \leq D$, which is contrary to the choice of D. Assume that G_p^* is a maximal subgroup of G_p with $D_p \leq G_p^*$. By hypothesis, G_p^* is ν -permutable in G. Hence, there is a normal subgroup K of G such that KG_p^* is S-permutable in G and such that $K \cap G_p^*$ is S-semipermutable in G. If K = 1, then G_p^* is S-permutable in G, and Lemma 2.2 implies that $G_p^* = N$, whence $G_p = ND_p = G_p^*$, a contradiction. So $K \neq 1$, and Step 2 implies that $N \leq K$. Then $N \cap G_p^* = N \cap (K \cap G_p^*)$ is easily seen to be S-semipermutable in G since N and $K \cap G_p^*$ are S-semipermutable in G. Lemma 2.3 implies that $N \cap G_p^*$ is S-permutable in G. Since $G_p \leq N_G(N \cap G_p^*)$, Lemma 2.2 now implies that $N \cap G_p^* \leq G$. Then $N \cap G_p^* = 1$ or $N \cap G_p^* = N$. If $N \cap G_p^* = N$, then $N \leq G_p^*$ and $G_p = ND_p = G_p^*$. That is a contradiction. If $N \cap G_p^* = 1$, then $G_p = ND_p = NG_p^*$. Since $|G_p| = |N| |G_p^*| / |N \cap G_p^*| = |N| |G_p^*|$, we have $|N| = |G_p| / |G_p^*| = p$, and since G/N is p-supersoluble by the argumentation in Step 2, it follows that G is p-supersoluble. This contradiction completes the proof. \square

Theorem 3.2. Let G be a group and $p \in \pi(G)$ with (|G|, p-1) = 1. Let G_p be a Sylow p-subgroup of G. Suppose that any maximal subgroup of G_p , that does not have a p-nilpotent supplement in G, is ν -permutable in G. Then G is p-nilpotent.

Proof. Assume that the theorem is false, and consider a counterexample with minimal order.

Step 1. G has a unique minimal normal subgroup N, G/N is p-nilpotent, and we have $\Phi(G) = 1$.

Let N be a minimal normal subgroup of G. We show that G/N is p-nilpotent. Of course, this is the case when |G/N| is not divisible by p. Therefore, we assume now that |G/N| is divisible by p. Then G/N is a group with $p \in \pi(G/N)$

461

and (|G/N|, p-1) = 1. Also, $G_p N/N$ is a Sylow *p*-subgroup of G/N. Considering the canonical group isomorphism $G_p/(G_p \cap N) \longrightarrow G_p N/N$, we see that any maximal subgroup of $G_p N/N$ is the image of some maximal subgroup of G_p . So, by hypothesis and Lemma 2.6 (3), any maximal subgroup of $G_p N/N$ is ν -permutable in G/N or has a *p*-nilpotent supplement in G/N. Consequently, the group G/N satisfies the hypotheses of the theorem and the minimality of G implies that G/N is *p*-nilpotent.

Since the class of *p*-nilpotent groups is a saturated formation, it follows that N is the only minimal normal subgroup of G and that $\Phi(G) = 1$.

Step 2. $O_{p'}(G) = 1.$

Assume that $O_{p'}(G) \neq 1$. Then it follows from Step 1 that $G/O_{p'}(G)$ is *p*-nilpotent. Thus G is *p*-nilpotent. That is a contradiction, and so we have $O_{p'}(G) = 1$.

Step 3. $O_p(G) = 1$.

Assume that $O_p(G) \neq 1$. Then $N \leq O_p(G)$. Since $\Phi(G) = 1$ by Step 1, there is a maximal subgroup M of G with $N \nleq M$. Then G = NM. We have $N \cap M \trianglelefteq M$. Since $N \leq O_p(G)$ is minimal normal in G, we have that Nis abelian, and so we have $N \cap M \trianglelefteq N$. It follows that $N \cap M \trianglelefteq G$. Since N is minimal normal in G and $N \nleq M$, it follows that $N \cap M = 1$. Hence, $M \cong M/(N \cap M) \cong MN/N = G/N$, and so we see from Step 1 that M is p-nilpotent.

