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Abstract. We use the Key-Moori Method 1 and examine 1-designs and
codes from the representations of the alternating group A7. It is shown

that a self-dual symmetric 2-(35, 18, 9) design and an optimal even bi-

nary [21, 14, 4] LCD code are found such that they are invariant under
the full automorphism groups S8 and S7, respectively. Moreover, designs

with parameters 1-(21, l, k1,l) and 1-(35, l, k2,l) are obtained, where ω is

a codeword, l = wt(ω), k1,l = l|ωS7 |/21 and k2,l = l|ωS7 |/35. It is seen
that there exist a 2-(21, 5, 12) design with the full automorphism group

S7 among these 1-designs.
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1. Introduction

Key and Moori [17,18] considered the representations of the Janko groups J1
and J2, and then constructed 1-designs and codes invariant under the groups
J1, J2 or J̄2, where J̄2 is the extension of J2 by its outer automorphism. Daraf-
sheh et al. [6, 7, 9] considered the primitive representations of the projective
special linear groups PSL2(q), q ≤ 50, and found designs and their auto-
morphism groups. Furthermore, the binary codes and their automorphism
groups from the groups PSL2(8), PSL2(9) and PSL2(13) are obtained [8,
16]. Also, Darafsheh [5] found designs with parameters 1-

((
q
2

)
, q + 1, q + 1

)
, 1-((

q+1
2

)
, q − 1, q − 1

)
and 1-

((
q+1
2

)
, 2(q − 1), 2(q − 1)

)
from the group PSL2(q),

q = 2n, such that the last design is invariant under the full automorphism
group Sq+1. In [12,13,15], the current author considered the primitive permu-
tation representations of PSL2(q), q = 53, 59, 61, 64, 81, 89 and found designs
and their automorphism groups. Furthermore, Moori and Saeidi obtained de-
signs and their codes from the Tits group 2F4(2)′ and some 1-designs from the
group PSL2(2n) [21,22].

Recently, Darafsheh et al. constructed an optimal ternary code from the
group PSL2(9) invariant under the group S6 [10]. It was seen that there is
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a 2-(15, 7, 36) design with the automorphism group S6. Moreover, the current
author constructed a self-orthogonal even code over GF (4) from PSL2(9) in-
variant under the automorphism group A8 [14]. It was shown that Supp(ω)A8

forms a 2-(15, l, λ) design, where wt(ω) = l and λ =
(
l
2

)
|ωA8 |/

(
15
2

)
.

In this paper, motivated by the above works, designs and their binary codes
from the primitive permutation representations of the alternating group A7 are
considered. It is shown that designs with parameters 1-(35, 4, 4), 1-(35, 12, 12),
2-(35, 18, 9) and two non-isomorphic 1-(21, 10, 10) designs are obtained. Ac-
cording to [3], this 2-(35,18,9) design is new. These designs give us three
binary LCD codes with parameters [35, 20, 4], [21, 14, 4] and [21, 6, 6] such that
their duals are [35, 15, 5], [21, 7, 6] and [21, 15, 3] codes, respectively. We show
that these codes have the symmetric group S7 as the full automorphism group.
Moreover, for any codeword ω in the above codes, we examine the stabilizers
(S7)ω and determine their structures. By taking Supp(ω) and orbiting it under
the group S7, designs with parameters 1-(21, l, l|ωS7 |/21) and 1-(35, l, l|ωS7 |/35)
are obtained, where l = wt(ω). It is shown that two complementary designs
with parameters 2-(21, 5, 12) and 2-(21, 16, 144) exist among these 1-designs
and moreover, as far as we know, these designs are new.

2. Preliminaries

Let S = (P,B, I) be an incidence structure. The disjoint sets P and B are
called point and block sets, respectively. Also, the incidence relation I ⊆ P×B
is a flag set. If (p,B) ∈ I then we write pIB. A block B can be identified with
the set of points incident with it, which in this case I is the membership relation
∈. If we replace the blocks of S by their complement then S, the complement
of S, is obtained. Also, the incidence structure S> = (B,P, I>) is called the
dual of S = (P,B, I), where BI>p ↔ pIB. A one-to-one correspondence
ϕ : P → P ′ is an isomorphism between S = (P,B, I) and S ′ = (P ′,B′, I ′) if
pIB ↔ ϕ(p)I ′ϕ(B) for all p ∈ P and B ∈ B. If such an isomorphism exists then
S and S ′ are isomorphic and we write S ∼= S ′. Now, S is a self-dual structure
if S and S> are isomorphic. An automorphism of S is an isomorphism of S
onto itself. The automorphism group Aut(S) is the group consisting of all the
automorphisms of S. A t-(v, k, λ) design is an incidence structure D = (P,B, I)
such that |P| = v, |B| = k for each block B and any t points of P are incident

with precisely λ blocks. The number of blocks, denoted by b, is λ
(
v
t

)
/
(
k
t

)
. The

design D is called symmetric if v = b. Also, D is trivial if the blocks are exactly
all k-subsets of P. We know that λs = λ

