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Abstract. Higher utilization of existing resources and facilities in order

to increase efficiency and profitability is always one of the basic challenges
for parallel processing systems and environments, and this challenge be-

comes more complicated when the system resources are heterogeneous.

One way to achieve high efficiency and profitability of heterogeneous par-
allel systems is to schedule tasks optimally. In this paper, an extended

tabu search-based scheduling algorithm (ESTS) is presented to improve
the profitability of heterogeneous parallel systems, which can achieve suit-

able solutions in a short computational time. To evaluate the efficiency of

the proposed solution, due to the lack of a suitable criterion to evaluate
this problem, the obtained results are compared with both the results

of an extended scheduling based on a genetic algorithm (ESGA) with

a large number of chromosomes and a high number of generations, as
well as an extended scheduling based on a simulated annealing algorithm

(ESSA) with a linear temperature reduction. The benchmark files of dif-

ferent sizes were tested under the same conditions, and the comparison
of results shows the superiority of the proposed solution in terms of prof-

itability and computational time.

Keywords: Heterogeneous parallel systems, profitability, allocation and

scheduling, tabu search, computational time.
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1. Introduction

Parallel processing refers to the simultaneous execution of multiple tasks on
multiple processing units, aiming to increase efficiency and speed up the task
to achieve the desired result. One of the main goals for parallel systems is
to increase the system’s efficiency and profitability. Such a model has various
practical applications. For instance, a set of tasks might represent a set of
orders that might result in a certain profit for an organization. Due to the lim-
itation of the resources, it should be decided whether to accept a specific order
or reject it; how and when to perform tasks should be also determined. Delay
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in completing the orders results in penalties that reduce the total profit of the
realized orders. Thus, maximizing the profit depends on minimizing the delay
in completing the orders [17]. Due to limitations and scarcity of resources, the
available resources should be managed well. One way to improve the efficiency
and profitability of parallel systems is optimal task scheduling. Task scheduling
is one of the most important challenges in achieving high efficiency in parallel
processing environments. The purpose of task scheduling is to allocate tasks to
free resources such that maximum parallelization while processing is realized.
Task scheduling refers to determining the starting and ending times of a set of
tasks regarding certain constraints. The constraints are either associated with
time or resources [2]. There are various types of distributed scheduling, includ-
ing static, dynamic, centralized, decentralized, preventive, and non-preventive
scheduling [11].
In some real parallel systems, the processing resources are different from each
other in some ways. This research has paid attention to this issue. Proper
use of the system’s heterogeneous resource capacity is necessary to achieve
high efficiency and profitability, and an efficient allocation and scheduling pro-
cess is very effective in achieving goals. The scheduling problem is associated
with a wide range of optimization problems that have recently attracted atten-
tion [7]. Studies show that scheduling problems are very diverse and have their
own conditions, characteristics, and limitations. Studies related to scheduling
problems have mainly focused on homogeneous and identical resources, aim-
ing at minimizing the total time or sum of time required to complete all tasks
(makespan), reducing the delay in completing tasks, reducing job rejection,
reducing the computational and execution time, etc. In this study, according
to real-world systems conditions, the issue of processing resource heterogene-
ity in parallel systems has been addressed in terms of both processing speed
heterogeneity and processing cost heterogeneity, which are focused simultane-
ously in quantitative studies. Also, in the literature, the issue of profitability
in heterogeneous parallel systems has not been discussed much. Furthermore,
in this study, some conditions and challenges that usually exist in real systems
have been considered, such as the time limit, delay penalty, etc. A time limit
has been set for completing tasks. In case of delay in completion, the tasks are
not rejected, but they are penalized proportional to the amount of delay.
The investigated system can be generally considered for some parallel systems
in which the processing resources are various in terms of processing speed and
processing cost. This paper tries to propose an appropriate scheduling approach
with low computational time for the optimal use of heterogeneous resources
and, consequently, increase the efficiency and profitability of the system. Pre-
vious studies have presented various heuristic and metaheuristic approaches to
solve scheduling problems and achieve the goals [24]. Considering the studies,
one of the efficient approaches used by researchers to solve various problems is
the tabu search (TS) [2,4,6–8,10,13,15,18,20,23,27–29,33]. A review of recent
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studies shows that tabu search is a successful and fast technique for solving var-
ious scheduling problems. For example, the scheduling problems investigated
in the new references [20] (2021), [28] (2020), [18] (2022), [10] (2022), [29]
(2022), [15] (2021), etc. have been solved using different approaches based on
tabu search. However, none of them are similar to the problem investigated
in this study and have different conditions. In addition, studies show that
genetic algorithm (GA) and simulated annealing (SA) are other appropriate
approaches for solving various scheduling problems [3, 12,31,34].
This paper presents an extended tabu search-based scheduling algorithm (ESTS)
in a heterogeneous parallel system with specific conditions. To this end, first,
a vector approach for allocating and scheduling input tasks on heterogeneous
resources is presented. Then, a tabu search-based strategy is used to improve
the vector allocation approach and to achieve better results for the objective
functions. In the proposed model, some efficient mechanisms used to mutate
chromosomes in the genetic algorithm are used to generate mutated and better
neighborhood solutions and, consequently, faster convergence to the good so-
lutions. The proposed solution is tested on several suitable benchmark files of
different sizes in terms of the number of tasks and resources. In order to eval-
uate the efficiency of the proposed algorithm, due to the existence of various
conditions in this problem and the lack of seeing a problem with completely
identical conditions in the literature, the proposed algorithm is compared with
an extended scheduling based on a genetic algorithm (ESGA) with a large num-
ber of chromosomes and a high number of generations, so that an estimate of
the closeness of this answer to the optimal answer can be obtained according
to the nature of the genetic algorithm in searching the whole problem space.
Furthermore, the proposed solution is compared with an extended scheduling
based on a simulated annealing algorithm (ESSA) with a specified initial and
final temperature and a linear temperature reduction. All algorithms were
tested with the same benchmarks and under the same software and hardware
conditions. In the end, the results of the algorithms are evaluated in terms of
profitability and computational time.
In the rest of the paper, Section 2 presents previous studies in this context.
Section 3 describes and models the problem conditions. Section 4 describes
and formulates the proposed algorithm. Section 5 tests the proposed algorithm
on the benchmark files. Section 6 compares and evaluates the experiment’s
results. Finally, the paper is concluded in section 7.