Now, let G_p^* be a maximal subgroup of G_p which is ν -permutable in G. We claim that G_p^* has a p-nilpotent supplement in G. We have $G_p^* \neq 1$ because otherwise G_p would have order p, and Burnside's p-nilpotency criterion would imply that G is p-nilpotent. Since G_p^* is ν -permutable in G, there is a normal subgroup K of G such that KG_p^* is S-permutable in G and such that $K \cap G_p^*$ is S-semipermutable in G. If K = 1, then G_p^* is S-permutable in G, and Lemma 2.2 shows that $G_p^* \neq 1$ is in fact normal in G. Then $N \leq G_p^*$ and hence $G = NM = G_p^*M$, so that M is a p-nilpotent supplement of G_p^* in G. If $K \neq 1$, then $N \leq K$ by Step 1, and we have $N \cap G_p^* = N \cap (K \cap G_p^*)$. Since N and $K \cap G_p^*$ are S-semipermutable in G. Then it follows from Lemma 2.3 that $N \cap G_p^*$ is S-permutable in G, and since $N \cap G_p^*$ is normal in G_p , it follows from Lemma 2.2 that $N \cap G_p^*$ is normal in G. The minimal normality of N in G implies that $N \cap G_p^* = 1$ or $N \cap G_p^* = N$. If $N \cap G_p^* = 1$, then |N| = p, and since G/N is p-nilpotent by Step 1, it follows that G is p-nilpotent, a contradiction. Thus $N \cap G_p^* = N$ and hence $N \leq G_p^*$. So we have $G = NM = G_p^*M$, so that M is a p-nilpotent supplement of G_p^* in G.

By the preceding paragraph and by hypothesis, any maximal subgroup of G_p has a *p*-nilpotent supplement in *G*. Lemma 2.10 implies that *G* is *p*-nilpotent. This contradiction shows that $O_p(G) = 1$.

Step 4. N is not solvable.

By Steps 2 and 3, we have $O_{p'}(N) \leq O_{p'}(G) = 1$ and $O_p(N) \leq O_p(G) = 1$.

Therefore, a minimal normal subgroup of N can neither be a p'-group nor a p-group. Thus, N cannot be p-solvable. In particular, N cannot be solvable. Step 5. Final contradiction.

Because of Lemma 2.10, there is a maximal subgroup of G_p which does not have a *p*-nilpotent supplement in G, say G_p^* . By hypothesis, G_p^* is ν -permutable in G. Hence, there is a normal subgroup K of G such that KG_p^* is S-permutable in G and such that $K \cap G_p^*$ is S-semipermutable in G.

Assume that $K \cap G_p^* \neq 1$. Then $(K \cap G_p^*)^G$, the normal closure of $K \cap G_p^*$ in G, is nontrivial, whence $N \leq (K \cap G_p^*)^G$. Since $(K \cap G_p^*)^G$ is solvable by [4, Theorem A], it follows that N is solvable. This contradicts Step 4. Therefore, we have $K \cap G_p^* = 1$.

Since G_p^* is maximal in G_p , it follows that $K \cap G_p$ has order at most p. Since $K \cap G_p$ is a Sylow p-subgroup of K, it follows from Burnside's p-nilpotency criterion that K is p-nilpotent. As $O_{p'}(K) \leq O_{p'}(G) = 1$ by Step 2, it then follows that K is a p-group. Thus $K \leq O_p(G) = 1$ by Step 3.

Consequently, $G_p^* = KG_p^*$ is S-permutable in G, and Lemma 2.2 shows that G_p^* is in fact normal in G. It follows that $G_p^* = 1$ because otherwise $N \leq G_p^*$, so that N would be solvable, which is not true by Step 4. As $G_p^* = 1$, we have that G_p has order p. Now, Burnside's p-nilpotency contradiction implies that G is p-nilpotent. This contradiction completes the proof. \Box

Theorem 3.3. Let G be a group, $L \leq G$, and $L_p \in Syl_p(L)$, where $p \in \pi(L)$ with (|L|, p - 1) = 1. Assume that each of the maximal subgroups of L_p , that has no p-supersoluble supplement in G, is ν -permutable in G. Then all chief factors of G between L and $O_{p'}(L)$ are cyclic.

