
VARENTROPY ESTIMATORS APPLIED TO TEST OF FIT

FOR INVERSE GAUSSIAN DISTRIBUTION

H. Alizadeh Noughabi � and M. Shafaei Noughabi

Article type: Research Article

(Received: 27 April 2023, Received in revised form 13 September 2023)

(Accepted: 13 October 2023, Published Online: 25 October 2023)
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are obtained and then power values of the proposed tests against various
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1. Introduction

The Inverse Gaussian distribution (IG) is a continuous probability distribu-
tion that is widely used in statistics and probability theory. Its density function
is

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
− λ

2µ2x
(x− µ)

2

}
, x > 0,

where µ and λ are parameters. The mean and variance of this distribution are
µ and µ3

/
λ, respectively.

The Inverse Gaussian distribution has many important properties that make
it useful in a wide variety of applications. For example, it is a conjugate prior
distribution for the mean of a normal distribution with unknown variance,
which means that it can be used to derive a posterior distribution for the mean
of the normal distribution. It is also used in survival analysis to model the
time until an event occurs, such as the failure of a machine or the death of a
patient.
The Inverse Gaussian distribution has several important applications in finance,
where it is used to model the distribution of stock prices, interest rates, and
other financial variables. It is also used in engineering and physics to model the
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distribution of reaction times, particle sizes, and other physical variables. Its
distinctive shape and important properties make it a valuable tool for modeling
a wide range of phenomena in many different fields. For more details about
applications, one can see Folks and Chhikara (1978), Chhikara and Folks (1989),
Seshadri (1999), and their references.
Here are some of the applications of the Inverse Gaussian distribution:

(1) Finance: The Inverse Gaussian distribution is widely used in finance
to model the distribution of stock prices, interest rates, and other fi-
nancial variables. It is particularly useful for modeling the distribution
of asset returns because it allows for skewness and kurtosis, which are
common in financial data.

(2) Survival analysis: The Inverse Gaussian distribution is commonly
used in survival analysis to model the time until an event occurs, such
as the failure of a machine or the death of a patient. It is particularly
useful for modeling data that exhibit a non-constant hazard rate, which
means that the probability of an event occurring changes over time.

(3) Reaction times: The Inverse Gaussian distribution is used in psy-
chology and neuroscience to model the distribution of reaction times in
experiments. It is particularly useful for modeling data that exhibit a
skewed distribution, such as reaction times that are faster on average
than they are slow.

(4) Particle size analysis: The Inverse Gaussian distribution is used in
engineering and physics to model the distribution of particle sizes in
materials. It is particularly useful for modeling data that exhibit a
skewed distribution, such as particle sizes that are smaller on average
than they are larger.

(5) Quality control: The Inverse Gaussian distribution is used in quality
control to model the distribution of defects in a manufacturing process.
It is particularly useful for modeling data that exhibit a skewed distri-
bution, such as defects that are less common on average than they are
more common.

In summary, the Inverse Gaussian distribution has a wide range of applications
in many different fields, including finance, survival analysis, psychology, engi-
neering, physics, and quality control. Its ability to model skewed distributions
and non-constant hazard rates makes it a valuable tool for modeling a wide
range of phenomena. One can see for example, Folks and Chhikara (1978),
Bardsley (1980), Chhikara and Folks (1989), Seshadri (1993,1999), Johnson
et al. (1994), and Barndorff-Nielsen (1994). Therefore, constructing powerful
goodness of fit tests for the IG distribution is an important issue. In this ar-
ticle, we develop some goodness of tests for the IG distribution using different
varentropy estimators.
The goodness of fit tests are statistical tests used to evaluate whether a set of
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data is consistent with a particular probability distribution. The basic idea be-
hind the goodness of fit test is to compare the observed data with the expected
values under a given distribution, and to determine whether the differences
between the observed and expected values are statistically significant.
One of the well-known goodness of fit tests is the Kolmogorov-Smirnov test,
which is used to test whether a set of data follows a particular continuous
distribution. This test is used in many statistical software and is particularly
useful for testing the fit of an IG distribution to a set of data.
The goodness of fit tests has important applications in many fields, including
biology, engineering, finance, physics, and psychology. For example, in biology,
goodness of fit tests can be used to test whether the distribution of a particular
trait in a population follows a particular genetic model. In finance, goodness
of fit tests can be used to test whether stock returns follow a particular distri-
bution, such as the normal or lognormal distribution. In psychology, goodness
of fit tests can be used to test whether a set of responses to a questionnaire
follows a particular response model, such as the Rasch model.
Overall, goodness of fit tests are powerful tools for evaluating the fit of a partic-
ular distribution to a set of data, and can be used to make important inferences
and predictions in a wide range of fields. They are essential for ensuring the va-
lidity and accuracy of statistical models and predictions. Goodness-of-fit test-
ing for the inverse Gaussian distribution has been investigated by some authors
including O’Reilly and Rueda (1992), Pavur et al. (1992), Gunes el al. (1997),
Mergel (1999), Ducharme (2001), Mudholkar et al. (2001), Henze and Klar
(2002), Mudholkar and Tian (2002), Vladimirescu and Tunaru (2003), Natara-
jan and Mudholkar (2004), Vexler et al. (2011), Al-Omari and Haq (2012),
Best et al. (2012), Choi (2013), Lequesne and Regnault (2018), Alizadeh and
Mohtashami (2020), Allison et al. (2022), and Alizadeh and Shafaei (2023).
Moreover, the first time Vasicek (1976) applied the entropy of a continuous
random variable and introduced a goodness of fit test for normal distribution
based on entropy.
In Section 2, some estimators for the varentropy of a continuous random vari-
able are presented and their properties are stated. In Section 3, new test sta-
tistics for testing a hypothesis that the sample comes from an Inverse Gaussian
distribution based on the varentropy estimators are introduced. In Section
4, the results of our simulation studies are described. The percentage points
and type I error of our test statistics are obtained for different sample sizes
based on 100,000 sample values generated by a Monte Carlo experiment. More-
over, the power values of the proposed tests are computed and compared with
the well-known Kolmogorov-Smirnov test. Simulation results indicate that the
varentropy-based tests perform well against various alternatives and have dis-
tinctly higher power than the competing test. In Section 5, a real data set
is used to illustrate the application of the proposed tests. Some concluding
remarks are contained in Section 6.
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2. Varentropy and its estimators