2. Literature review

One of the effective ways to increase the efficiency and utilization of par-
allel systems, both homogeneous and heterogeneous, is the optimal allocation
and scheduling of tasks on available resources. The allocation and scheduling
should be such that the maximum use of resources is made, and the time to
perform tasks is minimized. Most of the scheduling problems are classified as
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non-deterministic polynomial-time (NP-hard) problems. To solve such com-
plex problems, most of the studies focus on the use of artificial intelligence
techniques, heuristics, and metaheuristic techniques such as fuzzy logic, neural
networks, genetic algorithms, particle swarm optimization (PSO), simulated
annealing, etc [21]. To solve such problems, many efforts and research have
been done by researchers, some of which are summarized in Table 1.
Researchers in the paper [19] have proposed a genetic algorithm (GA) for the
task scheduling problem that considers both job and data parallelization. Eval-
uations showed that the proposed algorithm finds the optimal scheduling in a
short execution time. In [22], researchers have divided the problem into two
separate subsets. First, all tasks are allocated to the processors, and then the
order of the assigned tasks on the processors is determined to form a complete
schedule (AO: allocating and ordering). Evaluations showed that the proposed
model increased the number of task graphs scheduled in a possible time frame
and reduced the processor idle time. The scheduling of high-performance com-
puting (HPC) applications has been examined in [26]. Two scheduling models,
including list and pack, were presented. The simulations showed that pack
scheduling provides a promising and workable solution. To solve the order ac-
ceptance and scheduling (OAS) problem on identical parallel machines with
sequence-dependent setup times (SDST), a water-flow-like algorithm (WFA)
was developed. The results showed that the proposed model is more efficient
than other models, particularly for mid-to-large-sized problems [32]. Authors
of [30] have investigated OAS on unrelated parallel machines to maximize the
total net revenue of the accepted orders. A formulation-based branch-and-
bound (B& B) is developed to handle complicated instances following the prin-
ciple of divide and conquer. Article [16] proposes a reservation-based dynamic
scheduling for deadline-constrained mouldable jobs. The goal is to maximize
HPC as a service (HPCaaS) provider’s profit. The results showed the efficiency
of their approach. For efficient scheduling with optimum resource utilization
and energy consumption, a multi-objective adaptive manta-ray foraging op-
timization (MAMFO) has been proposed in [25]. To address task scheduling
and load balancing in Cloud-fog-edge collaboration among servers, an improved
version of the min-min algorithm for workflow scheduling has been proposed,
which considers cost, makespan, energy, and load balancing in heterogeneous
environments [5].

Table 1. Summary of research

Authors Year Problem type Proposed

model

Results

Juraszek et
al.

2008 Selecting and schedul-
ing on identical parallel

machines

A SA algo-
rithm

Maximizing the to-
tal profit compared

with the B&B and list

scheduling

Bozejko et
al.

2017 Cycle job shop schedul-
ing problems (JSSP)

A parallel TS Minimizing cycle
time

Liu Y et al. 2019 Scheduling of multiple

data-parallel tasks on

multicores

A GA algo-

rithm

Finding the optimal

scheduling in a short

execution time
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Alazzam et
al.

2019 Job scheduling in a
cloud computing envi-

ronment

A hybrid algo-
rithm based on

tabu and har-
mony search al-

gorithms

Minimizing the
makespan and cost

compared to TS,
harmony search, and

round-robin

Zhang et

al.

2018 Flexible job shop

scheduling problems

(FJSSP)

Variable neigh-

borhood search

(VNS) based
on a GA

Minimizing the

makespan

Toshev et

al.

2019 Flexible job shop

scheduling problems

A hybrid PSO

and TS algo-

rithm

The good per-

formance of the

proposed algorithm
compared to the

reference sources and

a GA (the mean error
is 0.044% and the

run time is very low )

Orr & Sin-

nen

2019 Task scheduling with

communication delays

A new state-

space model
(AO)(AO:

allocating and

ordering)

Increasing the num-

ber of task graphs
scheduled in a possi-

ble time frame and re-

ducing the processor
idle time

Sun et al. 2018 Scheduling high-

performance comput-

ing (HPC) applications

List schedul-

ing and pack

scheduling
models

Pack scheduling pro-

vides a promising and

workable solution

Wu et al. 2017 Order acceptance and

scheduling (OAS)

problem on identical
parallel machines

Development

of a water-

flow-like(WFA)
algorithm

(WFA.I and

WFA.II)

WFA.II is more

efficient than other

models, particularly
for mid-to-large-sized

problems

Wang & Ye 2019 OAS on unrelated par-
allel machines

A formulation-
based branch-

and-bound

(B&B)

Maximizing the total
net revenue of the ac-

cepted orders

Chandran
& Kumar

2020 Optimal energy-aware
allocation of data cen-

ter resources

Tabu job mas-
ter (JM)

The makespan for
tabu JM is better
than TS, GA, and

ABC

Bozejko et
al.