Proof. Assume that the theorem is false and consider a counterexample (G, L) for which |G| |L| is minimal.

Step 1. L is p-nilpotent.

By hypothesis, any maximal subgroup of L_p is ν -permutable in G or has a p-supersoluble supplement in G. Using Lemma 2.6 (1), we conclude that any maximal subgroup of L_p is ν -permutable in L or has a p-supersoluble supplement in L. Since (|L|, p - 1) = 1, any p-supersoluble supplement of a maximal subgroup of L_p is p-nilpotent. So Theorem 3.2 implies that L is p-nilpotent.

Step 2. $L_p = L$.

 $O_{p'}(L) \in Hall_{p'}(L)$ by Step 1. Let $O_{p'}(L) \neq 1$, then all chief factors of $G/O_{p'}(L)$ between $L/O_{p'}(L)$ and $O_{p'}(L)/O_{p'}(L)$ are cyclic by Lemma 2.6 (2), and the choice of (G, L). So all chief factors of G between L and $O_{p'}(L)$ are cyclic. That is a contradiction.

Step 3. $\Phi(L_p) = 1$.

Let $\Phi(L_p) \neq 1$, then all chief factors of $G/\Phi(L_p)$ below $L/\Phi(L_p)$ are cyclic by Lemma 2.6 (3) and the choice of (G, L). So all chief factors of G below L are cyclic by Lemma 2.9. That is a contradiction. Step 4. All of the maximal subgroups of L_p are ν -permutable in G.

Let M be a maximal subgroup of L_p and B be p-supersoluble supplement of M in G, then $G = MB = L_pB$ and $L_p \cap B \neq 1$. Since $L_p \cap B \triangleleft B$, there exists a minimal normal subgroup N of B with $N \leq L_p \cap B$. It is clear that |N| = p. Since L_p is an elementary abelian subgroup and $G = L_pB$, we have that $N \triangleleft G$. So all chief factors of G/N below L_p/N are cyclic by Lemma 2.6 (3) and by the choice of (G, L), then all chief factors of G below L_p are cyclic. That is a contradiction.

Step 5. L_p is not a minimal normal subgroup of G.

Suppose that L_p is a minimal normal subgroup of G. Since all maximal subgroups of L_p are ν -permutable in G by Step 4, we obtain a contradiction to Lemma 2.7.

Step 6. Let N be a minimal normal subgroup of G with $N \leq L_p$. Then $L_p/N \leq Z_{\mathfrak{U}}(G/N)$. Moreover, N is the only minimal normal subgroup of G contained in L_p , and we have |N| > p.

The hypothesis is still true for $(G/N, L_p/N)$ by Lemma 2.6 (3), so all chief factors of G/N below L_p/N are cyclic by the choice of (G, L). Hence $L_p/N \leq Z_{\mathfrak{U}}(G/N)$. If |N| = p, then all chief factors of G below L_p are cyclic. That is a contradiction. If N_1 is another minimal normal subgroups of G contained in L_p , then $N_1N/N_1 \leq L_p/N_1$, then |N| = p by G-isomorphism $N_1N/N_1 \cong N$. That is a contradiction.

Step 7. Final contradiction.

Let N be a minimal normal subgroup of G with $N \leq L_p$. Since L_p is elementary abelian by Step 3, N has a complement in L_p , say S. Now, let R be a maximal subgroup of N which is normal in some Sylow p-subgroup of G. Set A := RS. Then A is maximal in L_p . Hence, A is ν -permutable in G, and so there is a normal subgroup K of G such that KA is S-permutable in G and such that $K \cap A$ is S-semipermutable in G. Assume that $K \cap L_p = 1$. Then $A = KA \cap L_p$ is S-permutable in G, which implies that $R = N \cap A$ is S-permutable in G. Since R is normal in a Sylow p-subgroup of G, it follows from Lemma 2.2 that R is normal in G. So we have |N| = p, which is a contradiction. Therefore, $1 \neq K \cap L_p \leq G$. The previous step shows that $N \leq K \cap L_p$. Then $R = N \cap A = N \cap (K \cap A)$ is S-permutable in G, and since R is normal in a Sylow p-subgroup of G, it follows that R is normal in G. Thus |N| = p, which is a contradiction in completing the proof.