Shannon differential entropy (1948) of a continuous random variable is a well-
known information measure that represents the expectation of the information
content of an absolutely continuous random variable. The corresponding vari-
ance is termed varentropy and is used in various applications of information
theory. Recent contributions on the varentropy can be found in various arti-
cles by Bobkov and Madiman (2011), Kontoyiannis and Verdu (2014), Arikan
(2016), Peccarelli (2017), Buono and Longobardi (2020), Di Crescenzo et al.
(2021), Di Crescenzo and Paolillo (2021), Maadani et al. (2021), Paolillo (2021),
Zaid et al. (2022), Saha and Kayal (2023), and Sharma and Kundu (2023).
Suppose that a random variable X has distribution function F (x) with contin-
uous density function f(x). The random variable

IC(X) = − log f(X),

is often referred as the information content of X. The expectation of the infor-
mation content of X, is termed differential entropy and is given by

H(X) = E [IC(X)] = −E [log f(X)] = −
∫ ∞
−∞

f(x) log f(x)dx .

Intuitively, H(X) measures the expected uncertainty contained in f(x) about
the predictability of an outcome of X.
The varentropy of continuous random variable X is defined by the variance of
the information content of X is given by

V (X) = V ar [IC(X)] = V ar [log f(X)] = E
[
(IC(X))

2
]
− E2 [IC(X)]

= E
[
(IC(X))

2
]
− [H(X)]

2

=
∫∞
−∞ f(x)[log f(x)]

2
dx−

[∫∞
−∞ f(x) log f(x)dx

]2
.

The varentropy thus measures the variability in the information content of X.
This measure has been investigated by some authors. Fradelizi et al. (2016)
used it to find an optimal varentropy bound for log-concave distributions. Also,
a sharp uniform bound on varentropy for log-concave distributions is presented
by Madiman (2014). An alternative way to calculate a bound for varentropy is
discussed in Goodarzi et al. (2017). Application of the varentropy in reliability
theory is conducted by Di Crescenzo and Paolillo (2021). Also, the properties
of the varentropy of order statistics are studied by Maadani et al. (2021).
Recently, the problem of estimating the varentropy of continuous random vari-
ables is investigated by Alizadeh and Shafaei (2023). They introduced some
varentropy estimators and stated their properties. Also, they used a Monte
Carlo simulation to compute the root mean square error (RMSE) of the es-
timators and then a comparison between the proposed estimators in terms of
RMSE is performed. Their estimators are described as follows.
Suppose X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics of a random sample
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of size n from an unknown continuous distribution F with a probability den-
sity function f. We interest in estimate of varentropy V (X) of an unknown
continuous probability density function f.

2.1. The first estimator. The first estimator is based on the fact that V (X)
can be expressed as

V (X) =

∫ 1

0

log2

{
d

dp
F−1(p)

}−1
dp−

[∫ ∞
−∞

log

{
d

dp
F−1(p)

}−1
dp

]2
.

We replace the distribution function F by the empirical distribution function
Fn, and use a difference operator instead of the differential operator and then
estimate the derivative of F−1(p) by a function of the order statistics. Assuming
that X1, · · · , Xn is a random sample, the first estimator is given by

V Vmn = 1
n

n∑
i=1

log2
(

2m/n
X(i+m)−X(i−m)

)
−
[
1
n

n∑
i=1

log
(

2m/n
X(i+m)−X(i−m)

)]2
= 1

n

n∑
i=1

log2
(
X(i+m) −X(i−m)

)
−
[
1
n

n∑
i=1

log
(
X(i+m) −X(i−m)

)]2
.

where the window size m is a positive integer smaller than n/2, X(i) = X(1)

if i < 1, X(i) = X(n) if i > n . According to Alizadeh and Shafaei (2023),
V Vmn → V (X) in probability as n→∞ ,m→∞, m/n→ 0.