2017 Optimal task alloca-
tion and scheduling for

computing clusters

The two-level
algorithm (TS

is used to

minimize the
relatively low
accuracy of the

greedy packing
strategy)

The proposed algo-
rithm improves re-

sults compared to the

greedy strategy
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Ben Abdel-
lafou et al.

2019 Scheduling problem
on parallel machines

with non-availability
constraints

A metaheuris-
tic TS

Minimizing the
makespan and

computing time
compared to the pro-

posed lower bound

and the best heuristic

Dai et al. 2018 The multi-skill

resource-constrained
project scheduling

problem

An improved

TS (ITS algo-
rithm)

ITS algorithm is a

powerful solution
methodology in

terms of solution
quality

Mathlouthi
et al.

2021 Technician routing and
scheduling problem

(TRSP)

A TS aug-
mented with

an adaptive

memory

The proposed algo-
rithm can solve in-

stances with up to

200 tasks

Romero et
al.

2018 Flexible job shop
scheduling problems

A mathemat-
ical program-

ming solution,

and a TS
algorithm

TS algorithm ob-
tained good quality

solutions in lower

computational times

Vela et al. 2020 JSSP with fuzzy sets

modeling uncertain du-

rations and flexible due
dates

An evolu-

tionary tabu

search method
(EATS)

The good behavior

of the EATS. EATS

performed favorably
compared to other

approaches

Alkhateeb

& Abedal-
guni

2019 Optimizing prob-

lems (discrete and
continuous)

A hybrid algo-

rithm using the
cuckoo search

(CS) and SA

The potential of the

proposal in terms of
best solutions and

computational time

Zorin &

Kostenko

2014 Problems of multipro-

cessor scheduling

A developed

SA algorithm
(for determi-

nation of the

minimal neces-
sary number of

processors, etc.

)

The developed algo-

rithm was substan-
tiated both theoreti-

cally and experimen-

tally

Cruz-
Chávez et

al.

2017 Flexible job shop
scheduling problems

A SA algo-
rithm ac-
celerated by a

partial schedul-
ing mechanism

and a cool-

ing schedule
mechanism

Facilitating a rapid
approach to good so-

lutions for FJSSP

Wei et al. 2018 The flow shop schedul-

ing problem

A hybrid GA-

SA algorithm

(HGSA)

Minimizing the

makespan compared

with five state-of-the-
art algorithms
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Krim et al. 2022 Parallel-machine
scheduling problem

Development
of a mixed

integer lin-
ear program

model and two

generalizable
TS

Minimizing the job
rejection costs and

the weighted sum of
completion times

Chen et al. 2022 Unrelated parallel ma-
chine scheduling

A mixed-
integer pro-

gramming
(MIP) model

and a hybrid

TS

The TS outperforms
the MIP model

in terms of solu-
tion quality and

makespan

Umam et
al.

2022 The flow shop schedul-
ing problem

A hybrid GA-
TS algorithm

Minimizing the
makespan

Hajibabaei
et al.

2021 FJSSP with unrelated
parallel machines

A linear MIP
model and a

TS algorithm

for solving
large-size

instances

The TS obtained
better solutions com-

pared to the GA with

less runtime

Momeni

korbekandi
et al.

2023 FJSSP for single-

machine and multi-
machine job shops

A novel meta-

heuristic hy-
brid partheno-

genetic algo-

rithm (NMH-
PGA)

NMHPGA achieves

better objective
functions with faster

convergence speed

Singh et al. 2022 Workflow scheduling

with selected virtual

machines

A multi-

objective adap-

tive manta-ray
foraging op-

timization

(MAMFO)