Theorem 3.4. Let G be a group and $L \leq G$. Assume that, for each $p \in \pi(L)$ and each non-cyclic Sylow p-subgroup L_p of L, any maximal subgroup of L_p is ν -permutable in G or has a p-supersoluble supplement in G. Then all chief factors of G below L are cyclic.

Proof. Assume that the theorem is false and consider a counterexample (G, L) for which |G| |L| is minimal. Let q be the smallest prime divisor of |L|, then L is q-nilpotent by Lemma 2.6 (1), and Theorem 3.2. Assume that $L_{q'} \in Hall_{q'}(L)$. If $L_{q'} = 1$, then all chief factors below L are cyclic by Theorem 3.3. That is

a contradiction. So we can assume that $L_{q'} \neq 1$, and we have $L_{q'} \triangleleft G$. So all chief factors of $G/L_{q'}$ below $L/L_{q'}$ are cyclic. On the other hand, all chief factors of G below $L_{q'}$ are cyclic by the choice of (G, L). Therefore it follows that all chief factors of G below L are cyclic. That is a contradiction.

Theorem 3.5. Let G be a group, $L \leq G$ such that G/L is p-supersoluble, where $p \in \pi(L)$ with (|L|, p-1) = 1, and $L_p \in Syl_p(L)$. If each of the maximal subgroups of L_p is ν -permutable in G, then G is p-supersoluble.

Proof. By Theorem 3.3, every chief factor between L and $O_{p'}(L)$ is cyclic. In particular, every chief factor between L and $O_{p'}(L)$ has order p or p'-order. Of course, any chief factor of G below $O_{p'}(L)$ has p'-order. Since G/L is p-supersoluble by hypothesis, we also have that any chief factor between G and L has order p or p'-order. Consequently, any chief factor of G has order p or p'-order. So G is p-supersoluble.

Theorem 3.6. Let G be a group, p be the smallest prime dividing the order of G, and $G_p \in Syl_p(G)$. If there exists a subgroup D of G_p with $1 < |D| < |G_p|$ such that all subgroups K of G_p with |K| = |D| or |K| = 2 |D| (If G_p is a non-abelian 2-group) is ν -permutable in G, then G is p-nilpotent.

Proof. We closely follow the proof of Theorem 3.2 in [7]. Assume that the theorem is false and consider a counterexample G with minimal order.

Step 1. $O_{p'}(G) = 1.$

If $O_{p'}(G) \neq 1$, then $G/O_{p'}(G)$ is *p*-nilpotent by Lemma 2.6 (2) and the choice of *G*. Then *G* is *p*-nilpotent. That is a contradiction.

Step 2. |D| > p

Assume that |D| = p. Since G is not p-nilpotent, there is a minimal non-pnilpotent subgroup G_1 of G. By Satz 5.4 in Chapter IV of [3], G_1 is minimal non-nilpotent. Then $G_1 = P_1 \rtimes Q$, where $P_1 \in Syl_p(G_1)$ and $Q \in Syl_q(G_1)$ for $q \neq p$ by Lemma 2.4. Let $x \in P_1 \setminus \Phi(P_1)$ and $E = \langle x \rangle$. Then |E| = p or |E| = 4 by Lemma 2.4, where |E| = 4 is only possible when P_1 is a non-abelian 2-group. Hence E is ν -permutable in G, thus in G_1 by Lemma 2.6 (1). Since $x \in P_1 \setminus \Phi(P_1)$ was arbitrarily chosen, we have that $\langle x \rangle$ is ν -permutable in G_1 for every $x \in P_1 \setminus \Phi(P_1)$. Since $\Phi(P_1) \leq Z(G_1)$, we also have that $\langle x \rangle$ is ν -permutable in G_1 for any $x \in \Phi(P_1)$. Then G_1 is p-nilpotent by Theorem 2.12. This contradiction shows that |D| > p.

