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Abstract. Feature selection is one of the most important tasks in ma-
chine learning. Traditional feature selection methods are inadequate for
reducing the dimensionality of online data streams because they assume
that the feature space is fixed and every time a feature is added, the
algorithm must be executed from the beginning, which in addition to
not performing real-time processing, causes many unnecessary calcula-
tions and resource consumption. In many real-world applications such
as weather forecasting, stock markets, clinical research, natural disasters,
and vital-sign monitoring, the feature space changes dynamically, and
feature streams are added to the data over time. Existing online stream-
ing feature selection (OSFS) methods suffer from problems such as high
computational complexity, long processing time, sensitivity to parame-
ters, and failure to account for redundancy between features. In this
paper, the process of OSFS is modeled as a multi-objective optimization
problem for the first time. When a feature stream arrives, it is eval-
uated in the multi-objective space using fuzzy Pareto dominance, where
three feature selection methods are considered as our objectives. Features
are ranked according to their degree of dominance in the multi-objective
space over other features. We proposed an effective method to select a
minimum subset of features in a short time. Experiments were conducted
using two classifiers and eight OSFS algorithms with real-world datasets.
The results show that the proposed method selects a minimal subset of
features in a reasonable time for all datasets.

Keywords: Online streaming feature selection, Fuzzy Pareto Dominance,
High-Dimensional data, Multi-objective Optimization.
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1. Introduction
Feature selection is one of the most influential and well-known preprocess-

ing techniques to minimize the effects of the curse of dimensionality on high-
dimensional data. The curse of dimensionality causes overfitting of algorithms,
decreases the Accuracy of learning algorithms, and increases learning time and
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computational complexity. Feature selection can reduce the above effects by
removing irrelevant and redundant features from the data. Reducing feature di-
mensionality leads to better model interpretability, higher prediction accuracy,
and reduced computational time [3], [4], [5], [9], [32], [34].

In recent decades, feature selection has been one of the most exciting topics
for machine learning researchers, leading to the presentation of numerous fea-
ture selection methods in various applications [1], [11], [12], [13], [22]. In most
feature selection methods, all the features are assumed to be initially available,
which is unrealistic in many real-world applications [6], [25], [39].

Features can be dynamically expanded for specific observational purposes
in environmental monitoring as new sensors are deployed. Another example is
that relevant keywords are continuously generated and rapidly propagated by
certain types when a popular event occurs in social networks. The dimensions
of the dynamic feature space are very large or even infinite. Therefore, it is
costly and time-consuming to wait for all features. On the other hand, due to
the increasing data size and dimensions in some large datasets, it is impossible
to load the entire data into memory. Therefore, for large data sets, it is better
to process the data as rows (samples) or columns (features) [16], [30], [31], [38].

Online feature selection algorithms are provided to find the optimal subset
of features in cases where traditional feature selection algorithms are not appli-
cable. These algorithms evaluate features based on data streams with different
time stamps and update the subset of features with each new incoming data
stream. Therefore, the optimal subset of features is always available. In online
feature selection methods where features are delivered in streams, the number
of training samples is assumed to be constant, and features are added to the
data one at a time. This task is called OSFS [6], [14], [34].

Scalability, computational cost, and parameter sensitivity are the three main
challenges in OSFS methods. Scalability means that the performance of the
feature selection algorithm does not decrease as the data dimensions increase.
Since Big Data in real-world applications is mostly generated in streaming
form, it is important to provide OSFS methods so that the number of selected
features does not increase significantly when the number of input features is
increased [34].

On the other hand, it is necessary to provide techniques with low computa-
tional complexity and high speed to make online decisions. Moreover, in many
OSFS methods presented so far, some parameters affect the performance of the
algorithm. Most of these parameters must first be fixed. In a dynamic feature
space and in a situation where we do not know the future feature streams, the
selected parameter value may decrease the performance of the algorithm.

Therefore, we must present effective methods for the OSFS problem that bal-
ance classification accuracy, number of selected features, and execution time.
Moreover, the parameters of the algorithm should be updated with the incom-
ing features, or an algorithm without parameters should be provided [34].
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Multi-objective optimization is an approach that researchers have become
interested in for machine learning applications. This approach is used when
the best solution is sought based on multiple objectives [8], [9], [10]. Feature
selection is also one of the machine learning applications where multi-objective
optimization is applied and yields promising results. The concept of Pareto
dominance is one of the practical approaches to solve multi-objective problems.
In this approach, different alternatives are placed in a multi-objective space,
and the best solution is selected based on the Pareto dominance concept [20].
If we intend to evaluate the alternatives based on the degree of dominance in
the multi-objective space, a fuzzy version of the Pareto dominance concept can
also be used. In this fuzzy version, we can determine the degree of dominance
of each alternative over the other alternatives [19].

In this paper, we propose a new online streaming feature selection method
based on the concept of fuzzy Pareto dominance called OFS-FPS (Online Fea-
ture Selection using Fuzzy Pareto Dominance). This method uses a filtering
strategy and is proposed for single-stream features. In this method, the cor-
relation of each new feature with the class label is first calculated to filter out
the irrelevant features. The relevant features are added to the feature set. The
feature set is updated when it reaches a limit to select a minimum number of
features. This limit is determined by a non-linear relationship of the number
of feature streams added to the dataset so far. Then, the feature set is updated
using the concept of fuzzy Pareto dominance. A council of relevance-based and
redundancy-based metrics is used for the decision-making process to obtain the
most relevant and least redundant feature set. Features are ranked based on
their degree of dominance in this multi-objective space over other features.