MAMFO improved

the work efficiency

Bisht &
Vampugani

2022 Workflow scheduling
for heterogeneous

resources

An improved
version of

the min-min

algorithm

Minimize the
makespan, less

energy consump-

tion along with
load balancing, and

marginally less cost

compared to min-
min and ELBMM

algorithms

Chawra &

Gupta

2022 Optimization of the

wake-up scheduling for
3D-wireless sensor net-

works

A hybrid of

memetic and
tabu search

algorithms

Better coverage ra-

tio and derivation of
the optimal wake-up

schedule over the ex-
isting schemes

To solve some similar problems, the tabu search (TS) algorithm has been
used and has yielded effective and acceptable results. The paper [27] presents
a hybrid metaheuristic algorithm, including PSO and TS. The novel algorithm
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is designed to solve flexible job shop scheduling problems (FJSSP). The results
illustrate the good performance of the proposed algorithm. Article [7] presents
a parallel TS for the cycle JSSP. The experiments confirmed the research re-
sults. In [8], energy-aware scheduling was incorporated and optimized using
the proposed tabu job master (JM) and benchmarked by TS, GA, and artifi-
cial bee colony (ABC). The final results showed that the makespan for tabu
JM is better. Article [2] proposes a hybrid job scheduling algorithm based
on tabu and harmony search algorithms. The results showed that the hybrid
algorithm has the best results in terms of makespan and cost. The paper [6]
presents a solution to the problem of optimal task allocation and scheduling
for computing clusters with multiple nodes. The two-level algorithm is pre-
sented where TS is used to minimize the relatively low accuracy of the greedy
packing strategy. The proposed algorithm improved results compared to the
greedy strategy. The scheduling problem on parallel machines subject to non-
availability constraints with precedence constraints between the tasks is treated
in [4]. A meta-heuristic TS was proposed, and the results were compared with a
proposed lower bound and the best heuristic. The results showed that the last
proposed version of tabu search is better in terms of makespan and computing
time. The paper [9] presents a hybrid metaheuristic-based wake-up schedul-
ing scheme (Memetic-Tabu-based-WS) where the best feature of the memetic
algorithm and tabu search algorithm are combined. The results validate the
superiority of the proposed scheme over the existing schemes with a better cov-
erage ratio and derivation of the optimal wake-up schedule.
Article [13] considers the multi-skill resource-constrained project scheduling
problem. Four neighborhood structures and two mutation operators based on
problem characteristics are proposed to form an improved TS (ITS). A bicri-
terion scheduling problem on two different parallel machines with a periodic
preventive maintenance policy is considered in [18]. A new problem relevant
to practice, the development of a mixed integer linear program model, and two
generalizable TS metaheuristics based on different neighborhood structures and
solution spaces are presented. Article [10] proposes a mixed-integer program-
ming (MIP) model and adopts a hybrid TS to achieve approximate practical
solutions. The results showed that the TS outperforms the MIP model in terms
of solution quality and makespan. Article [29] developed a hybrid GA-TS al-
gorithm and successfully addressed makespan minimization in the flow shop.
A linear MIP model is developed for the FJSSP in [15]. For solving large-size
instances, a TS algorithm is developed. Article [20] presents a metaheuristic ap-
proach for a technician routing and scheduling problem (TRSP). This approach
is based on a TS augmented with an adaptive memory, where the evaluation of
each solution in the memory is driven by its cost and contribution to diversity.
The FJSSP aimed to minimize the makespan is considered in [33]. Variable
neighborhood search (VNS) based on a GA is proposed to increase the search-
ability and balance the intensity and diversity. A JSSP including machine
operation flexibility and job splitting into sub-lots is considered in [23]. First,
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an integer programming model for the resulting FJSSP with lot streaming is
developed. Then, two solutions were tested. A mathematical programming so-
lution that is not able to determine optimal solutions, and a TS algorithm that
obtained good quality solutions in lower computational times. Article [28] deals
with JSSP with fuzzy sets modeling uncertain durations and flexible due dates.
To maximize due-date satisfaction under uncertainty first has been given a new
measure of overall due-date satisfaction. Then, a neighborhood structure for
local search is defined, and a neighbor-estimation procedure is provided. Fur-
thermore, the TS procedure using the neighborhood is combined with a GA.
Simulated annealing (SA) has proven its success as a single-state optimization
search algorithm for both discrete and continuous problems [3]. Researchers
examined selecting and scheduling a set of jobs on a set of identical parallel
machines simultaneously to maximize the total profit [17]. This problem was
solved using the SA algorithm, and its efficiency was compared with the B&
B and list scheduling. Article [34] proposes an SA algorithm to determine the
minimum necessary number of processors and construct the static schedule for
execution of the applied programs with allowance for the constraints on the
time of schedule execution and reliability requirements. Article [12] presents
an SA algorithm accelerated by a partial scheduling mechanism and a cooling
schedule mechanism that is a function of the standard deviation. This facil-
itates a rapid approach to good solutions for the FJSSP. A hybrid algorithm
using the cuckoo search (CS) and SA is provided in [3]. The main goal is to
improve the solutions generated by CS using SA to explore the search space
efficiently. The results showed the potential of the proposal in terms of best
solutions and running time. Article [31] designs a hybrid GA-SA algorithm
(HGSA) based on the hormone regulation mechanism for the flow shop sched-
uling problem. The results verified the effectiveness of the HGSA.
Studies show that scheduling problems are one of the basic challenges for many
environments and systems; therefore, they are very diverse. Researchers have
used a variety of heuristic and meta-heuristic approaches to solve various sched-
uling problems. Some of them such as GA and TS have been very successful
and efficient. Therefore, according to the successful approach of TS, an ex-
tended tabu search-based scheduling algorithm is proposed to solve the studied
problem.

3. Problem description and mathematical modeling

Parallel processing is one of the best ways to make optimal use of system
resources and perform tasks quickly. There are many real environments and
systems in which the processing resources are not the same and differ from
each other in various aspects. Therefore, proper use and management of het-
erogeneous resources is essential to increase the operational capacity and pro-
ductivity of the system. This study generally considers some parallel systems
in which the processing resources are various in some respects. The problem
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focuses on the appropriate use of heterogeneous resources to improve the effi-
ciency and profitability of the systems. Optimal allocating and scheduling of
tasks on non-identical resources is one of the basic ways to achieve these goals.
The problem examines a heterogeneous parallel system which has specific con-
ditions and constraints. System resources vary in terms of processing speed and
cost. Input tasks are independent and have specific profits and time limits. It
is necessary to pay attention to the due date of the tasks, because the delay in
completing the tasks reduces its profit and, as a result, reduces the total profit
of the system. The aim is to provide an effective approach with a low compu-
tational time for assigning and scheduling tasks on heterogeneous resources so
that it can ultimately improve the system’s profitability. The conditions and
characteristics of the problem and its modeling are described below.