Step 3. $|G_p:D| > p$.

According to the previous content and Theorem 2.11, it is easy to see.

Step 4. If N is a minimal normal subgroup of G with $N \leq G_p$, then $|N| \leq |D|$.

Assume that |N| > |D|. Since N is minimal normal in G and a p-group, we have N is an elementary abelian. By hypothesis, every subgroup of N with order |D| is ν -permutable in G. This is a contradiction to Lemma 2.7.

Step 5. Suppose that N is a minimal normal subgroup of G with $N \leq G_p$, then G/N is p-nilpotent.

If |N| < |D|, then G/N is p-nilpotent by Lemma 2.6 (3) and the choice of G. So |N| = |D| by Step 4. Let $N \le K \le G_p$ and |K/N| = p. Since N is not cyclic by Step 2, every subgroup containing N is not cyclic. Hence there is a maximal subgroup $L \ne N$ of K such that K = NL. Of course |N| = |D| = |L|, thus L is ν -permutable in G. Then K/N = LN/N is ν -permutable in G/N by Lemma 2.6 (3). If p = 2 and G_p/N is non-abelian, assume that X/N is a cyclic subgroup of G_p/N with |X/N| = 4. Since X is not cyclic and X/N is cyclic, there exists a maximal subgroup L of X such that N is not contained in L. Thus X = LN and |L| = 2|D|, hence L is ν -permutable in G and X/N = LN/N is ν -permutable in G/N. Then G/N is p-nilpotent by Theorem 2.12.

Step 6. $O_p(G) = 1$.

Assume that $O_p(G) \neq 1$. Let N be a minimal normal subgroup of G with $N \leq O_p(G)$, thus G/N is p-nilpotent by Step 5. Since the class of p-nilpotent groups is a formation, we see from the previous step that N is the only minimal normal subgroup of G contained in $O_p(G)$. Since $O_{p'}(G) = 1$, we have $\Phi(G) \leq O_p(G)$. Now, if $\Phi(G) \neq 1$, then it follows that $N \leq \Phi(G)$, whence $G/\Phi(G)$ and hence G is p-nilpotent. This contradiction shows that $\Phi(G) = 1$. Hence G has a maximal subgroup M such that $M \cap N = 1$ and G = MN. In particular, $M \cong G/N$ is p-nilpotent. Then $M = M_pM_{p'} = (M \cap G_p)M_{p'}$, where $M_{p'}$ is the normal p-complement of M. Let S be a maximal subgroup of $M_p = G_p \cap M$. Thus $NSM_{p'}$ is p-nilpotent by Step 3 and the choice of G, so G is p-nilpotent. That is a contradiction.

Step 7. Every minimal normal subgroup of G is not p-nilpotent.

Let *L* be a minimal normal subgroup of *G* such that *L* is *p*-nilpotent. Then $L_{p'} \leq O_{p'}(G) = 1$, thus *L* is a *p*-subgroup and therefore $L \leq O_p(G) = 1$ by Step 6. That is a contradiction.

Step 8. G is non-abelian simple group.

Assume that G is not a simple group, thus, there is non-trivial normal subgroup L of G. If $|L_p| > |D|$, then L is p-nilpotent by the choice of G. That is a contradiction to Step 7. If $|L_p| \le |D|$, then there is $P^* \le G_p$ such that $G_p \cap L \le P^*$ and $|P^*| = p |D|$, hence $P^* \in Syl_p(P^*L)$. All maximal subgroups of P^* are ν -permutable in P^*L by Lemma 2.6 (1), then P^*L is p-nilpotent by Theorem 2.11, and therefore L is p-nilpotent. That is a contradiction to Step 7.

Step 9. Final contradiction.