2.2. The second estimator. Alizadeh and Shafaei (2023) adjusted the weights
of the first estimator, in order to take into account the fact that the differ-
ences are truncated around the smallest and the largest data points. (i.e.,
X(i+m)−X(i−m) is replaced by X(i+m)−X(1) when i ≤ m and X(i+m)−X(i−m)

is replaced by X(n) − X(i−m) when i ≥ n −m + 1). The second estimator is
given by

V Emn =
1

n

n∑
i=1

log2

(
cim/n

X(i+m) −X(i−m)

)
−

[
1

n

n∑
i=1

log

(
cim/n

X(i+m) −X(i−m)

)]2
,

where

ci =

 1 + i−1
m , 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m , n−m+ 1 ≤ i ≤ n.
It is easy to show that V Emn → V (X) as n→∞ ,m→∞, m/n→ 0.

2.3. The third estimator. The third estimator is as

V D =

∫ ∞
−∞

f̂(x)
[
log f̂(x)

]2
dx−

[∫ ∞
−∞

f̂(x) log f̂(x)dx

]2
,

where f̂ is the kernel density function estimation of f and is defined by

f̂(x) =
1

nh

n∑
j=1

k

(
x−Xj

h

)
,
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where h is a bandwidth and k is a kernel function which satisfies
∫∞
−∞ k(x)dx =

1 . Usually, k will be a symmetric probability density function.

2.4. The fourth estimator. Since

V (X) = E
[
(log f(X))

2
]
− E2 [log f(X)] ,

a simple estimator of varentropy can be obtained as

1

n

n∑
i=1

(log f(Xi))
2 −

[
1

n

n∑
i=1

log f(Xi)

]2
.

Therefore, Alizadeh and Shafaei (2023) proposed the following estimator.

V Bn =
1

n

n∑
i=1

(
log f̂(Xi)

)2
−

[
1

n

n∑
i=1

log f̂(Xi)

]2
,

where

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) ,

and the kernel function is chosen to be the standard normal density function
and the bandwidth h is chosen to be the normal optimal smoothing formula,
h = 1.06sn−

1
5 , where s is the sample standard deviation. They showed that

V Bn → V (X) , as n→∞ .

2.5. The fifth estimator. Based on a local linear model, Alizadeh and Shafaei
(2023) obtained an estimator of varentropy as

V Cmn =
1

n

n∑
i=1

log
2


i+m∑
j=i−m

(X(j) − X̄(i))(j − i)

n
i+m∑
j=i−m

(X(j) − X̄(i))
2

−
 1

n

n∑
i=1

log


i+m∑
j=i−m

(X(j) − X̄(i))(j − i)

n
i+m∑
j=i−m

(X(j) − X̄(i))
2



2

,

where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j) .

This estimator is consistent, V Cmn → V (X) in probability as n→∞ ,m→∞,
m/n→ 0.

2.6. The sixth estimator. Alizadeh and Shafaei (2023) proposed to estimate
the varentropy V (X) of an unknown continuous probability density function f
by

V Amn = 1
n

n∑
i=1

log2

{
f̂(X(i+m))+f̂(X(i−m))

2

}
−
[

1
n

n∑
i=1

log

{
f̂(X(i+m))+f̂(X(i−m))

2

}]2

= 1
n

n∑
i=1

log2
{
f̂(X(i+m)) + f̂(X(i−m))

}
−
[

1
n

n∑
i=1

log
{
f̂(X(i+m)) + f̂(X(i−m))

}]2

,
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where

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) ,

and the kernel function is chosen to be the standard normal density function and the

bandwidth h is chosen to be the normal optimal smoothing formula, h = 1.06sn−
1
5 ,

where s is the sample standard deviation. Also X(i) = X(1) if i < 1, X(i) = X(n)

if i > n. They proved that V Amn → V (X) in probability as n → ∞ ,m → ∞,
m/n→ 0.

2.7. Comparison of the estimators. Alizadeh and Shafaei (2023) performed a
simulation study to analyze the behaviors of the proposed estimators of varentropy.
They used the normal, exponential and uniform distributions and generated different
sample sizes of these distributions and then obtained the root of mean squared errors
(RMSEs) of the estimators. In varentropy estimation it is necessary to determine the
value of m for given n. Based on the recommendation of Alizadeh and Shafaei (2023),
we use the following heuristic formula:

m =
[√
n+ 0.5

]
.

The RMSE values and standard deviation of the six varentropy estimators at differ-
ent sample size for normal, exponential and uniform distributions are reported by
Alizadeh and Shafaei (2023). They observed that these estimators perform well un-
der different distributions. Under normal distribution, the estimator V D has the best
performance in terms of RMSE, and also the estimator V A has a better performance
than the other estimators in terms of standard deviation. For the exponential pop-
ulation, again the estimators V D and V A have the least RMSE and SD than the
competitors, respectively. Under uniform distribution, the estimator V A has a good
performance in compared to the other estimators. Generally, they concluded that the
estimators V D and V A behave better than the other estimators.
It should be noted that the derivation of the asymptotic properties of the consid-
ered estimators is substantially complicated. However, we investigate the asymptotic
behavior of the estimators by simulation. Figures 1-3 show the empirical densities
of the varentropy estimators generated with 10,000 samples of size n = 1000 from
the standard normal, exponential and uniform distributions. It is evident that the
limiting distribution of the estimators is a normal distribution with mean V (X).