Table 2. The symbols and parameters used to formulate the
problem

Symbols Description

T A set contains input tasks
K The number of input tasks
ti Each of the input tasks into the system

ti·et The time when the task ti enters the system
ti·pt The expected processing time for the task ti
ti·st The expected preparation or setup time for the task ti
ti·dt The deadline or time limit for the task ti(ti·dt > ti·et)
ti·ft The processing finish time for the task ti
ti·r The amount of revenue from processing the task ti
ti·d The amount of delay or tardiness in completing the task ti
ti·dp The amount of penalty for delay in completing the task ti
ti·c The amount of cost for processing and completing the task ti
pdp Percentage of penalty for delaying the completion of tasks on their profit

per unit of time
Tnd A set of input tasks completed before the deadline (ti·ft ≤ ti·dt) (Tnd ⊆ T )
Td A set of input tasks completed after the deadline (ti·ft > ti·dt)) (Td ⊆ T )

N A set contains available nodes
p The number of available nodes
nj Each of the available nodes in the system to processes tasks

nj·s The processing speed rate for the node nj

nj·c The processing cost rate for the node nj

PTtinj The processing time of task ti on the node nj

PCtinj The task ti processing cost of task ti on the node nj

STtinj The processing start time of task ti on the node nj

FTtinj The processing finish time of task ti on the node nj

prftinj The amount of profit earned from processing the task ti on the node nj

prf The amount of total profit earned from processing input tasks in the system

The set of input tasks and the set of system resources are represented by
Eq.(1) and Eq.(2), respectively. The symbols used to formulate the problem
are given in Table 2. The processing speed of resources is different, so the
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processing time (PTtinj ) of a specific task ti on the node nj is calculated
by multiplying the task ti expected processing time (ti.pt) and the node nj

processing speed rate (nj.s) Eq.(3). It is obvious that the processing time of
the task ti on different nodes nj and nj′ with different speeds, would be different
Eq.(4). Processing resources are also different in terms of processing cost rate.
If the processing cost rate of the node nj for processing at each time unit is
considered to be nj.c, the task ti processing cost on the node nj (PCtinj ) is
calculated by multiplying the task ti processing time on the node nj (PTtinj

)
and the node nj processing cost rate (nj.c) Eq.(5). As a result, if a specific
task ti is to be executed at different processing nodes nj and n′j with different
processing costs rate, it will impose different costs to the system Eq.(6).

T = {t1, t2, t3, ..., ti, ..., tk} 1 ≤ i ≤ k(1)

N = {n1, n2, n3, ..., nj , ..., np} 1 ≤ j ≤ p [(nj , nj′) ∈ N,nj 6= nj′ ](2)

PTtinj
= ti.pt × nj.s(3)

∀ (nj , nj′) ∈ N, nj 6= nj′ if (nj.s 6= nj′.s)→ PTtinj
6= PTtinj′(4)

PCtinj
= PTtinj

× nj.c(5)

∀ (nj , nj′) ∈ N, nj 6= nj′ if (nj.c 6= nj′.c)→ PCtinj 6= PCtinj′(6)

Scheduling refers to determining the start and end times of a set of tasks
according to certain constraints that are related to time or resources [2]. Input
tasks enter the system dynamically at independent times (ti.et). All tasks
have a certain setup time (ti.st) and processing time (ti.pt). The start time
of processing the task ti on the node nj(STtinj

) is equal to the maximum of
two values, the task ti entrance time (ti.et) and the finish time of the previous
task (ti.pre) on the node nj(FTti.prenj

), after the time specified for setup is
passed (ti.st) (Eq.(7)). The completion or finish time of the task ti on the node
nj(FTtinj ) is equal to the sum of the start time and processing time of the task
(Eq.(8)).

STtinj = Max(ti.et, FTti.prenj ) + ti.st(7)

FTtinj
= STtinj

+ PTtinj
(8)

There is a deadline (ti.dt) for completing tasks (ti.dt > ti.et). If the task ti is
completed after the deadline (FTtinj

> ti.dt), it is penalized and its profit is
reduced, which decreases the total profit of the system. The amount of penalty
depends on the delay. It is assumed that the delay penalty does not exceed the
profit considered for the tasks (ti.r). Considering such conditions, all completed
tasks are categorized into two sets. The set Tnd (Tnd ⊆ T ) includes the tasks
that are completed before the deadline (FTtinj

≤ ti.dt) and are without delay,
so they will result in the predicted profit. The set Td (Td ⊂ T ) includes the tasks
that are completed after the deadline with delay (FTtinj

> ti.dt), therefore they
are penalized.
It is assumed that for each unit time delay, a percentage (pdp) of their profit
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(ti.r) is reduced. If the finish time of the task ti is assumed to be ti.ft (ti.ft =
FTtinj

), the delay of the task ti (ti.d) considering the set T would be as in
Eq.(9) and Eq.(10) considering the set Td. Since it is assumed that the delay
penalty (ti.dp) never exceeds the predicted profit (ti.dp ≤ ti.r), it is equal to the
minimum of two values; The product of the task ti delay (ti.d) multiplied by
pdp percent of its profit, and its profit amount (Eq.(11)). Therefore, the profits
resulting from the completion of the tasks of the set Tnd and the set Td are
given in Eq.(12) and Eq.(13), respectively. Considering the equations, the total
profit of the system (prf) is equal to the subtraction of the processing cost and
the penalty of the tasks from the sum of their profits, which is calculated using
Eq.(14). If the task ti processing cost is represented as ti.c (ti.c = PCtinj