Let H be a subgroup of G_p with order |D|. By hypothesis, H is ν -permutable in G. We show that H is S-semipermutable in G. Since H is ν -permutable in G, there is a normal subgroup T of G such that TH is S-permutable in G and such that $T \cap H$ is S-semipermutable in G. Since G is simple, we have T = 1 or T = G. If T = 1, then H = TH is S-permutable and hence S-semipermutable in G, as wanted. Also, if T = G, then $H = H \cap T$ is S-semipermutable in G. Now, let Q be a Sylow q-subgroup of G for some $q \in \pi(G)$ with $q \neq p$. Then HQ is a subgroup of G since H is S-semipermutable in G. We have $G \neq HQ$ since G is non-abelian simple. Also, since H is S-semipermutable in G, we have $HQ^g = Q^g H$ for all $g \in G$. Applying Hilfssatz 4.10 of Chapter VI of [3], we conclude that H or Q is contained in a proper normal subgroup of G. This is a contradiction since G is simple, completing the proof.

References

- [1] H. G. Bray, M. Weinstein, *Between nilpotent and solvable*, Polygonal Publishing House, 1982.
- [2] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, New York, 2000.
- [3] B. Huppert, Endliche Gruppen I, Springer, Berlin, New York, 1967.
- [4] Isaacs, I. M. (2014). Semipermutable π-subgroups. Arch. Math, 102, 1-5. https://doi.org/10.1007/s00013-013-0604-2
- Jafarian Dehkordy, H., & Rezaeezadeh, G. R. (2023). Weakly S-semipermutable subgroups and p-nilpotency of Groups, Rend. Sem. Mat. Univ. Padova, 150, 137–148. https://doi.org/10.4171/RSMUP/112
- [6] Kegel, O. H. (1962). Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z, 78, 205-221. https://doi.org/10.1007/BF01195169
- [7] Kong, Q., & Guo, X. (2018). On weakly s-semipermutable or ss-quasinormal subgroups of finite groups, Ricerche mat, 68, 571-579. https://doi.org/10.1007/S11587-018-0427-3
- [8] Li, C., & Yi, X. (2013). Finite groups with some *F*-supplemented subgroups II, Arab. J. Math. 2, 51-56. https://doi.org/10.1007/s40065-012-0036-z
- [9] Li, Y., Qiao, S., Su, N., & Wang, t Y. (2012). On Weakly S-semipermutable subgroups of finite group, J. Algebra, 371, 250-261. https://doi.org/10.1016/j.jalgebra.2012.06.025
- [10] Maier, R., & Schmid, P. (1973). The embedding of quasinormal subgroups in finite groups, Math. Z, 131, 269-272. https://doi.org/10.1007/BF01187244
- [11] Mirdamadi, S. E., & Rezaeezadeh, G. R. (2016). On finite groups in which SSsemi-permutability is a transitive relation, Journal of Algebraic Systems, 4(1), 29-36. https://doi.org/10.22044/jas.2016.726
- [12] Ore, O. (1939). Contributions to the theory of groups of finite order, Duke Math. J, 5(2), 431-460. https://doi.org/10.1215/S0012-7094-39-00537-5
- [13] Wei, H., & Wang, Y. (2007). The c-supplemented property of finite groups, Proc. Edinb. Math, 50(2), 493-508. https://doi.org/10.1017/S0013091504001385

HASSAN JAFARIAN DEHKORDY ORCID NUMBER: 0000-0003-0282-9536 DEPARTMENT OF MATHEMATICS PAYME NOOR UNIVERSITY, P.O.BOX 19395-4697 TEHRAN, IRAN Email address: h.jafarian.d@pnu.ac.ir

GHOLAMREZA REZAEEZADEH ORCID NUMBER: 0000-0002-0442-7269 FACULTY OF MATHEMATICAL SCIENCES SHAHREKORD UNIVERSITY SHAHREKORD, IRAN *Email address*: rezaeezadeh@sci.sku.ac.ir

Masoumeh Bibak

Orcid Number: 0000-0002-9479-7596 Department of Mathematics

PAYME NOOR UNIVERSITY, P.O.Box 19395-4697

Tehran, Iran

Email address: m.bibak620gmail.com