Previously proposed OSFS methods based on single-stream features have
weaknesses, such as low classification accuracy, high computational complex-
ity, high number of selected features, sensitivity to parameter values, different
number of selected features by different orders of samples, and high processing
time. Therefore, this work aims to develop a parameter-free OSFS method that
achieves better classification performance with a minimum subset of features
in a reasonable time.

The main contributions of the proposed method can be discussed as follows:

(1) Most OSFS methods presented so far have used only one criterion to
evaluate the features. We believe that a decision-making council can
do more than just one decision-making indicator. For this reason, we
use multiple objectives for decision-making in OSFS to achieve better
performance.

(2) The ensemble of feature selection metrics for online streaming features
is modeled as a multi-objective optimization problem. The concept of
fuzzy Pareto dominance is used for the first time to solve this optimiza-
tion and rank the features.
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(3) The number of selected features is limited and determined by a non-
linear relationship of the number of feature streams added to the dataset
so far to select a minimal subset of features and ensure the scalability
of the proposed method.

(4) Some proposed online OSFS methods suffer from high computational
costs. Therefore, we have developed a simple and effective method to
process streaming features in a short period of time.

(5) Some proposed online OSFS methods are sensitive to parameter val-
ues that may affect method performance when dealing with unknown
feature streams. We have developed a parameter-free method to deal
with this challenge.

(6) The current OSFS methods select a different number of features by a
different order of training examples. Therefore, we made the number of
features selected dependent on the number of feature streams so that
a fixed number of features are selected at each training sample order.

Based on the experiments, we have shown the superiority of the proposed
algorithm in classification performance using two well-known classifiers. K-
Nearest Neighbor and CART classifiers are used to compare the results of all
the comparison algorithms and the proposed algorithm based on classification
accuracy, F-score, Precision, and Sensitivity. Also, the algorithms are compared
based on the final feature subset and running time.

The structure of this article is as follows: In Section 2, we review some
related work in the literature. Section 3 gives the fundamental concepts. Sec-
tion 4 describes the proposed algorithm in detail, and Section 5 presents the
experimental results. Finally, the article is concluded in Section 6.

2. Related Works
This section discusses some related articles on online streaming feature se-

lection considering single-stream features. OSFSMI [26] is an online feature
selection algorithm that evaluates single feature streams based on the concept
of mutual information. In this algorithm, each time a new feature arrives, the
value of mutual information between that feature and the class label is calcu-
lated. If this value is greater than zero, the feature is temporarily selected.
Features that have passed this step are analyzed in the redundancy phase. The
redundancy of the features is calculated by the interaction gain criterion, which
calculates the overall correlation of each feature with the current feature set
and the class label. For this purpose, the interaction gain is calculated for all
features. If the lowest interaction gain is related to the newest feature, the
algorithm proceeds to the next step and waits until the new feature arrives.
Otherwise, the feature with the lowest value is removed.

Alpha-investing [35] algorithm does not work on the basis of a global model,
but its performance is based on a statistical approach. This algorithm is pro-
posed to evaluate the single-stream features. When a new feature is added
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to the feature space, it computes a P-value that indicates the probability of a
decision to select or reject a feature. The algorithm is proposed to control the
threshold value during the feature selection process by selecting new features
in the model. The threshold value increases as new features are selected so
that more features are selected in the future. Also, the threshold is lowered
when a feature does not meet the threshold. One of the advantages of the
alpha-investing algorithm is its ability to manage a set of features of unknown
size, even to infinity.

OFS-3AM [37] is an online feature selection algorithm that selects the most
relevant features with the least redundancy based on a rough set of adapted
neighbors. This algorithm uses three evaluation indicators to find a subset of
features with the highest dependency. At the same time, a minimum subset of
features is selected by eliminating redundancies from the feature set.

OFS-Density [36] also uses rough set theory to solve the online feature selec-
tion problem based on individual feature streams. The operation of this algo-
rithm is based on determining the number of neighbors during the dependency
calculation by a new density-neighbor relationship, which is automatically per-
formed by the density information of the surrounding samples. With this new
neighborhood relationship, you do not need to specify any parameters in ad-
vance. At the same time, a fuzzy equality constraint is used for redundancy
analysis, which minimizes and differentiates the selected feature subset. This
algorithm aims to select new features with maximum correlation, maximum
dependence, and minimum redundancy.

OSFV [15] uses a voting strategy to perform rank aggregation in OSFS.
In this method, the potentially relevant features are added to the feature set.
Then, each time the number of features in the feature set exceeds the maximum
capacity, a voting process is performed to keep the most compelling features
and ignore the others.

OFSFI [23] performs a fuzzy integral method to solve the OSFS problem. In
this method, the features that exceed a predetermined threshold are added to
the feature set. A fuzzy integral procedure is performed based on three redun-
dancy metrics to update the feature set to keep the most redundant features.

RHOFS [21] is an OSFS method that attempts to identify practical fea-
tures by considering relevance and redundancy constraints. In this method,
the processing time is very low due to parallel computations. A new feature
evaluation metric is also presented, which uses useful implicit patterns from
the edge region plus the explicit patterns from the positive region.