), the
total profit is shown using Eq.(15).

ti.d = max[(ti.ft − ti.dt), 0], (ti ∈ T )(9)

ti.d = ti.ft − ti.dt, (ti ∈ Td)(10)

ti.dp = min[(ti.d × (pdp × ti.r)), ti.r](11)

prftinj = ti.r − PCtinj , (ti ∈ Tnd)(12)

prftinj = ti.r − PCtinj − ti.dp, (ti ∈ Td)(13)

prf =
∑
ti∈T

ti.r −
∑
ti∈T

∑
nj∈N

PCtinj
−

∑
ti∈Td

ti.dp(14)

prf =
∑

ti∈Tnd

(ti.r − ti.c) +
∑
ti∈Td

(ti.r − ti.c − ti.dp)(15)

The investigated model tries to consider the real and significant conditions
and limitations of heterogeneous parallel processing systems. However, the
existence of some other special conditions and challenges in some real systems
cannot be denied, which have not been addressed in this model. For example,
the challenge of the possibility of failure in processing resources has not been
considered in this model. This challenge and even other challenges can be
addressed in future research.

4. The proposed algorithm (ESTS)

To solve the problem described in the previous section, a two-step solution
is proposed (ESTS). First, a vector approach is presented for allocating tasks
to heterogeneous resources and prioritizing their execution. Then, the vector
allocation approach is improved and extended using a tabu search-based strat-
egy to achieve better results for the problem objectives. Figure 1 shows the
flowchart of the proposed ESTS solution.

4.1. Allocation approach. The allocation approach is considered in the form
of an allocation vector consisting of input tasks and heterogeneous resources.
The vector structure determines how to allocate and schedule tasks on re-
sources. The vector length (lv) calculated using Eq.(16). The vector structure
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Figure 1. Flowchart of the proposed ESTS model

is formed by the juxtaposition of the numbers (x) in the range of 1 to lv
(Eq.(17)), which are distributed randomly. The distribution of the elements
in the vector represents how the tasks are allocated to the nodes and their
processing order. The numbers between 1 and k represent the task number
(Eq.(18)). The numbers greater than k represent the processing nodes. For



548 S. Bakhoda, M. Abdollahi Azgomi, M.R. Ebrahimi Dishabi

accurate numbering of nodes, the numbers greater than k can be subtracted
from k to specify the nodes number (Eq.(19)). Thus, this specifies the nodes
number from 1 to p − 1 (except the last resource, np). For allocation, first,
the position of the first node from the left side of the vector is specified; then,
all elements (tasks) before that node are allocated to it, and they should be
processed in the same order as they are in the vector. Then, the allocated node
and tasks are eliminated from the vector, and the above process is repeated for
the remained elements of the vector. This process is continued until the last
node on the vector is eliminated. In the end, the remained tasks are allocated
to the last node (np).

lv = k + p− 1(16)

x|1 ≤ x ≤ lv(17)

x|(1 ≤ x ≤ k); i = x −→ ti|(1 ≤ i ≤ k)(18)

x|(k < x ≤ lv); j = x− k −→ nj |(1 ≤ j < p)(19)

4.2. Extension of the allocation approach.

4.2.1. Tabu search. The tabu search (TS) is a metaheuristic optimization method
originally suggested by Glover and Laguna (1997). TS is a modification of the
local search method [7]. The TS algorithm first starts from a single random
solution and updates it to one of its current neighbors. This process continues
until the user-specified criterion is met and the best solution found during the
search process is returned. The TS algorithm uses its memorized ability to
avoid searching previously visited points using the Tabu list [1]. Tabu list is
a tool in the TS that prevents being trapped in local optimal. Tabu search is
known as the best local search method to get out of the local optimum and
increase the global optimization capability [14].
To achieve better results for the problem objectives, a tabu search-based strat-
egy is used to extend and improve the vector allocation approach. The main
steps of the algorithm to improve the described vector approach for allocation
and scheduling are explained below. The used symbols are shown in Table 3,
and the proposed algorithm is given in Algorithm 1.

4.2.2. Generating the initial solution. The tabu search algorithm starts moving
from an initial solution. The structure of the initial solution is formed according
to the type of problem. In the proposed algorithm for solving the problem, the
initial solution (sol) is the described allocation vector. Therefore, the length
of the sol (ls) is equal to the vector length (ls = lv). At first, this solution is
considered the best solution (bg = sol), which varies in the next iterations of
the algorithm.