(
v−s
t−s
)
/
(
k−s
t−s
)

is the number of blocks

incident with exactly s points, where s ≤ t. Each t-(v, k, λ) design is in fact
an s-(v, k, λs) design. The replication number, denoted by r, is λ1. In each 2-
(v, k, λ) design, we have r(k−1) = λ(v−1) and bk = vr. For a t-(v, k, λ) design

D, D is a design with parameters t-(v, v − k, λ), where λ =
∑t

s=0(−1)s
(
t
s

)
λs.

Hence, according to a standard convention, we mention new t-(v, k, λ) designs
with k ≤ v/2. We refer the reader to [1, 3] for more details.
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Let Fq be a finite field of order q. Each subspace of Fn
q is a linear code of

length n over Fq. The elements of a code are called codewords. A linear code
C over Fq is an [n, k, d]q code if its length, dimension and minimum distance
are n, k and d, respectively. When d is unknown, C is called an [n, k]q code. If
C is the singleton {0}, the whole space Fn

q , a subspace 〈v〉 of dimension 1 or

a subspace 〈v〉⊥ of dimension n − 1 then C is trivial. A linear [n, k, d]q code
C is optimal if C has the largest possible minimum distance d for given n, k
and q. The support of c = (c1, . . . , cn) ∈ C is Supp(c) = {i | ci 6= 0} and
moreover, the weight of c is wt(c) = |Supp(c)|. The diameter of C, denoted by
diam(C), is the largest weight of codewords of C. The all-one word, denoted
by , is a vector all of whose coordinate positions are one. The dual code C⊥
is defined to be the orthogonal subspace of C ≤ Fn

q . The hull of C, denoted

by hull(C), is C ∩ C⊥. The linear code C is called a linear complementary dual
(shortly, LCD) code if hull(C) = {0}. If C ⊆ C⊥ then C is said to be self-
orthogonal. If C = C⊥ then C is self-dual. The weight enumerator of C is
WC(x, y) =

∑n
l=0Alx

n−lyl, where Al is the number of codewords of weight l in
C. A binary code C is even if 2|wt(c) for any codeword c. The linear codes C
and C′ are equivalent if we can obtain C′ from C by permuting the coordinate
positions and multiplying each coordinate position by the elements of Fq \ {0}.
Furthermore, C and C′ are isomorphic if we can obtain C′ from C by permuting
the coordinate positions. Each permutation of the coordinate positions that
maps codewords to themselves is an automorphism of C. The group of all the
automorphisms of the code C is denoted by Aut(C). A weight class of C is a set
such as C(l) = {c ∈ C | wt(c) = l}, where 0 ≤ l ≤ n. Clearly, an automorphism

preserves C(l). For an incidence structure S = (P,B, I), let Cq ≤ FPq be the
linear code spanned by all the incidence vectors of the blocks over Fq. See [1,19]
for more details.

Our notation for groups and their maximal subgroups is in accordance with
ATLAS [4]. The semidirect and direct products of G and H are denoted by
G:H and G×H, respectively. The elementary abelian group of order pn, where
p is prime, is denoted by pn.

3. The designs and Binary codes from A7

In this section, the construction of designs is based on the following theorem
which is given by Key and Moori:

Theorem 3.1. (Key-Moori Method 1) [18, Proposition 1] Let Ω be a set of
size n and ω ∈ Ω. Let G be a finite primitive permutation group which acts on
Ω. If ∆ 6= {ω} is an orbit of the stabilizer Gω then the incidence structure D =
(Ω,∆G,∈) is a symmetric 1-(n, |∆|, |∆|) design, where ∆G = {∆g | g ∈ G}.
Furthermore, if the orbit ∆ is self-paired then the design D is self-dual and G
acts primitively as an automorphism group on D.



514 R. Kahkeshani

Theorem 3.2. [17, Lemma 2] Let D be a symmetric 1-design obtained by a
group G and the Key-Moori Method 1. Then, G ≤ Aut(D).