In Table 1, a comparison is made between the above OSFS methods based on
several terms. These terms are the main feature selection technique, parameter
sensitivity, number of selected features based on changing data samples, and
whether the method requires prior knowledge before initialization.
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Table 1. The comparison between benchmark OSFS meth-
ods.

Method Technique Parameter
Sensitivity

Different number of se-
lected features by chang-
ing data samples

Require
prior
knowl-
edge

OSFSMI Information theory Yes Yes No
OFS-3AM Neighborhood rough set Yes Yes No

OFS-Density Neighborhood rough set Yes Yes No
Alpha-investing Information theory Yes Yes Yes

OFSV Voting No Yes No
OFSFI Fuzzy Integral Yes Yes No
RHOFS Rough Hypercuboid Yes Yes No

3. Fundamental Concepts
In this section, we first introduce the notations used in the article and the

concept of fuzzy logic and then describe the problem formulation and fuzzy
Pareto dominance.

3.1. Notations. Table 2 summarizes the adopted symbols of this article.

Table 2. Symbol Annotations.

Symbol Explanations Symbol Explanations
X Dataset µ (X) Fuzzy membership degree of X on µ

G (x) Objective vector Xt(f t, C) Data stream
S Optimal feature set n Number of samples
d Number of features F Feature space
C Class Label ft Streaming feature at timestamp t
E∗ Euclidean distance matrix M Decision matrix
t Timestamp E1, E2, E3 Objective vectors

3.2. Fuzzy logic. Many uncertain factors play a role in decision-making to
solve real-world problems. These uncertain factors may include indeterminacy,
randomness, and incompleteness of some information in decision-making. In
this situation, reaching a conclusion about a phenomenon is impossible. This
problem also exists in machine learning. For example, if we want to decide on
several options based on several criteria, none of the options can be superior to
the other options based on all the criteria. Fuzzy logic is used in mathematics
and artificial intelligence to solve such problems [27].

Fuzzy logic allows us to represent real-world problems more realistically and
to process imprecise real-world information. Moreover, methods based on fuzzy
logic use simpler and fewer rules than exact methods, which makes them easier
to work with [17].

The theory of fuzzy sets is based on the fact that in the real world, many
things can be expressed in a non-deterministic and membership degree. Zadeh
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[33] introduced the theory of fuzzy sets in 1965. According to this theory, the
degree of certainty of a phenomenon is expressed by the degree of membership.
A fuzzy set µ on the random variable X defines as: µ : X → [0, 1] where µ (X)
indicates the membership degree of X on µ. Fuzzy logic based methods are
used for problems that cannot be answered by exact methods.

3.3. Problem Formulation and Fuzzy Pareto Dominance. A multi-objective
optimization problem (MOP) is a technique for finding optimal solutions to NP-
hard problems. Instead of finding an optimal solution, this technique obtains
a set of compromise solutions. These optimal solutions are called a Pareto-
optimal set [29]. This work uses a Pareto-based model to find the best solutions
based on a minimization approach. Therefore, a maximization MOP is defined
as follows:
(1) minG(x) = (G1(x), G2(x), . . . , Gn(x)), s.c.x ∈ S

where x = (x1, . . . .., xk ) refers to a vector containing the decision variables,
and S indicates the set of feasible solutions. Finally, G(x) = (G1(x), G2(x), . . . , Gn(x))
shows the vector of objectives which n (n ≥ 2) is the length of this vector (num-
ber of objectives). The vector G should be considered a beneficial function that
shows solution quality because, in this paper, the MOP is considered a maxi-
mization problem.

The following concepts are the main definitions of Pareto-based MOPs:

Definition 3.1. Pareto Dominance. Let us consider two objective vectors
v = (v1, . . . .., vn) and u = (u1, . . . .., un). If no element of u is smaller than the
corresponding element of v, and at least one component of v is strictly smaller,
we can say v dominates u (shown by u < v). The Pareto dominance relation
is formulated as follows:
(2) ∀j ∈ {1, . . . , n} : vj ≤ uj

∧
∃j {1, . . . , n} : vj < uj .

The efficiency of a MOP is measured by Pareto dominance and is used to
indicate the superiority of one solution over the others. It is essential for MOP
because different solutions may have advantages over others depending on their
objectives [9].

Definition 3.2. Fuzzy Pareto Dominance. Let us consider two objective
vectors v = (v1, . . . . . . .., vn) and u = (u1, . . . . . . .., un). We say that vector u
dominates vector v with degree µu by the following equation:

(3) µu (u, v) =

∏
i min(ui, vi)∏

i ui

We say that vector u is dominated by vector v with degree µv by the following
equation:

(4) µv (u, v) =

∏
i min(ui, vi)∏

i vi
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These dominance degrees can be used to rank alternatives in a multi-objective
space. We can assign each alternative the maximum degree of being dominated
by any other alternatives in the multi-objective space and sort them in increas-
ing order [19], [24].

In this paper, we used multi-objective optimization to solve the OSFS prob-
lem. In this model, we have used an ensemble of feature selection methods to
score the feature streams. Thus, our objectives are the scores assigned by the
feature selection methods. The features are evaluated in multi-objective space
using the following scores. The features are generated incrementally in OSFS.

Figure 1 shows the OSFS framework. This framework is the basis of most
OSFS methods. It means that the features in OSFS are evaluated in two levels.
The incoming features are evaluated at the first level to determine whether they
should be selected or ignored. In the second level, the feature set is also updated
each time new features are added to select a minimum subset of features.