4.2.3. Choose and Move to the neighborhood. Like all metaheuristic algorithms,
the initial solution should change such that it tends to get better. Therefore,
it is necessary to generate a number (Nn) of neighborhood solutions. In the
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Table 3. Symbols used to formulate the problem by the pro-
posed tabu search-based algorithm

Symbols Description

sol The solution selected by the algorithm (to move towards it)

ls The solution length
Nn The number of neighbors generated for the solution (sol)

bfn The best free neighbor (based on the fitness function)

btn The best tabu neighbor
bg The best solution found by the algorithm

iter The current iteration number of the algorithm execution

itermax The maximum number of iterations (to stop the algorithm)
itermin The minimum number of iterations (to execution the algorithm)

iterni The number of iterations considered in the algorithm based on the

no-improvement condition
iterstop The iteration in which the execution of the algorithm ends

pl The effective factor on the tabu movement limit
lt The tabu movement limit in the TS algorithm

listt listt[ls, ls] is the tabu list to place tabu movements

Algorithm 1 Proposed algorithm based on the tabu search

1: sol ← initial solution ;
2: bg ← sol ;

3: listt[ls, ls] = 0 ;

4: for iter = 1 : itermax do
5: Generate Nn neighbors for the sol (based on swap or reverse) ;

6: Identify the best free neighbor (bfn) and the best tabu neighbor (btn) ;

7: Choose the new solution (sol) ;
8: Update the tabu list ;

9: Identify the global solution (bg) ;

10: Check the algorithm termination ;
11: end for

proposed model, some efficient mechanisms used to mutate chromosomes in the
genetic algorithm, such as the swap and reverse, are used to generate mutated
and better neighborhood solutions. Creating better neighborhood solutions
leads to faster convergence to good solutions. Consequently, the computa-
tional time of the algorithm to achieve the appropriate solutions is reduced. In
swap and reverse, two elements (m1,m2) are randomly chosen on the current
solution. In swap, their positions are exchanged, and in reverse, all elements
between them are substituted inversely. The fitness of generated neighbors
is calculated considering the objective function (fit = prf). The best free
neighbor (bfn) and the best tabu neighbor (btn) are detected, and their fitness
is compared. If the fitness of the best free neighbor (bfn.fit) is better, it is
accepted as the new solution (Eq.(20)). But, if the fitness of the best tabu
neighbor (btn.fit) is better than the fitness of the best free neighbor and also
better than the best solution found by the algorithm (bg), it is accepted as the
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new solution (Eq.(21)). Also, if there is no free neighbor and all are in the tabu
list, the best tabu neighbor is accepted as the new solution (Eq.(22)). Then,
the best solution found by the algorithm is updated. To this end, the fitness
of the new solution (sol.fit) is compared with the fitness of the best solution
found by the algorithm (bg.fit), and if it is better, it is substituted (Eq.(23)).

if bfn.fit ≥ btn.fit −→ sol = bfn(20)

if btn.fit > bfn.fit & btn.fit > bg.fit −→ sol = btn(21)

if bfn = ∅ −→ sol = btn(22)

if sol.fit > bg.fit −→ bg = sol(23)

4.2.4. Updating the tabu list. The tabu list is a tool in the tabu search algo-
rithm that prevents the algorithm from being trapped in local optimal. The
initial value of the tabu list is zero (listt[ls, ls] = 0). The tabu list is updated
whenever the algorithm moves towards the new solution; that is, the move-
ment towards the neighbor solution is inserted in the tabu list to prevent the
algorithm from returning to that solution and creating a cycle. After inserting
the new movement, several moves that were previously inserted in the list, are
eliminated. The duration that a movements remain in the tabu list is deter-
mined by the tabu limit (lt), which is given by Eq.(24). pl is the effective factor
on the tabu limit. To update the tabu list and insert a new movement in the
list, Eq.(25) to Eq.(27) are applied. m1 and m2 are two positions selected on
the solution (sol) using the swap or reverse.

lt = b(itermax − itermin)× plc(24)

listt = listt − 1(25)

listt = max(listt, 0)(26)

listt(m1,m2) = lt; listt(m2,m1) = lt (m1 6= m2;m1,m2 ∈ {1, 2, ..., ls})(27)

4.2.5. Algorithm termination. Several conditions are considered to terminate
the algorithm. According to the performance of the algorithm and evaluation
of the results, two values are considered as the minimum (itermin) and the
maximum number of algorithm iterations (itermax). The maximum value is
determined considering the experiment results such that in more iterations,
the results are not improved significantly; therefore, to prevent time loss, it is
better to terminate the algorithm. Furthermore, if no improvement is achieved
for a certain number of iterations (iterni), the algorithm is terminated.

5. Computational experiments

5.1. Experimental data. The implementation and experiments have been
done in MATLAB and the Intel Core i5 system. Several suitable benchmark
files of different sizes (in terms of the number of tasks and heterogeneous re-
sources) are used to test the proposed algorithm and to evaluate its effectiveness
for solving small and large-size problems. The benchmark files include a file
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with 50 tasks, which are processed on 6 and 10 heterogeneous resources, re-
spectively, and a larger file containing 500 tasks, which are processed on 30,
50, and 100 resources, respectively. Considering the problem conditions, in the
benchmarks, the input tasks have separate numbers, entry time, setting time,
processing time, deadline, and profit. Also, processing resources have differ-
ent numbers, processing speed rates, and processing cost rates. The data for
parameters related to tasks and heterogeneous resources have been randomly
generated in certain ranges that correspond to real-world conditions. For ex-
ample, the heterogeneous resource speed rate varies between the values of 0.5
and 1.5. The due date of the tasks is determined according to their entry time,
setting time, and processing time.