3. The proposed tests for IG distribution

In this section, we apply the varentropy estimators and propose some goodness of
fit tests for the IG distribution. It should be mentioned that the results obtained in
this article are not general and are specific to testing the validity of the IG distribu-
tion.
Given a random sample X1, · · · , Xn from a continuous probability distribution F
with a density f(x) over a non-negative support, the hypothesis of interest is

H0 : f(x) = f0(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
−

λ

2µ2x
(x− µ)

2
}
, x > 0, for some (µ, λ) ∈ Θ ,

where µ and λ are unspecified and Θ = R+ ×R+. The alternative to H0 is

H1 : f(x) 6= f0(x;µ, λ), for any (µ, λ) ∈ Θ .

Without loss of any generality, one can reduce the above problem of goodness-of-fit, to
testing the hypothesis of uniformity on the unit interval, by means of the probability



20 H. Alizadeh Noughabi, and M. Shafaei Noughabi

Figure 1. Estimated empirical densities of the varentropy estimators generated
with 10,000 samples of size n = 1000 from the standard normal distribution.

Figure 2. Estimated empirical densities of the varentropy estimators generated
with 10,000 samples of size n = 1000 from the standard exponential distribution.

Figure 3. Estimated empirical densities of the varentropy estimators generated
with 10,000 samples of size n = 1000 from the uniform distribution.
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integral transformation U = F0(X). Therefore if Ui = F0(Xi) , i = 1, 2, · · · , n be the
transformed sample, the problem becomes the following testing uniformity.

H0 : f(u) = 1, 0 < u < 1

against

H1 : f(u) 6= 1, 0 < u < 1.

Now, we use the test proposed by Alizadeh and Shafaei (2023) for uniformity. There-
fore, the proposed test statistics can be constructed as follows.
Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics of the sample. Alizadeh and
Shafaei (2023) showed that for an f concentrated on [0, 1] one always has

V (X) ≥ 0 ,

with the minimum value of V (X), zero, being uniquely attained by the U(0, 1) density.
Based on this property, we construct our test ofH0. A consistent test of the hypothesis
of uniformity is then given by

Tn = V̂ (X),

where V̂ (X) is the sample estimate of V (X). In the previous section, we investigated
some estimators for varentropy V (X), and now we use them here.

Since the mentioned estimators, V̂ (X), converges in probability to V (X) as n→∞,
under the null hypothesis H0, Tn converges in probability to 0 as n→∞ and under
an alternative distribution on [0, 1] with absolutely continuous density f, Tn converges
in probability to a number larger than zero as n→∞.
Based on different varentropy estimators, we propose the following test statistics for
the test of fit for IG distribution.

TV = V Vmn =
1

n

n∑
i=1

log2 (U(i+m) − U(i−m)

)
−

[
1

n

n∑
i=1

log
(
U(i+m) − U(i−m)

)]2

;

TE = V Emn =
1

n

n∑
i=1

log2

(
cim/n

U(i+m) − U(i−m)

)
−

[
1

n

n∑
i=1

log

(
cim/n

U(i+m) − U(i−m)

)]2

;

TD = V D =

∫ ∞
−∞

f̂(u)
[
log f̂(u)

]2
du−

[∫ ∞
−∞

f̂(u) log f̂(u)du

]2

;

TB = V Bn =
1

n

n∑
i=1

(
log f̂(Ui)

)2

−

[
1

n

n∑
i=1

log f̂(Ui)

]2

;

TC = V Cmn =
1

n

n∑
i=1

log
2


i+m∑
j=i−m

(U(j) − Ū(i))(j − i)

n
i+m∑
j=i−m

(U(j) − Ū(i))
2

−
 1

n

n∑
i=1

log


i+m∑
j=i−m

(U(j) − Ū(i))(j − i)

n
i+m∑
j=i−m

(U(j) − Ū(i))
2



2

;

TA = V Amn =
1

n

n∑
i=1

log
2
{
f̂(U(i+m)) + f̂(U(i−m))

}
−
[

1

n

n∑
i=1

log
{
f̂(U(i+m)) + f̂(U(i−m))

}]2
.

where Ui = F0(Xi; µ̂, λ̂) , i = 1, 2, · · · , n, denote the transformed sample. Also, µ̂

and λ̂ are the maximum likelihood estimates of the parameters µ and λ, respectively.

µ̂ = X̄ ; λ̂ =
n

n∑
i=1

(
1
/
Xi − 1

/
X̄
) .
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Clearly, as n → ∞, the maximum likelihood estimators µ̂ and λ̂ tend to µ and λ.
Let U(1) ≤ U(2) ≤ · · · ≤ U(n) denote the order statistics of the transformed sample.

Since the empirical varentropy converges to the varentropy of U, i.e., V̂ (U)→ V (U),
the proposed tests are consistent. Under the null hypothesis H0, the proposed test
statistics converge in probability to 0 as n→∞ and under an alternative distribution
H1, they converge in probability to a number larger than zero as n→∞.
Guided by these properties, given any significance level α, and any finite sample size
n, our test procedure is then defined by the critical region

Tn = V̂ (X) ≥ C1−α

where C1−α is set so that the test has the desired level α for given n. For specific α
and n, the C1−α can be obtained by Monte Carlo methods. For the proposed tests,
we determine the C1−α based on Monte Carlo simulation.

4. Percentage points and power study

In this section, we obtain the percentage points of the proposed test statistics by
Monte Carlo methods and then power values of the tests are computed.