Note that if C is a design’s code of D over the field Fq then Aut(D) ≤
Aut(C). Now, we can construct binary codes from the primitive permutation
representations of A7 using a program in the software Magma [2] and the Key-
Moori Method 1. Hence, we consider the action of A7 on the set of the right
cosets of its maximal subgroups. The alternating group A7 is a simple group
of order 2520 having five maximal subgroups up to conjugacy of orders 360,
168, 168, 120 and 72 such that they are isomorphic to A6, PSL2(7), PSL2(7),
S5 and (A4 × 3):2, respectively [4]. By Magma, the actions of A7 on the set
of the right cosets of the first three subgroups are 2-transitive and thus the
designs so obtained are trivial. Hence, we do not consider them. The last two
subgroups correspond to the primitive representations of A7 of degrees 21 and
35, respectively. The information about non-trivial designs and their binary
codes obtained from A7 is collected in Table 1 in the Appendix.

In Table 1, the columns from left to right show maximal subgroups, the
indices of these subgroups, the number of orbits of a stabilizer, the lengths of
the orbits, the order of the automorphism group of each design, the parameters
of the design’s codes, the parameters of dual codes and the order of the full
automorphism group of each constructed code, respectively. Also, the entry
line m(n) denotes that there are n orbits of length m.

Theorem 3.3. (i) For A7 of degree 21, two non-isomorphic 1-(21,10,10) de-
signs D(10)1 and D(10)2 are obtained. These designs are self-dual and moreover,
Aut(D(10)1) = Aut(D(10)2) ∼= S7.

(ii) For A7 of degree 35, a 1-(35,4,4) design D4, a 1-(35,12,12) design
D12 and a 2-(35,18,9) design D18 are obtained. These designs are self-dual,
Aut(D4) = Aut(D12) ∼= S7 and Aut(D18) ∼= S8.

Proof. Consider the alternating group A7 and its maximal subgroups M1
∼= S5

and M2
∼= (A4 × 3):2.

(i) The action of A7 on the set of the right cosets of M1 gives us a primitive
representation of A7 of degree [A7 : M1] = (7!/2)/5! = 21. The point stabilizer
(A7)ω have three orbits of lengths 1, 10 and 10. In fact, the group A7 acts
on the cosets of M1 as a rank-3 primitive group. By Theorem 3.1, we obtain
two symmetric 1-(21,10,10) designs D(10)1 and D(10)2 . Magma shows that they
are two non-isomorphic self-dual designs, but their automorphism groups are
identical and of order 5040. Henceforth, these automorphism groups will be
denoted by Aut(D10). Magma implies that Aut(D10) ≤ S21 is of order 5040
with a normal subgroup N of order 2520 such that N ∼= A7. By Magma, 1 ≤
A7 ≤ Aut(D10) is a composition series for Aut(D10) and Aut(D10) ∼= A7:2∼= S7.

(ii) If we consider the action of A7 on the set of the right cosets of M2 then a
primitive permutation representation of A7 of degree [A7 : M2] = (7!/2)/72 =
35 is obtained. The point stabilizer (A7)ω has four orbits of lengths 1, 4, 12
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and 18. By Theorem 3.1, the symmetric designs D4, D12 and D18 with param-
eters 1-(35,4,4), 1-(35,12,12) and 1-(35,18,18) are obtained, respectively. By
Magma, these designs are self-dual and D18 is a 2-(35,18,9) design. Computa-
tions with Magma imply that Aut(D4) = Aut(D12) ∼= Aut(D10). Furthermore,
Aut(D18) ≤ S35 is a non-abelian group of order 40320 with a normal subgroup
N of order 20160 such that N ∼= A8. By Magma, 1 ≤ A8 ≤ Aut(D18) is a
composition series for Aut(D18) and Aut(D18) ∼= A8:2∼= S8. �

Suppose that C(10)1 , C(10)2 , C4, C12 and C18 are binary codes constructed
from the designs D(10)1 , D(10)2 , D4, D12 and D18, respectively. Our Magma
computations show that C4 = C12, C18 is a trivial code with the co-dimension
1 and C(10)1 ⊆ C⊥(10)2 .

Theorem 3.4. The binary code C(10)1 is an even code with the parameters

[21, 14, 4]2 and 105 codewords of minimum weight. The dual code C⊥(10)1 is a

[21, 7, 6]2 code with seven codewords of minimum weight. Furthermore,  ∈
C⊥(10)1 , C(10)1 is an optimal LCD code and Aut(C(10)1) ∼= S7.