For example, in our model, consider u = (0.1, 0.8, 0.3) and v = (0.7, 0.2, 0.3)
are two objective vectors for two features in the multi-objective space, feature
u dominates feature v by the following degree:

µu (u, v) =
0.1×0.2

0.1×0.8×0.3 = 0.8333

Also, feature u is dominated by feature v by the following degree:
µv (u, v) =

0.1×0.2
0.7×0.2×0.3 = 0.4761

It means that u is a better feature than v because it dominates v with a higher
degree of dominance.

4. Proposed Algorithm
In this paper, we attempt to develop an OSFS method for single-stream

features. In this paper, we use an ensemble strategy for the OSFS problem.
The OSFS problem is modeled as a multi-objective optimization process. In
this algorithm, three feature evaluation objectives based on filter relevance and
redundancy are considered as our experts in the optimization process. Figure
2 and Figure 3 show a graphical summary and step-by-step procedure of the
proposed algorithm. These steps are explained in detail below:

The features are generated incrementally in the online streaming feature
selection. In Figure 2, the framework of online streaming feature selection is
demonstrated. Let us consider X = [x1, x2, . . . , xn]

T ∈ Rn×d as the dataset, the
dataset contains n instances in a feature space F = [f1, f2, . . . , fd]

T ∈ Rd and
a class label C = [c1, c2, . . . , cn]

T ∈ Rn×1, where d is the number of features.
In this problem, in each time-stamp t, ft is arrived at the feature space, and
the value of d is unknown. Thus, a candidate set St is achieved in each time-
stamp based on arrived features. In other words, by increasing the number of
feature streams, more features are accepted. This function, however, is chosen
non-linearly to avoid increasing the arbitrary number of features.
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Figure 1. The structure of online streaming feature selection

Figure 2. Graphical abstract of the proposed method
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Figure 3. Pseudo code of the proposed method

In current OSFS methods, the number of selected features depends on the
approach and thresholds used in these methods. There is no control over the
number of selected features in different datasets. Moreover, these methods
select different numbers of features in a dataset with different subsets of training
examples. To avoid this and control the number of selected features in different
datasets, we make the number of selected features depend on a non-linear
relationship with the number of received features.

In step 2 of the proposed method, the feature stream ft arrives in the feature
space. In step 3, the capacity of the feature spaces is determined based on the
feature count. The logarithm of the number of features added to the dataset
is considered.

In this algorithm, there are two stages of decision-making. In the first stage,
the relevance of each new feature with the class label is calculated. This value
is determined using Pearson’s correlation coefficient [18] to avoid including
irrelevant features in the calculations. In steps 4 to 6, the correlation between
the new feature and the class label is calculated. The formula for calculating
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the correlation coefficient is as follows:

(5) corr (X,Y ) =
Cov(X,Y )

σXσY

where Cov(X,Y ) refers to the covariance between variable X and Y. Also
σX and σX are the standard deviation of X and Y , respectively.

In the proposed algorithm, the feature is added to St when corr > 0.
Otherwise, it is ignored. Also, X is the dataset with the desirable feature set
so far. The reason for using a value of zero for feature acceptance or rejection is
that features that have even a small relevance to the class label have a chance
of being selected. When the number of selected features exceeds the maximum
number of features (i represents the number of features received so far), the
second phase of decision- making is performed. This means that the feature
set is updated.

As we discussed earlier, the maximum number of selected features is a func-
tion of all the features that have arrived so far. We considered a non-linear
function to control the number of features and avoid it becoming too large.
The algorithm checks whether the number of features in the set exceeds the
maximum capacity or not. If the number of features is within the allowed size,
the algorithm waits for the arrival of a new feature and returns to step 2.

When the number of features exceeds the maximum capacity, the feature
set is updated, and a certain number of features are removed to achieve the
desired set of features. Steps 7 to 17 of the algorithm refer to this part. We go
through these steps one by one.

After establishing the condition in the seventh step, we determine three fea-
ture evaluation criteria. These criteria are our objectives in the multi-objective
optimization process. The feature set updating process is conducted using
fuzzy Pareto dominance ranking. The purpose of feature selection is to select
a subset of features associated with the class label with the least redundancy.
Therefore, the selected objectives are a combination of methods that measure
the degree of relevance and redundancy of features. One redundancy and two
relevancy check method are considered.

We used the Pearson correlation coefficient to capture the relevance and
redundancy of features. This metric is commonly used in feature selection
and has shown promising results. It indicates the degree of linear dependence
between two features or a feature and the class label. Since the degree of rel-
evance of features is more important than non-redundancy, we also considered
the cosine distance criterion to calculate the degree of relevance of a feature
and the class label. The purpose of using two criteria to calculate relevance was
to review from the perspective of two experts. Therefore, we created a feature
evaluation council where two experts comment on the relevance of features and
one expert comment on their redundancy.
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We obtain the correlation between the features in St using Equation 5 to
capture the redundancy between the features. By calculating the correlation
between all the features in the set, the correlation matrix is obtained as follows:

(6) E∗ =


corr (F1, F1) corr (F1, F2) · · · corr (F1, Fh)
corr (F2, F1) corr (F2, F2) · · · corr (F2, Fh)

...
corr (Fd, F1)

...
corr (Fd, F2)

. . . ...
. . . corr (Fd, Fh)


As our redundancy-based objective, each feature’s minimum correlation against

other features is considered. It means that the minimum value of each row of
E∗ is computed to construct vectors E1. This procedure is conducted in steps
8 to 9. Since we modeled the OSFS problem as a minimization approach, we
considered the minimum correlation value of each feature with respect to other
features as a redundancy value.