4.1. Critical values and the actual sizes. The distribution of the test statistics
TV, TE, TD, TB, TC and TA under the null hypothesis cannot be evaluated analyt-
ically. Therefore, the critical values of the test statistics are computed by the Monte
Carlo method.
For selected values of the sample size n, 100,000 samples of size n from IG distribution
are generated. For each sample, the test statistics are computed. For level α, the
percentage point C1−α of the distribution of Tn is estimated by the 1− α percentile
of the empirical distribution function of Tn based on the observed 100,000 samples.
These estimates are presented in Table 1.

Table 1. Percentage points of the proposed test statistics at level
α = 0.05

n TV TE TD TB TC TA

10 0.5012 0.3137 0.0970 0.1802 4587 0.0230

20 0.3450 0.2062 0.0830 0.1399 0.3035 0.0382

30 0.2561 0.1526 0.0730 0.1189 0.2246 0.0449

40 0.2066 0.1228 0.0666 0.1057 0.1814 0.0469

50 0.1744 0.1032 0.0613 0.0960 0.1529 0.0470

75 0.1316 0.0779 0.0526 0.0812 0.1153 0.0465

100 0.1112 0.0698 0.0474 0.0725 0.0999 0.0473

Moreover, Figure 4 shows the empirical density of the proposed test statistics for
n = 50, with 100,000 simulated random samples. We can see that the test statistic
TA has a smaller variance than the other test statistics.
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Table 2. Type I error control of the tests for the nominal
significance level α = 0.05.

IG(µ, λ) n D TV TE TD TB TC TA

IG(0.5, 0.5) 10 0.0499 0.0479 0.0485 0.0485 0.0492 0.0482 0.0506
20 0.0498 0.0507 0.0496 0.0498 0.0492 0.0493 0.0516
30 0.0498 0.0500 0.0497 0.0502 0.0496 0.0490 0.0500
50 0.0503 0.0496 0.0487 0.0493 0.0496 0.0499 0.0497

IG(0.5, 1) 10 0.0380 0.0480 0.0466 0.0449 0.0462 0.0481 0.0449
20 0.0393 0.0471 0.0432 0.0447 0.0460 0.0456 0.0420
30 0.0399 0.0472 0.0461 0.0453 0.0468 0.0474 0.0427
50 0.0368 0.0448 0.0451 0.0454 0.0474 0.0471 0.0445

IG(0.5, 2) 10 0.0312 0.0452 0.0435 0.0403 0.0429 0.0452 0.0395
20 0.0302 0.0461 0.0426 0.0425 0.0450 0.0459 0.0379
30 0.0306 0.0454 0.0433 0.0433 0.0442 0.0451 0.0394
50 0.0304 0.0415 0.0407 0.0430 0.0440 0.0420 0.0404

IG(1, 0.5) 10 0.0666 0.0532 0.0549 0.0543 0.0537 0.0535 0.0568
20 0.0666 0.0551 0.0567 0.0560 0.0553 0.0557 0.0601
30 0.0683 0.0535 0.0554 0.0561 0.0551 0.0538 0.0584
50 0.0674 0.0546 0.0573 0.0584 0.0574 0.0545 0.0591

IG(1, 1) 10 0.0503 0.0491 0.0496 0.0501 0.0496 0.0496 0.0498
20 0.0505 0.0493 0.0479 0.0489 0.0494 0.0486 0.0512
30 0.0504 0.0504 0.0499 0.0503 0.0500 0.0502 0.0498
50 0.0498 0.0518 0.0496 0.0507 0.0521 0.0508 0.0500

IG(1, 2) 10 0.0393 0.0467 0.0465 0.0441 0.0458 0.0473 0.0442
20 0.0397 0.0493 0.0454 0.0451 0.0470 0.0477 0.0414
30 0.0381 0.0475 0.0453 0.0456 0.0465 0.0470 0.0431
50 0.0368 0.0436 0.0426 0.0442 0.0456 0.0427 0.0439

IG(2, 0.5) 10 0.0826 0.0560 0.0580 0.0587 0.0564 0.0566 0.0629
20 0.0860 0.0601 0.0647 0.0651 0.0623 0.0608 0.0715
30 0.0887 0.0624 0.0657 0.0635 0.0603 0.0625 0.0672
50 0.0844 0.0610 0.0621 0.0640 0.0620 0.0595 0.0657

IG(2, 1) 10 0.0651 0.0524 0.0542 0.0536 0.0531 0.0534 0.0560
20 0.0655 0.0553 0.0553 0.0537 0.0527 0.0543 0.0597
30 0.0678 0.0559 0.0571 0.0556 0.0542 0.0562 0.0590
50 0.0668 0.0553 0.0565 0.0554 0.0536 0.0550 0.0568

IG(2, 2) 10 0.0500 0.0491 0.0495 0.0489 0.0488 0.0490 0.0500
20 0.0500 0.0519 0.0500 0.0497 0.0503 0.0512 0.0518
30 0.0504 0.0495 0.0504 0.0499 0.0489 0.0490 0.0495
50 0.0486 0.0500 0.0482 0.0494 0.0500 0.0489 0.0492

In Table 2 the estimated type I error control using the 0.05 percentiles of the
tests is evaluated and reported (α = 0.05). According to the results of Table 2, the
value of the type I error increases with the increase of the value of µ/λ, so that if
µ/λ ≈ 1, then α is close to the nominal value. It is evident that for all tests, when
the parameters are equal the type I error are acceptable. Generally, we see that the
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Figure 4. Estimated empirical densities of the proposed test sta-
tistics generated with 100,000 samples of size n = 50 from the
Inverse Gaussian distribution.

actual sizes of the proposed tests are acceptable and therefore we can use these tests
in practice.