Proof. We know that D(10)1 is a design with the even block size. Hence, the
rows of the incidence matrix of D(10)1 spans an even binary code C(10)1 of

length 21 and  = ω21 ∈ C⊥(10)1 . The bijection c → c +  on C⊥(10)1 implies

the equalities A21−l = Al between numbers of codewords. Magma shows that
dim(C(10)1) = 14 and

WC(10)1 (x, y) =x21 + 105x17y4 + 805x15y6 + 3255x13y8 + 5481x11y10

+ 4515x9y12 + 1935x7y14 + 252x5y16 + 35x3y18,

WC⊥
(10)1

(x, y) =x21 + 7x15y6 + 35x12y9 + 21x11y10 + 21x10y11 + 35x9y12

+ 7x6y15 + y21.

Thus, C(10)1 and C⊥(10)1 are [21, 14, 4] and [21, 7, 6] binary codes with 105 and 7

codewords of minimum weights, respectively. By Magma, dim(hull(C(10)1)) =

0. Hence, C(10)1 ∩ C⊥(10)1 = {0} and F 21
2 = C(10)1 ⊕ C⊥(10)1 . According to [11],

C(10)1 is an optimal code and C⊥(10)1 has a minimum distance 2 less than the

optimal. By Theorems 3.2 and 3.3, S7
∼= Aut(D(10)1) ≤ Aut(C(10)1). Magma

computations show that |Aut(C(10)1)| = 5040 = 7!. So, Aut(C(10)1) ∼= S7. �

Theorem 3.5. The code C(10)2 is an even binary code with the parameters

[21, 6, 6]2 and seven codewords of minimum weight. The dual code C⊥(10)2 is a

[21, 15, 3]2 code with 35 codewords of minimum weight. Furthermore, C(10)2 is
an LCD code and Aut(C(10)2) ∼= S7.

Proof. Since D(10)2 is a design with the even block size, the associated binary

code C(10)2 is even and  = ω21 ∈ C⊥(10)2 . Hence, the equalities A21−l = Al are
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holden in C⊥(10)2 . By Magma, dim(C(10)2) = 6 and

WC(10)2 (x, y) =x21 + 7x15y6 + 21x11y10 + 35x9y12,

WC⊥
(10)2

(x, y) =x21 + 35x18y3 + 105x17y4 + 252x16y5 + 805x15y6 + 1935x14y7

+ 3255x13y8 + 4515x12y9 + 5481x11y10 + 5481x10y11

+ 4515x9y12 + 3255x8y13 + 1935x7y14 + 805x6y15 + 252x5y16

+ 105x4y17 + 35x3y18 + y21.

Hence, C(10)2 and C⊥(10)2 are [21, 6, 6] and [21, 15, 3] binary codes with 7 and 35

codewords of the minimum weights, respectively. By [11], C(10)2 and C⊥(10)2 have

minimum distance only 2 and 1 less than the optimal. Magma computations
show that the dimension of hull(C(10)2) is zero. Thus, C(10)2 ∩ C⊥(10)2 = {0} and

we have F 21
2 = C(10)2 ⊕ C⊥(10)2 . By Magma, |Aut(C(10)2)| = 5040 = 7!. On the

other hand, Theorems 3.2 and 3.3 imply that S7
∼= Aut(D(10)2) ≤ Aut(C(10)2).

So, Aut(C(10)2) ∼= S7. �

Theorem 3.6. The linear code C4 is an even binary code with parameters
[35, 20, 4] and 35 codewords of minimum weight. The dual code C⊥4 is a [35, 15, 5]
binary code with 21 codewords of minimum weight. Furthermore, C4 is an LCD
code and Aut(C4) ∼= S7.

Proof. The code C4 is even since the 1-design D4 has the even block size 4.
Thus,  = ω35 ∈ C⊥4 and we have the equalities A21−l = Al on C⊥4 . Magma
shows that dim(C4) = 20 and

WC4(x, y) =x35 + 35x31y4 + 210x29y6 + 1750x27y8 + 10556x25y10

+ 49700x23y12 + 140540x21y14 + 253925x19y16 + 277200x17y18

+ 190939x15y20 + 91490x13y22 + 28420x11y24 + 3780x9y26

+ 30x7y28,

WC⊥4 (x, y) =x35 + 21x30y5 + 105x27y8 + 70x26y9 + 105x25y10 + 420x24y11

+ 735x23y12 + 1295x22y13 + 2040x21y14 + 2877x20y15

+ 3990x19y16 + 4725x18y17 + 4725x17y18 + 3990x16y19

+ 2877x15y20 + 2040x14y21 + 1295x13y22 + 735x12y23

+ 420x11y24 + 105x10y25 + 70x9y26 + 105x8y27 + 21x5y30 + y35.