In addition to this objective, the correlation and cosine distance values are
considered the second and third objectives. We used the distance to capture
the correlation and cosine objectives because we considered our problem as a
minimization process. The correlation distance value (E2) between features Fi

and Fj is computed as follows:

(7) E2 (Fi, Fj) = 1− corr (Fi, Fj)

The cosine distance metric between two random variables is also defined as
follows:

(8) E3 (A, B) = 1−

∣∣∣∣∣∣∣∣
∑n

i=1 (AiBi)(√∑n
i=1 Ai

2

)(√∑n
i=1 Bi

2

)
∣∣∣∣∣∣∣∣ ,

Thus, the decision matrix is constructed as follows:

(9) M =


E1 (1) E2 (1) E3 (1)
E1 (2) E2 (2) E3 (2)

...
E1 (d)

...
E2 (d)

...
E3 (d)


where E2(2) indicates the value of our second objective (correlation distance)

for feature 2. Steps 10 to 12 show these calculations.
Now we have our decision matrix to perform the multi-objective optimization

process. Based on Equation 4, the degree of dominance is calculated based on
all features, and the maximum value is recorded. The features are sorted in
ascending order to determine their ranking. Steps 13 to 15 refer to this part.

As mentioned in the basic concepts section, there are two deterministic and
fuzzy approaches in modeling based on the concept of Pareto dominance. In
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the deterministic approach of Pareto dominance, the features are placed in the
objective space based on multiple objectives and only the features that are in
the Pareto front are selected as the final feature set. In this approach, the
number of selected features cannot be controlled and a different number is se-
lected for each dataset. For example, in one dataset, one feature may dominate
all other features, while in another dataset, many non-dominated features may
remain in the Pareto front. To address this problem, we used the fuzzy Pareto
dominance approach, where the concept of dominance is considered a fuzzy
measure rather than a definite one.

As mentioned in the basic concepts section, there are two deterministic and
fuzzy approaches in modeling based on the concept of Pareto dominance. In
the deterministic approach of Pareto dominance, the features are placed in the
objective space based on multiple objectives and only the features that are in
the Pareto front are selected as the final feature set. In this approach, the
number of selected features cannot be controlled and a different number is se-
lected for each dataset. For example, in one dataset, one feature may dominate
all other features, while in another dataset, many non-dominated features may
remain in the Pareto front. To address this problem, we used the fuzzy Pareto
dominance approach, where the concept of dominance is considered a fuzzy
measure rather than a definite one.

Each time a new feature is added, its relevance is first calculated using the
Pearson correlation coefficient. Based on this approach, irrelevant features are
ignored as soon as possible. But related features are added to the feature set for
further consideration. We have considered the capacity to control the number
of features so that we have a certain number of features available at any time.
When the number of features exceeds the capacity, the feature space needs to
be updated. For this update, we transferred all the features of the feature space
into a multi-objective space. We also used the fuzzy Pareto dominance method
to rank the features. In this method, we first calculated the percentage of
dominance of each feature by other features and then ordered them in ascending
order according to this percentage. This means that the feature that has the
lowest percentage of defeat by other features gets the highest rank. Finally,
the features that are in the lowest rank and are not included in the capacity of
the feature space are removed.

Thus, in step 16, the best features are selected based on the maximum
number of features required. The eliminated features are removed from the
feature space. This process is performed each time a new feature is added to
the feature space. Finally, St is the optimal subset of features.

For a better understanding, we use a numerical example. Suppose the feature
space capacity is equal to 2 and three features are available to us. We want
to remove one of these features based on the fuzzy Pareto dominance method
in a multi-objective space. Assume that the objective vectors for 3 features
are based on the three objectives presented below. The first and second terms,
respectively, are the value of the correlation distance and the cosine distance
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of each feature to the class label, and the last term is the minimum correlation
of each feature against other features.

F1 = {0.2, 0.4, 0.5} , F2 = {0.8, 0.7, 0.1} , F3 = {0.6, 0.6, 0.6}
Now we calculate the dominance degree of each feature by other features

based on Equation 4.
Feature1 : µ2(1, 2) =

0.1×0.2
0.1×0.7×0.8 = 0.35

Feature1 : µ3(1, 3) =
0.2×0.6

0.6×0.6×0.6 = 0.55

Feature2 : µ1(2, 1) =
0.1×0.2

0.2×0.4×0.5 = 0.5

Feature2 : µ3(2, 3) =
0.1×0.6

0.6×0.6×0.6 = 0.27

Feature3 : µ1(3, 1) =
0.2×0.6

0.2×0.4×0.5 = 0.35

Feature3 : µ2(3, 2) =
0.1×0.6

0.8×0.7×0.1 = 1.07

Now we extract the maximum dominance degree of each feature, which is
0.55 for feature 1, 0.5 for feature 2, and 1.07 for feature 3. Therefore, the
highest dominance degree belongs to feature 3 and is removed. It can also
be seen in the objective vector of this feature that it has high values in this
minimization problem.