4.2. Power comparison. The power of each test is studied by means of Monte Carlo
simulations. In power comparison, we considered the following alternatives.

• the exponential distribution Exp(θ) with density θ exp(−θx);

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ);

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ);

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
;

• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)2/(2θ2)

)
;

• the Pareto distribution Pa(θ) with density θ
/
xθ+1 ;

• the uniform distribution U with density 1, 0 ≤ x ≤ 1;

• the Beta distributionBeta(α, β) with density xα−1(1− x)β−1
/
Beta(α, β), 0 ≤

x ≤ 1 ;

• the modified extreme value EV (θ), with distribution function 1−exp
(
θ−1(1− ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1+θx) exp
(
−x− θx2

/
2
)
;

• Dhillon’s (1981) distribution with distribution function 1−exp
(
−(log(x+ 1))θ+1

)
;
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• Chen’s (2000) distribution CH(θ), with distribution function 1−exp
(

2
(

1− ex
θ
))

.

Also, we consider the popular and common Kolmogorov-Smirnov test (1933) which is
used in practice and statistical software as the competitor test. The KS test statistic
as follows. Let X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics based on the random
sample X1, · · · , Xn.

D = max(D+, D−),

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); µ̂, λ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); µ̂, λ̂)− i− 1

n

}
.

Here, F0(x) is the cumulative distribution function of the IG distribution and (µ̂, λ̂)
are the maximum likelihood estimates of the parameter (µ, λ).

The powers of the considered tests are computed by Monte Carlo simulation.
Under each alternative, 100,000 samples of sizes 10, 20, 30 and 50 are generated.
Then, the power of the corresponding test was estimated by the frequency of the
event ”the test statistic is larger than the critical point”. The power estimates are
presented in Tables 3–6. For each alternative, the bold type in these tables indicates
the test achieving the maximal power.

Table 3. Monte Carlo power estimates of the tests for n = 10
and at the significance level α = 0.05.

Alternative D TV TE TD TB TC TA

Exp(1) 0.3847 0.2451 0.3159 0.3227 0.2963 0.2662 0.3633
W (0.5) 0.7628 0.6145 0.6713 0.6190 0.5679 0.6310 0.6850
W (2) 0.1609 0.1072 0.1488 0.1703 0.1574 0.1188 0.1900
Γ(0.5) 0.7189 0.5882 0.6485 0.6008 0.5567 0.6072 0.6681
Γ(2) 0.1563 0.0920 0.1259 0.1493 0.1375 0.1015 0.1626
HN 0.3917 0.2766 0.3528 0.3432 0.3155 0.2991 0.3976

LN(0, 0.5) 0.0376 0.0428 0.0443 0.0480 0.0500 0.0431 0.0453
LN(0, 1) 0.0966 0.0543 0.0669 0.0896 0.0866 0.0566 0.0877
LN(0, 2) 0.4337 0.2288 0.2933 0.2916 0.2527 0.2465 0.3352
Pa(0.5) 0.1932 0.1900 0.2235 0.1495 0.1315 0.1953 0.2356
Pa(1) 0.2962 0.3225 0.4008 0.2860 0.2623 0.3391 0.4308
Pa(2) 0.2679 0.3542 0.4281 0.2816 0.2590 0.3691 0.4405
U 0.4795 0.4876 0.5545 0.4143 0.3851 0.5024 0.5603

CH(0.5) 0.7397 0.6153 0.6715 0.6163 0.5692 0.6320 0.6859
CH(1) 0.4029 0.2866 0.3589 0.3426 0.3150 0.3079 0.4039
CH(1.5) 0.2593 0.1858 0.2507 0.2474 0.2261 0.2046 0.2995
LF (2) 0.3758 0.2625 0.3374 0.3351 0.3096 0.2869 0.3874
LF (4) 0.3561 0.2493 0.3238 0.3272 0.3036 0.2723 0.3739
EV (0.5) 0.4024 0.2875 0.3618 0.3462 0.3180 0.3112 0.4084
EV (1.5) 0.4064 0.3123 0.3912 0.3617 0.3343 0.3365 0.4354
DL(1) 0.1460 0.0758 0.1059 0.1401 0.1314 0.0838 0.1412
DL(1.5) 0.1101 0.0676 0.0914 0.1156 0.1102 0.0732 0.1185
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Table 4. Monte Carlo power estimates of the tests for n = 20
and at the significance level α = 0.05.