Hence, C4 and C⊥4 are binary codes with the parameters [35, 20, 4] and [35, 15, 5]
containing 35 and 21 codewords of minimum weights, respectively. These codes
are far from being optimal. By Magma, dim(hull(C4)) = 0 and F 35

2 = C4⊕C⊥4 .
Magma shows that |Aut(C4)| = 5040 and moreover, by Theorems 3.2 and 3.3,
S7
∼= Aut(D4) ≤ Aut(C4). So, the assertion is implied. �
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4. The designs from the codes C⊥(10)1
, C⊥(10)2

, C4 and C⊥4
In this section, we use the following method given at the end of Section 4

of [20] to construct 1-designs:

Theorem 4.1. [20] If C is a code of length n and ω ∈ C then Supp(ω)Aut(C)

forms a 1-(n, l, kl) design Dω, where wt(ω) = l and kl = l|ωAut(C)|/n.

Now, according to the Theorem 4.1, we consider the binary codes C⊥(10)1 ,

C⊥(10)2 , C4 and C⊥4 , and their automorphism group S7. Note that the codes

C(10)1 and C(10)2 will not be considered since C(10)2 ⊆ C⊥(10)1 , C(10)1 ⊆ C⊥(10)2 and

computations do not yield new designs. By Theorem 4.1, if ω is a codeword in
C⊥(10)1 or C⊥(10)2 of weight l then Supp(ω)S7 forms a 1-(21, l, l|ωS7 |/21) design.

Again, if ω is a codeword in C4 or C⊥4 of weight l then Supp(ω)S7 forms a 1-
(35, l, l|ωS7 |/35) design. These designs are constructed by a computer program
in Magma. The information we get about the actions of S7 on the mentioned
codes is given in Tables 2-5 in the Appendix.

In Tables 2-5, codeword’s weight is under the symbol ‘wt’. If a weight
class C(l) splits into more than one orbit then the ith orbit is denoted by
C(l)i and the related entry line is ‘(l)i’. If the action is transitive then the
entry line is written ‘l’. The notation ‘(S7)(l)i,C ’ denotes the structure of the
stabilizer of a codeword ω of weight l in the ith orbit of C(l). These stabilizers
can be determined by finding their normal or maximal subgroups in Magma.
The maximality of stabilizers is written under the column ‘Max.’ and ‘D(l)i,C ’
shows the parameters of the constructed designs. The number of blocks is
written under the column ‘# blocks’. In these tables, trivial designs will not
be considered. Among these 1-designs, two 2-designs D5,C⊥

(10)2

and D16,C⊥
(10)2

are obtained and, in fact, they are complement to each other. Moreover, the
following theorem is deduced:

Theorem 4.2. If ω ∈ C⊥(10)2 is of weight 5 then Supp(ω)S7 forms a 2-(21, 5, 12)

design D5,C⊥
(10)2

. Moreover, Aut(D5,C⊥
(10)2

) ∼= S7 and (S7)ω ∼= 5:22.

5. Conclusion

As it is shown, we can construct designs and their codes from the primitive
permutation representations of a given group. Moreover, by computing the
automorphism group of a code so obtained and orbiting the support of any
codeword under this automorphism group, some designs can be constructed.
One of our goals is to find t-designs with t ≥ 2. In this manuscript, we see that
there is a 2-(21, 5, 12) design and, as far as I know, it is a new one. In order to
find new designs, this process can be used for any group.
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8. Appendix

The labelling of the columns of Table 1 is described in Section 3, above
Theorem 3.3. Also, the labelling of the columns of Tables 2-5 is described in
Section 4, above Theorem 4.2.

Table 1. Binary codes from A7.

Max. Deg. # Len. |Aut(D)| Code Dual |Aut(C)|

S5 21 3
10(1)
10(1)

5040
5040

[21, 14, 4]
[21, 6, 6]

[21, 7, 6]
[21, 15, 3]

5040
5040

(A4 × 3):2 35 4
4(1)
12(1)
18(1)

5040
5040
40320

[35, 20, 4]
[35, 20, 4]

—

[35, 15, 5]
[35, 15, 5]

—

5040
5040
—

Table 2. The stabilizers and designs from C⊥(10)1 .