5. Numerical results
This section will introduce the datasets and evaluation metrics for perform-

ing the simulations. Also, the obtained results and a discussion over these
results are provided.

5.1. Datasets and Evaluation metrics. In this paper, six real-world datasets
are used to perform the experiments. Table3 contains the detailed character-
istics of these datasets. Datasets include Prostate-GE, Colon, Leukemia 1 ,
Sorlie 2 , Subramanian [28] and NCI60 3 from different applications including
Microarray, Biological, and Image Data.

Four well-known metrics, namely Accuracy, Sensitivity, Precision, and F-
measure [2], [13], are used to evaluate the performance of feature selection
algorithms in the learning procedure.

5.2. Results. Eight online streaming feature selection algorithms are provided
for comparison with the proposed algorithm in these experiments. These al-
gorithms are OSFSMI [26], OFS-A3M [37], OFS-Density [36], Alpha-Investing
[35], OFSV [15], OFSFI [23], and RHOFS [21]. The reason for choosing these
methods compared to the proposed method is that our goal is to compare with
the most powerful and newest methods in this field. Considering that the pro-
posed method is based on an ensemble approach, we have chosen two methods
OFSV and OFSFI that are structured based on this approach for comparison

1https://jundongl.github.io/scikit-feature/datasets.html
2https://search.r-project.org/CRAN
3https://dtp.cancer.gov/discoverydevelopment/nci− 60/]
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to measure the performance of the proposed method. RHOFS method three is
the newest in this field and also uses the new idea of rough hyperbolic. OFS-
A3M and OFS-Density have used rough set theory and are among the most
famous and strongest methods in this field. OSFSMI and Alpha-Investing have
used information theory to evaluate the streaming features which is a strong
and well-known approach in the field of feature selection. Therefore, our goal
has been to compare the proposed methods with methods that have a similar
structure to the proposed method in terms of ideas and methods that have
used different ideas to get the best evaluation of the proposed method.

For all simulations, the value of the parameter for all algorithms is set ac-
cording to the recommendation of the following article. For the classification
performance of all algorithms, the classifiers k-nearest neighbor (KNN) is cho-
sen as representatives of lazy classifiers (non-parametric) and CART as repre-
sentative of eager classifiers (parametric). All experiments are performed using
MATLAB R2018a and a Windows Server 2013-64 bit machine with 64 GB Ram
and Intel (R) Xeon (R) Gold 6254 CPU with 16 3.10 GHz processors. In ad-
dition, the fitcknn and fitctree functions run the KNN and CART algorithms,
respectively. These functions are from the MATLAB Statistics and Machine
Learning Toolbox with the default setting. The K value of KNN is set to 5 and
was determined based on multiple experiments to obtain the best value.

The classification performance of each method in each dataset has been eval-
uated by hold-out validation. For this purpose, 70 percent of the samples are
randomly selected for the training set and the other 30 percent for the test set.
To simulate the online streaming feature selection problem, the features from
the training set are added incrementally, and after adding each new feature,
the algorithms update the feature set. The final selected feature set is used for
the comparisons. It should also be noted that the announced results are based
on an average of 30 independent runs for each algorithm.

One of the current challenges in online streaming feature selection is the sen-
sitivity of the methods to feature ordering. When the features of a dataset are
passed to the algorithms in different orders, different features may be selected.
This is because redundancy is considered in online feature selection methods
with the current feature set. Therefore, it may affect other types of redundancy
arrangements differently. Of course, this issue is not so unreasonable in the
streaming data, but it is not suitable in a scenario where our offline data set
does not fit in the memory for processing, and we process it in a streaming
manner. The proposed method also has this challenge. It seems that in cases
where there are many training samples in the dataset, the ensemble approach
takes some time, and the number of calculations increases.

The classification performance of all algorithms was examined using two
different classifiers and four classification criteria, the number of final selected
features, sensitivity to the order of training samples, and run-time. Thus,
Tables 4 to 11 present the classification reports obtained. Also, a nonparametric
Friedman test [7] is performed to compare the significance of the results based
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Table 3. The main characteristics of the datasets.

Dataset Number of instances Number of features Number of classes Domain
Sorlie 85 457 5 Microarray Data

Leukemia 72 7070 2 Microarray Data
Colon 62 2000 2 Microarray Data

Prostate-GE 102 5967 2 Biological Data
Subramanian 50 10101 2 Image Data

NCI60 60 9703 2 Microarray Data

on a statistical approach. These comparisons are shown in Table 12. To test
how sensitive all methods are to different subsets of training samples, we tested
the performance of these methods using 10 different subsets of training samples.
This experiment was performed on the Leukemia dataset, and the number of
features selected based on each subset of training samples is shown in Figure
4. The number of final selected features and the running time of the methods
are shown in Figure 5 and Figure 6, respectively. Run-times are obtained using
the tic-toc function in MATLAB.