Alternative D TV TE TD TB TC TA

Exp(1) 0.6309 0.4427 0.5670 0.5572 0.5247 0.4746 0.6350
W (0.5) 0.9508 0.8888 0.9268 0.8875 0.8648 0.9026 0.9313
W (2) 0.2955 0.1558 0.2754 0.2981 0.2711 0.1919 0.3597
Γ(0.5) 0.9363 0.8627 0.9094 0.8704 0.8477 0.8803 0.9196
Γ(2) 0.2676 0.1231 0.2220 0.2573 0.2363 0.1522 0.2988
HN 0.6538 0.4875 0.6261 0.5937 0.5595 0.5387 0.6872

LN(0, 0.5) 0.0365 0.0402 0.0404 0.0576 0.0602 0.0401 0.0480
LN(0, 1) 0.1247 0.0490 0.0820 0.1280 0.1213 0.0557 0.1279
LN(0, 2) 0.6672 0.4123 0.5393 0.5049 0.4581 0.4561 0.5941
Pa(0.5) 0.3582 0.4209 0.5045 0.2612 0.2245 0.4346 0.4340
Pa(1) 0.6121 0.6954 0.8038 0.5667 0.5255 0.7245 0.7609
Pa(2) 0.5456 0.7194 0.8085 0.5339 0.4910 0.7429 0.7500
U 0.7826 0.8385 0.8909 0.7089 0.6764 0.8518 0.8532

CH(0.5) 0.9463 0.8841 0.9242 0.8797 0.8586 0.8992 0.9290
CH(1) 0.6679 0.5115 0.6474 0.5983 0.5623 0.5612 0.6993
CH(1.5) 0.4761 0.3325 0.4846 0.4471 0.4105 0.3845 0.5559
LF (2) 0.6355 0.4600 0.6079 0.5886 0.5556 0.5135 0.6738
LF (4) 0.6094 0.4323 0.5840 0.5713 0.5394 0.4870 0.6537
EV (0.5) 0.6685 0.5111 0.6448 0.5978 0.5629 0.5586 0.6943
EV (1.5) 0.6856 0.5559 0.6901 0.6278 0.5928 0.6051 0.7362
DL(1) 0.2328 0.0880 0.1727 0.2341 0.2184 0.1112 0.2510
DL(1.5) 0.1784 0.0768 0.1443 0.1887 0.1745 0.0947 0.2082

From Tables 3-6, we observe that no single test can be said to perform the best
against all alternatives. However, for almost alternatives the tests based on D, TE
and TA statistics have the most power. Generally, three tests D, TE and TA have a
good performance and power differences between these tests and the other tests are
substantial. Also, we can see that against alternative LN(0, 0.5), the test TB has the
most power.
In the other hand, from Table 2, we found that the actual sizes of the proposed tests
based on varentropy estimators were acceptable. Consequently, we can confidently
recommend the proposed tests in practice. Since for small sample sizes, the test based
on TA has a better performance than the other tests, we can generally conclude that
the test TA has a good performance against almost alternatives. For large sample
sizes, each of the tests D, TE and TA against different alternatives have the most
power and usually the differences of power between these tests are small.
We can also see that the power values of the tests increase when the sample sizes
increase.
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Table 5. Monte Carlo power estimates of the tests for n = 30
and at the significance level α = 0.05.

Alternative D TV TE TD TB TC TA

Exp(1) 0.7864 0.5845 0.7305 0.7115 0.6794 0.6401 0.7758
W (0.5) 0.9912 0.9729 0.9847 0.9697 0.9612 0.9772 0.9836
W (2) 0.4159 0.2181 0.3907 0.4045 0.3689 0.2772 0.4808
Γ(0.5) 0.9853 0.9609 0.9787 0.9615 0.9529 0.9685 0.9768
Γ(2) 0.3742 0.1628 0.3085 0.3444 0.3153 0.2079 0.3988
HN 0.8151 0.6629 0.7936 0.7519 0.7204 0.7138 0.8224

LN(0, 0.5) 0.0369 0.0385 0.0442 0.0624 0.0625 0.0409 0.0553
LN(0, 1) 0.1497 0.0462 0.0994 0.1598 0.1499 0.0576 0.1613
LN(0, 2) 0.8077 0.5719 0.7026 0.6526 0.6078 0.6170 0.7313
Pa(0.5) 0.5167 0.6421 0.7198 0.3574 0.3015 0.6488 0.5293
Pa(1) 0.8137 0.9061 0.9493 0.7472 0.7082 0.9163 0.8759
Pa(2) 0.7469 0.9135 0.9511 0.7122 0.6720 0.9219 0.8680
U 0.9201 0.9649 0.9799 0.8641 0.8410 0.9680 0.9413

CH(0.5) 0.9887 0.9724 0.9844 0.9670 0.9589 0.9770 0.9817
CH(1) 0.8265 0.6910 0.8094 0.7541 0.7222 0.7366 0.8271
CH(1.5) 0.6476 0.4852 0.6549 0.5947 0.5547 0.5477 0.6949
LF (2) 0.7979 0.6311 0.7759 0.7445 0.7132 0.6852 0.8112
LF (4) 0.7772 0.5979 0.7503 0.7262 0.6942 0.6558 0.7947
EV (0.5) 0.8270 0.6890 0.8102 0.7546 0.7232 0.7356 0.8276
EV (1.5) 0.8458 0.7512 0.8551 0.7899 0.7593 0.7902 0.8646
DL(1) 0.3118 0.1058 0.2350 0.3068 0.2863 0.1451 0.3318
DL(1.5) 0.2474 0.0896 0.1952 0.2496 0.2294 0.1192 0.2765

5. An Illustrative Example

In this section, we illustrate how the proposed tests can be applied to test the
goodness-of-fit for the IG distribution when the observations are available.