wt (S7)(l)i,C⊥(10)1
Max. D(l)i,C⊥(10)1

# blocks

6 S6 Yes 1-(21, 6, 2) 7
9 S4 × S3 Yes 1-(21, 9, 15) 35
10 S5 × 2 Yes 1-(21, 10, 10) 21
11 S5 × 2 Yes 1-(21, 11, 11) 21
12 S4 × S3 Yes 1-(21, 12, 20) 35
15 S6 Yes 1-(21, 15, 5) 7
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Table 3. The stabilizers and designs from C⊥(10)2 .

wt (S7)(l)i,C⊥(10)2
Max. D(l)i,C⊥(10)2

# blocks

3 S4 × S3 Yes 1-(21, 3, 5) 35
4 D8 × S3 No 1-(21, 4, 20) 105
5 5:22 No 2-(21, 5, 12) 252

(6)1 32:D8 No 1-(21, 6, 20) 70
(6)2 D12 No 1-(21, 6, 120) 420
(6)3 D8 × 2 No 1-(21, 6, 90) 315
(7)1 22 No 1-(21, 7, 420) 1260
(7)2 D14 No 1-(21, 7, 120) 360
(7)3 D12 × 2 No 1-(21, 7, 70) 210
(7)4 D8 × S3 No 1-(21, 7, 35) 105

(8)1, (8)2 22 No 1-(21, 8, 480) 1260
(8)3 D8 No 1-(21, 8, 240) 630
(8)4 S4 × 2 No 1-(21, 8, 40) 105
(9)1 S3 No 1-(21, 9, 360) 840
(9)2 D8 No 1-(21, 9, 270) 630

(9)3, (9)4 22 No 1-(21, 9, 540) 1260
(9)5 S4 × 2 No 1-(21, 9, 45) 105
(9)6 D12 No 1-(21, 9, 180) 420
(10)1 D8 No 1-(21, 10, 300) 630
(10)2 23 No 1-(21, 10, 300) 630
(10)3 D12 No 1-(21, 10, 200) 420
(10)4 2 No 1-(21, 10, 1200) 2520
(10)5 A5:22 Yes 1-(21, 10, 10) 21
(10)6 22 No 1-(21, 10, 600) 1260
(11)1 2 No 1-(21, 11, 1320) 2520
(11)2 D8 No 1-(21, 11, 330) 630
(11)3 23 No 1-(21, 11, 330) 630
(11)4 22 No 1-(21, 11, 660) 1260
(11)5 D12 No 1-(21, 11, 220) 420
(11)6 A5:22 Yes 1-(21, 11, 11) 21
(12)1 D8 No 1-(21, 12, 360) 630

(12)2, (12)3 22 No 1-(21, 12, 720) 1260
(12)4 S3 No 1-(21, 12, 480) 840
(12)5 S4 × 2 No 1-(21, 12, 60) 105
(12)6 D12 No 1-(21, 12, 240) 420

(13)1, (13)2 22 No 1-(21, 13, 780) 1260
(13)3 D8 No 1-(21, 13, 390) 630
(13)4 S4 × 2 No 1-(21, 13, 65) 105
(14)1 D14 No 1-(21, 14, 240) 360
(14)2 22 No 1-(21, 14, 840) 1260
(14)3 D12 × 2 No 1-(21, 14, 140) 210
(14)4 D8 × S3 No 1-(21, 14, 70) 105
(15)1 D12 No 1-(21, 15, 300) 420
(15)2 32:D8 No 1-(21, 15, 50) 70
(15)3 D8 × 2 No 1-(21, 15, 225) 315

16 5:22 No 2-(21, 16, 144) 252
17 D8 × S3 No 1-(21, 17, 85) 105
18 S4 × S3 No 1-(21, 18, 30) 35
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Table 4. The stabilizers and 1-designs from C4.

wt (S7)(l)i,C4 Max. D(l)i,C4 # blocks

4 S4 × S3 Yes 1-(35, 4, 4) 35
6 D12 × 2 No 1-(35, 6, 36) 210

(8)1 22 No 1-(35, 8, 288) 1260
(8)2 S4 × 2 No 1-(35, 8, 24) 105
(8)3 32:D8 No 1-(35, 8, 16) 70
(8)4 D8 × 2 No 1-(35, 8, 72) 315

(10)1, . . . , (10)4 22 No 1-(35, 10, 360) 1260
(10)5 D20 No 1-(35, 10, 72) 252
(10)6 2 No 1-(35, 10, 720) 2520

(10)7, (10)8 S3 No 1-(35, 10, 240) 840
(10)9 A5 No 1-(35, 10, 24) 84
(10)10 S3 × S3 No 1-(35, 10, 40) 140
(10)11 23 No 1-(35, 10, 180) 630
(10)12 S3 × 22 No 1-(35, 10, 60) 210