Table 4. Results based on the KNN classifier (Accuracy)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8300 0.7475 0.8987 0.8663 0.9063 0.9063 0.8913 0.9075
Leukemia 0.8982 0.8232 0.9143 0.8679 0.9161 0.9161 0.8804 0.9375

Subramanian 0.6150 0.6300 0.6175 0.4800 0.6300 0.6300 0.6500 0.7025
Sorlie 0.5721 0.7000 0.6618 0.2662 0.6162 0.6162 0.6588 0.6706
Colon 0.7125 0.6792 0.6896 0.5292 0.7556 0.7650 0.7611 0.8056
NCI60 0.2380 0.3120 0.2460 0.1020 0.4600 0.4531 0.2620 0.3020

Table 5. Results based on the KNN classifier (Sensitivity)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 1.0000 0.4737 0.9217 0.8421 0.9014 0.9014 0.8876 0.9431
Leukemia 0.9444 0.8889 0.9444 0.9444 0.9624 0.9624 0.9033 0.9602

Subramanian 0.8462 0.6154 0.8462 0.6923 0.8340 0.8340 0.7809 0.8737
Sorlie 0.5951 0.6289 0.5083 0.2244 0.6320 0.6320 0.6477 0.6767
Colon 0.8571 0.9286 0.8571 0.9286 0.8388 0.8120 0.7758 0.9130
NCI60 0.3167 0.2167 0.3500 0.1000 0.4198 0.4198 0.2554 0.2668

5.3. Discussion. Using the results from the previous section, we can observe
the optimality and efficiency of the proposed algorithm by comparing it with
similar algorithms from the literature. One of our main ideas in this paper
is to use multiple evaluation criteria instead of just one. The reason for this
approach is that each feature evaluation algorithm somehow determines the
importance of each feature and their combination can lead to a more com-
prehensive study. For this aggregation process, three filter-based algorithms
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Table 6. Results based on the KNN classifier (Precision)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8261 0.6429 0.9217 0.8889 0.9111 0.9111 0.8976 0.8795
Leukemia 0.9444 0.7619 0.8947 0.8947 0.9190 0.9190 0.9185 0.9460

Subramania n 0.7857 0.5714 0.6875 0.6000 0.6995 0.6995 0.7238 0.7504
Sorlie 0.5231 0.6976 0.6393 0.2672 0.6370 0.6370 0.6400 0.6797
Colon 0.7059 0.8667 0.7059 0.6842 0.8022 0.8040 0.8514 0.8100
NCI60 0.4073 0.3177 0.2870 0.2778 0.5161 0.5161 0.3149 0.3315

Table 7. Results based on the KNN classifier (F-Measure)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8327 0.7369 0.8935 0.8677 0.9007 0.9007 0.8866 0.9071
Leukemia 0.9203 0.8690 0.9352 0.8987 0.9359 0.9359 0.9048 0.9517

Subramanian 0.7123 0.7152 0.7169 0.6047 0.7479 0.7479 0.7408 0.7962
Sorlie 0.5510 0.6759 0.6477 0.3182 0.5977 0.5977 0.6344 0.6498
Colon 0.7712 0.7467 0.7382 0.5693 0.8101 0.8144 0.8022 0.8539
NCI60 0.4067 0.5009 0.4715 0.3019 0.6011 0.6011 0.4721 0.4598

Table 8. Results based on the CART classifier (Accuracy)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8075 0.7787 0.8650 0.8287 0.8238 0.8238 0.8213 0.8513
Leukemia 0.8875 0.8250 0.9089 0.8964 0.8982 0.8982 0.8625 0.9089

Subramanian 0.5700 0.6075 0.5925 0.5550 0.5900 0.5900 0.5925 0.6600
Sorlie 0.5897 0.5279 0.5868 0.2971 0.5824 0.5824 0.6029 0.6206
Colon 0.7250 0.6271 0.6750 0.5979 0.7444 0.7488 0.7222 0.7750
NCI60 0.1780 0.2100 0.1880 0.1240 0.2400 0.2400 0.2300 0.2580

Table 9. Results based on the CART classifier (Sensitivity)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8421 0.4737 0.8300 0.7368 0.8244 0.8244 0.8126 0.8578
Leukemia 1.0000 1.0000 0.9444 1.0000 0.9248 0.9248 0.8841 0.9224

Subramanian 0.6923 0.6154 0.7692 0.7692 0.6763 0.6763 0.6835 0.7715
Sorlie 0.5951 0.6289 0.5083 0.2244 0.5497 0.5497 0.5802 0.5891
Colon 0.9286 0.9286 1.0000 0.9286 0.8320 0.8401 0.7694 0.8696
NCI60 0.2667 0.4333 0.1333 0.1333 0.2369 0.2369 0.2352 0.2430

Table 10. Results based on the CART classifier (Precision)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.8000 0.6429 0.8481 0.7368 0.8225 0.8225 0.8317 0.8503
Leukemia 0.8571 0.7826 0.9444 0.9000 0.9214 0.9214 0.9057 0.9341

Subramanian 0.7500 0.6667 0.6250 0.6667 0.7124 0.7124 0.7008 0.7450
Sorlie 0.5777 0.5136 0.5888 0.2412 0.5544 0.5544 0.5897 0.6041
Colon 0.7647 0.6842 0.6667 0.6842 0.7977 0.7961 0.8027 0.7940
NCI60 0.2917 0.4353 0.1567 0.1917 0.2657 0.2657 0.2521 0.2924
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Table 11. Results based on the CART classifier (F-Measure)

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

Prostate-GE 0.7988 0.7554 0.8617 0.8224 0.8139 0.8139 0.8162 0.8477
Leukemia 0.9149 0.8688 0.9296 0.9235 0.9204 0.9204 0.8881 0.9267