Example 5.1. Folks and Chhikara (1989) considered the following dataset, consist-
ing of 19 fracture toughness of MIG (metal inert gas) welds.
54.4, 62.6, 63.2, 67.0, 70.2, 70.5, 70.6, 71.4, 71.8, 74.1, 74.1, 74.3, 78.8, 81.8, 83.0,
84.4, 85.3, 86.9, 87.3.
Folks and Chhikara (1989) concluded by using the KS statistic that the IG distribution
is a reasonable fit. The histogram of the considered data set is presented in Figure 5.

Here, we apply the proposed tests to these data. First, the ML estimates of µ and
λ are computed as

µ̂ = X̄ = 74.3 and λ̂ =
n

n∑
i=1

(
1
/
Xi − 1

/
X̄
) = 4923.952 .

Then, the transformed sample ui = F0(xi; µ̂, λ̂) , i = 1, 2, · · · , n, are obtained. Fi-
nally, based on the formula of the test statistics given in Section 3, the value of each
test statistic is computed. Using the method described in Section 4.1, the critical



28 H. Alizadeh Noughabi, and M. Shafaei Noughabi

Table 6. Monte Carlo power estimates of the tests for n = 50
and at the significance level α = 0.05.

Alternative D TV TE TD TB TC TA

Exp(1) 0.9324 0.7963 0.8933 0.8748 0.8573 0.8364 0.9064
W (0.5) 0.9997 0.9986 0.9993 0.9977 0.9969 0.9990 0.9987
W (2) 0.6209 0.3507 0.5649 0.5643 0.5289 0.4273 0.6305
Γ(0.5) 0.9993 0.9972 0.9987 0.9966 0.9955 0.9978 0.9979
Γ(2) 0.5477 0.2443 0.4481 0.4849 0.4532 0.3131 0.5338
HN 0.9523 0.8719 0.9400 0.9094 0.8935 0.8995 0.9410

LN(0, 0.5) 0.0379 0.0330 0.0423 0.0685 0.0710 0.0357 0.0639
LN(0, 1) 0.1937 0.0465 0.1248 0.2093 0.1978 0.0660 0.2132
LN(0, 2) 0.9358 0.7840 0.8736 0.8311 0.7995 0.8167 0.8723
Pa(0.5) 0.7541 0.8925 0.9255 0.5219 0.4517 0.8892 0.6636
Pa(1) 0.9655 0.9950 0.9980 0.9265 0.9078 0.9952 0.9700
Pa(2) 0.9422 0.9949 0.9974 0.9040 0.8842 0.9952 0.9619
U 0.9918 0.9988 0.9995 0.9725 0.9658 0.9989 0.9900

CH(0.5) 0.9997 0.9986 0.9994 0.9974 0.9966 0.9988 0.9984
CH(1) 0.9561 0.8931 0.9469 0.9107 0.8957 0.9149 0.9400
CH(1.5) 0.8536 0.7198 0.8508 0.7832 0.7535 0.7703 0.8484
LF (2) 0.9439 0.8457 0.9277 0.9031 0.8875 0.8780 0.9320
LF (4) 0.9321 0.8181 0.9155 0.8946 0.8770 0.8610 0.9257
EV (0.5) 0.9564 0.8930 0.9487 0.9140 0.8983 0.9146 0.9433
EV (1.5) 0.9673 0.9303 0.9709 0.9354 0.9227 0.9467 0.9625
DL(1) 0.4537 0.1474 0.3390 0.4251 0.4032 0.2118 0.4520
DL(1.5) 0.3664 0.1182 0.2789 0.3516 0.3296 0.1714 0.3817

Figure 5. Histogram of data and a fitted IG density function.
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value of each test for n = 19, at the significance level 0.05 is obtained by Monte Carlo
simulation. Results are summarized in Table 7.

Table 7. The value of the test statistics and critical values at 5%
level.

Test Value of the test statistic Critical value Decision

D 0.13339 0.21478 Not reject H0

TV 0.20993 0.34779 Not reject H0

TE 0.11087 0.20449 Not reject H0

TD 0.02391 0.08349 Not reject H0

TB 0.04531 0.14182 Not reject H0

TC 0.20041 0.30509 Not reject H0

TA 0.00840 0.03523 Not reject H0

Because the value of each test statistic is smaller than the corresponding critical
value, the IG hypothesis is not rejected for these data at the significance level of 0.05.
Therefore, we can conclude that the underlying distribution of these data is an IG
distribution.

6. Conclusions

In this paper, we first discussed the varentropy estimators of a continuous random
variable. We then constructed some new goodness of fit tests for IG distribution based
on estimators of varentropy. The proposed test statistics are easy to compute and
consistency and the other properties of the proposed test statistics have presented.
We obtained the percentage points and type I error of the suggested tests. Power
values of the proposed tests against various alternatives for different sample sizes
were reported. Power simulations of the new tests based on the varentropy and the
power comparisons with KS test showed that the varentropy-based tests are viable
for testing the hypothesis of IG distribution. In fact, our power studies indicate that
generally the proposed test TA has distinctly higher power than the other tests.
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