(12)1, . . . , (12)9 2 No 1-(35, 12, 864) 2520
(12)10, . . . , (12)14 22 No 1-(35, 12, 432) 1260
(12)15, . . . , (12)17 1 No 1-(35, 12, 1728) 5040

(12)18, (12)19 S3 No 1-(35, 12, 288) 840
(12)20, . . . , (12)22 D8 No 1-(35, 12, 216) 630

(12)23 23 No 1-(35, 12, 216) 630
(12)24, (12)25 D8 × 2 No 1-(35, 12, 108) 315

(12)26 S4 No 1-(35, 12, 72) 210
(12)27 S4 × S3 Yes 1-(35, 12, 12) 35
(12)28 S4 × 2 No 1-(35, 12, 36) 105
(12)29 D12 No 1-(35, 12, 144) 420

(14)1, . . . , (14)12 1 No 1-(35, 14, 2016) 5040
(14)13, . . . , (14)36 2 No 1-(35, 14, 1008) 2520
(14)37, . . . , (14)49 22 No 1-(35, 14, 504) 1260

(14)50, (14)51 S3 No 1-(35, 14, 336) 840
(14)52 23 No 1-(35, 14, 252) 630
(14)53 D12 No 1-(35, 14, 168) 420
(14)54 D12 × 2 No 1-(35, 14, 84) 210
(14)55 S3 × S3 No 1-(35, 14, 56) 140
(14)56 D14:3 Yes 1-(35, 14, 48) 120

(16)1, . . . , (16)30 1 No 1-(35, 16, 2304) 5040
(16)31, . . . , (16)57 2 No 1-(35, 16, 1152) 2520

(16)58, (16)59 3 No 1-(35, 16, 768) 1680
(16)60, . . . , (16)77 22 No 1-(35, 16, 576) 1260

(16)78 4 No 1-(35, 16, 576) 1260
(16)79, . . . , (16)81 S3 No 1-(35, 16, 384) 840
(16)82, . . . , (16)85 D8 No 1-(35, 16, 288) 630

(16)86 23 No 1-(35, 16, 288) 630
(16)87, (16)88 D12 No 1-(35, 16, 192) 420

(16)89 D8 × 2 No 1-(35, 16, 144) 315
(16)90, (16)91 S4 No 1-(35, 16, 96) 210

(16)92 S4 × 2 No 1-(35, 16, 48) 105
(16)93 S4 × S3 Yes 1-(35, 16, 16) 35
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(18)1, . . . , (18)30 1 No 1-(35, 18, 2592) 5040
(18)31, . . . , (18)71 2 No 1-(35, 18, 1296) 2520

(18)72 3 No 1-(35, 18, 864) 1680
(18)73, . . . , (18)85 22 No 1-(35, 18, 648) 1260

(18)86 6 No 1-(35, 18, 432) 840
(18)87, . . . , (18)89 23 No 1-(35, 18, 324) 630
(18)90, . . . , (18)93 D12 No 1-(35, 18, 216) 420

(18)94 23:3 No 1-(35, 18, 108) 210
(20)1, . . . , (20)22 1 No 1-(35, 20, 2880) 5040
(20)23, . . . , (20)46 2 No 1-(35, 20, 1440) 2520

(20)47 3 No 1-(35, 20, 960) 1680
(20)48, . . . , (20)54 22 No 1-(35, 20, 720) 1260

(20)55 4 No 1-(35, 20, 720) 1260
(20)56, . . . , (20)58 S3 No 1-(35, 20, 480) 840
(20)59, . . . , (20)63 D8 No 1-(35, 20, 360) 630

(20)64 D10 No 1-(35, 20, 288) 504
(20)65, (20)66 D12 No 1-(35, 20, 240) 420

(20)67 D8 × 2 No 1-(35, 20, 180) 315
(20)68 D10:2 No 1-(35, 20, 144) 252
(20)69 D12 × 2 No 1-(35, 20, 120) 210
(20)70 S5 × 2 Yes 1-(35, 20, 12) 21
(20)71 S6 Yes 1-(35, 20, 4) 3

(22)1, . . . , (22)8 1 No 1-(35, 22, 3168) 5040
(22)9, . . . , (22)22 2 No 1-(35, 22, 1584) 2520

(22)23, (22)24 3 No 1-(35, 22, 1056) 1680
(22)25, . . . , (22)31 22 No 1-(35, 22, 792) 1260
(22)32, . . . , (22)34 S3 No 1-(35, 22, 528) 840