Subramanian 0.6601 0.6883 0.6858 0.6685 0.6770 0.6770 0.6804 0.7457
Sorlie 0.5723 0.5104 0.5811 0.3353 0.5798 0.5798 0.5923 0.6141
Colon 0.7859 0.7017 0.7357 0.7195 0.8021 0.8091 0.7736 0.8221
NCI60 0.3934 0.4338 0.3592 0.3194 0.4540 0.4540 0.4277 0.4219

Table 12. Friedman ranks of methods based on 4 criteria and
2 classifiers

Dataset OSFSMI OFS-A3M OFS-Density Alpha-Investing OFSFI OFSV RHOFS OFS-FPD

KNN(Accuracy) 6.33 5.33 4.83 7.50 2.83 2.50 4.17 1.67
KNN(Sensitivity) 3.50 6.17 3.83 5.83 3.17 3.33 5.83 2.50
KNN(Precision) 4.33 5.17 5.00 7.00 3.33 3.17 3.83 3.00

KNN(F-Measure) 6.33 5.33 4.67 7.50 2.50 2.33 4.50 2.00
CART(Accuracy) 5.67 6.17 3.67 6.67 3.67 3.50 4.50 1.17

CART (Sensitivity) 2.17 3.50 4.00 4.50 5.17 5.00 6.17 3.33
CART (Precision) 4.33 6.00 5.00 6.67 3.50 3.67 3.67 2.00

CART (F-Measure) 6.17 6.00 3.50 6.00 3.67 3.50 4.33 2.00

Figure 4. Number of selected features by different subsets of
training samples

are used based on different scores. In most of the comparison algorithms, the
importance of features is determined based on a single metric. From Tables 4
to 4, it can be seen that the proposed algorithm has better classification per-
formance. Table 12 also shows the Friedman ranks. We can conclude that the
proposed method performs statistically better than the comparison methods on
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Figure 5. Number of final selected features

Figure 6. Run-times

all criteria. Thus, we can claim that the proposed algorithm has selected the
most optimal feature subsets compared to similar algorithms in the literature.

The multi-objective optimization model is our main approach for selecting
streaming features. The fuzzy Pareto dominance relationship ranks the fea-
tures. The Pareto dominance approach has shown promising performance with
two or three objectives. Based on these reasons, we have chosen this approach
to achieve the optimal feature set as quickly as possible. However, computing
three criteria for updating the feature space each time the number of features
exceeds the maximum capacity can increase the computational cost and slow
down the algorithm. As you can see in Figure 6, the execution time of the
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proposed algorithm is slower than some other methods. However, it can be
said that the proposed method performs in a reasonable time and does not add
much computational cost to the model.

If we want to calculate the computational complexity of the proposed method
in the worst case, the number of features is equal to log(d) each time the set
of features needs to be updated. To calculate the degree of dominance of each
feature over other features, this value must be calculated for each feature by
the number of other features. Therefore, in general, d × log(d) values must
be calculated. Thus, we can say that the computational complexity of the
proposed method is equal to O (d× log(d) ). It means that if the dataset
includes 1000 (d) features, the feature set capacity is equal to log(1000) = 10.
So, in the worst case, the maximum number of calculations to achieve degrees
of dominance is 10000.

Table 1 shows that all OSFS methods compared in this study select a dif-
ferent number of features for different subsets of training samples in a dataset.
In fact, all of these methods are sensitive to the order of the training samples.
This problem is illustrated in Figure 4 for all methods in the Leukemia dataset.
Ten different subsets of training samples are presented to the algorithms and
the number of selected features in these samples is indicated. This figure shows
that only the proposed method selected the same number of features in all 10
cases. This is because we made the number of selected features depend on the
number of feature streams. On the other hand, the proposed method is not
sensitive to a certain threshold value. Therefore, different arrangements of the
training samples do not affect the number of selected features.

The proposed method is not sensitive to any particular parameter. There-
fore, the number of selected features in different datasets has no significant
variance. The feature selection capacity also increases by increasing the num-
ber of features in a dataset. Figure 5 shows that the proposed method selects
a reasonable number of features, and the selection variance between different
datasets is minimal. This problem occurs in most of the compared methods.

It is also evident from the results that the proposed method has selected
an acceptable number of features. Of course, this number is not minimal, but
the performance evaluation of a feature selection method is not based only
on the selection of the lowest number of features. Instead, an acceptable and
minimal number of features with the highest predictive power is determined
in a reasonable amount of time. Based on the obtained results, it can be said
that the proposed method was able to balance between these criteria.

6. Conclusion
This article presents a new online streaming feature selection based on a

multi-objective optimization model. We intend to select a minimal and opti-
mal subset of the arriving features using the ensemble of filter algorithms in this
model. The fuzzy Pareto dominance concept is considered to rank the features.
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We have achieved a reasonable run-time since the fuzzy dominance relation-
ship is a simple and quick procedure. By conducting various experiments, the
efficiency and optimality of the proposed algorithm have been shown compared
to similar algorithms in the literature. One of the current challenges in online
streaming feature selection is the sensitivity of the methods to feature order-
ing. When the features of a dataset are passed to the algorithms in different
orders, different features may be selected. This challenge still exists in the
proposed methods, and so far no method has completely solved it. Therefore,
this area can be considered as the way of the future. In addition, the methods
presented in this area are usually of filter type because they have the least
processing time, and wrapper methods are time consuming due to the use of
learning algorithms. However, embedded methods can also be used to improve
performance, which is a broad area to investigate.
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