(22)35 23 No 1-(35, 22, 396) 630
(22)36 D12 No 1-(35, 22, 264) 420
(22)37 S3 × S3 No 1-(35, 22, 88) 140

(24)1, (24)2 1 No 1-(35, 24, 3456) 5040
(24)3, . . . , (24)6 2 No 1-(35, 24, 1728) 2520
(24)7, . . . , (24)9 22 No 1-(35, 24, 864) 1260

(24)10 4 No 1-(35, 24, 864) 1260
(24)11 S3 No 1-(35, 24, 576) 840
(24)12 D8 No 1-(35, 24, 432) 630
(24)13 23 No 1-(35, 24, 432) 630
(24)14 D12 No 1-(35, 24, 288) 420
(24)15 D8 × 2 No 1-(35, 24, 216) 315
(24)16 S4 No 1-(35, 24, 144) 210
(24)17 S4 × 2 No 1-(35, 24, 72) 105
(24)18 (S3 × S3):2 No 1-(35, 24, 48) 70

(26)1, (26)2 22 No 1-(35, 26, 936) 1260
(26)3 S3 No 1-(35, 26, 624) 840
(26)4 D12 × 2 No 1-(35, 26, 156) 210
(26)5 23:3 No 1-(35, 26, 156) 210

28 PSL2(7) No 1-(35, 28, 24) 30
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Table 5. The stabilizers and designs from C⊥4 .

wt (S7)(l)i,C⊥4 Max. D(l)i,C⊥4 # blocks

5 S5 × 2 Yes 1-(35, 5, 3) 21
8 S4 × 2 No 1-(35, 8, 24) 105
9 (S3 × S3):2 No 1-(35, 9, 18) 70
10 D8 × S3 No 1-(35, 10, 30) 105
11 D12 No 1-(35, 11, 132) 420

(12)1 D8 No 1-(35, 12, 216) 630
(12)2 D8 × S3 No 1-(35, 12, 36) 105
(13)1 D8 No 1-(35, 13, 234) 630
(13)2 23 No 1-(35, 13, 234) 630
(13)3 S4 × S3 Yes 1-(35, 13, 13) 35
(14)1 22 No 1-(35, 14, 504) 1260
(14)2 D12 No 1-(35, 14, 168) 420
(14)3 D14 No 1-(35, 14, 144) 360

(15)1, (15)2 22 No 1-(35, 15, 540) 1260
(15)3 D20 No 1-(35, 15, 108) 252
(15)4 S4 × 2 No 1-(35, 15, 45) 105

(16)1, (16)2 22 No 1-(35, 16, 576) 1260
(16)3 S3 No 1-(35, 16, 384) 840
(16)4 D8 No 1-(35, 16, 288) 630
(17)1 2 No 1-(35, 17, 1224) 2520
(17)2 22 No 1-(35, 17, 612) 1260
(17)3 D12 No 1-(35, 17, 204) 420
(17)4 D8 × 2 No 1-(35, 17, 153) 315
(17)5 D12 × 2 No 1-(35, 17, 102) 210
(18)1 2 No 1-(35, 18, 1296) 2520
(18)2 22 No 1-(35, 18, 648) 1260
(18)3 D12 No 1-(35, 18, 216) 420
(18)4 D8 × 2 No 1-(35, 18, 162) 315
(18)5 D12 × 2 No 1-(35, 18, 108) 210

(19)1, (19)2 22 No 1-(35, 19, 684) 1260
(19)3 S3 No 1-(35, 19, 456) 840
(19)4 D8 No 1-(35, 19, 342) 630

(20)1, (20)2 22 No 1-(35, 20, 720) 1260
(20)3 D20 No 1-(35, 20, 144) 252
(20)4 S4 × 2 No 1-(35, 20, 60) 105
(21)1 22 No 1-(35, 21, 756) 1260
(21)2 D12 No 1-(35, 21, 252) 420
(21)3 D14 No 1-(35, 21, 216) 360
(22)1 23 No 1-(35, 22, 396) 630
(22)2 D8 No 1-(35, 22, 396) 630
(22)3 S4 × S3 Yes 1-(35, 22, 22) 35
(23)1 D8 No 1-(35, 23, 414) 630
(23)2 D8 × S3 No 1-(35, 23, 69) 105

24 D12 No 1-(35, 24, 288) 420
25 D8 × S3 No 1-(35, 25, 75) 105
26 (S3 × S3):2 No 1-(35, 26, 52) 70
27 S4 × 2 No 1-(35, 27, 81) 105
30 S5 × 2 Yes 1-(35, 30, 18) 21
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