5.2. Testing the proposed model.

5.2.1. Parameters setting. The most important parameters of the proposed
ESTS algorithm include the number of neighborhood solutions (Nn), the tabu
limit (lt), the minimum (itermin) and maximum (itermax) repetition of the
algorithm, and the number considered to repeat the algorithm for the condition
of not improving the results (iterni). The parameters are adjusted based on the
experiment by assigning different values to them, repeating the experiments,
benchmark file size, and attention to the obtained results, so that the best
value for the objective functions is obtained. For example, in the experiments,
the number of neighbors (Nn) gradually increases from 20 to 500 to see their
effect on the results. Each experiment is repeated 12 times (exe i, 1 ≤ i ≤ 12)
to avoid sufficing the random results and obtain a more accurate result. The
result of each execution is the ratio of profit to computational time (exe i →

prf

computational time
). The effect of various parameters on the results will be

determined in the experiments.

5.2.2. Test results. The proposed solution is tested on the specified benchmark
files. First, the benchmark file containing 50 tasks is respectively applied on
6 and 10 heterogeneous resources. The results are given in Table 4. Figure
2 shows the graph of increasing the amount of profit in an experiment using
the proposed ESTS for 50 tasks and 10 resources. The number of neighbors
(Nn), the iteration number at which the algorithm is terminated (iterstop), the
obtained profit (prf), and the computational time is represented below the
figure.

To evaluate the efficiency of the proposed solution for solving large samples,
a larger benchmark file with 500 tasks is tested on 30, 50, and 100 hetero-
geneous resources, respectively. The results are given in Table 5. According
to the Table, using the file with 500 tasks and 30 nodes, the maximum profit
obtained is 2142, and the computational time to achieve this profit is 421. In
the experiment with 50 nodes, the maximum profit is 3032 with an execution
time of 437. Similarly, in the experiment with 100 nodes, the maximum profit
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Table 4. Experiment results using the proposed ESTS algo-
rithm

exe i→
prf

computational time
1 ≤ i ≤ 12

itermin = 300, itermax = 1200, iterni = 220, pl = 0.06→ lt = 54

k = 50, p = 6 k = 50, p = 10

Nn → 20 50 80 100 200 300 500 20 50 80 100 200 300 500

exe 1 353.0
2.9

375
7.1

395.2
16.8

403.2
9.8

405.7
49.1

406.7
38.8

411.3
68.3

393.0
3.1

420.1
13.9

424.6
27.5

428.3
20.0

428.1
67.0

422.9
57.4

428.0
52.0

exe 2 351.8
2.7

402.3
10.9

394.9
16.9

402.5
12.3

413.1
32.4

405.3
42.8

411.8
77.0

395.3
4.8

412.6
5.8

422.6
15.1

427.4
31.1

423.2
28.6

432.5
86.3

429.1
80.3

exe 3 344.4
3.6

390.8
5.7

401.4
20.0

399.5
15.5

408.9
43.4

407.0
37.4

415.5
73.7

382.8
2.6

419.1
10.8

428.8
20.5

420.2
20.7

426.1
23.7

424.2
61.1

430.0
112.7

exe 4 350.8
5.0

391.3
5.0

400.2
9.2

374.4
14.0

410.1
35.7

408.3
26.7

387.0
43.5

390.3
2.1

419.4
7.4

421.6
17.5

425.5
34.3

426.0
23.9

430.8
43.4

430.8
68.7

exe 5 351.8
2.0

388.5
4.4

399.4
23.6

402.4
8.9

398.9
27.4

411.4
28.5

413.5
62.8

392.7
5.9

421.5
10.7

425.5
18.2

427.3
32.9

429.3
40.5

431.5
65.6

437.3
84.7

exe 6 354.1
3.4

394.3
9.1

398.3
18.0

396.1
17.3

411.3
33.3

409.3
44.6

344.7
66.7

396.5
3.8

416.7
10.9

420.0
11.2

428.3
15.1

429.7
66.5

427.0
83.3

429.7
77.0

exe 7 339.2
2.6

398.3
9.8

396.5
13.2

408.2
12.6

407.1
24.9

409.4
37.4

384.4
90.0

396.0
3.8

411.7
5.0

420.7
14.8

424.6
23.3

425.9
21.7

429.7
41.4

433.0
113.6

exe 8 365.2
5.9

372.9
6.1

393.6
9.9

403.8
13.2

407.6
47.9

401.3
54.8

407.7
53.9

389.1
2.9

415.5
9.2

421.8
12.1

428.9
23.6

430.8
41.7

429.7
60.7

433.6
143.2

exe 9 366.5
4.7

393.2
7.9

397.4
15.0

376.9
12.2

407.7
12.3

410.4
24.3

357.8
51.9

391.3
2.5

416.7
5.0

421.6
16.2

421.0
18.7

426.9
23.5

429.4
82.4

429.3
150.6

exe 10 364.6
6.5

383.0
6.5

400.1
11.0

396.8
13.8

411.5
36.4

396.2
65.4

403.9
74.6

391.2
2.4

417.3
7.8

422.1
15.5

429.1
24.5

432.0
40.8

428.5
60.1

433.9
124.1

exe 11 361.5
4.3

383.0
4.5

396.2
11.6

401.0
11.0

410.2
43.9

401.1
40.9

407.4
44.3

393.5
2.3

407.5
4.8

426.3
17.1

422.2
13.1

427.6
31.1

419.3
28.7

421.5
67.4

exe 12 363.9
4.0

392.3
7.5

403.3
16.7

399.7
14.6

407.3
21.6

409.8
42.5

403.4
76.2

382.0
1.9

422.9
7.7

424.5
21.7

421.9
12.3

429.6
56.0

426.8
53.4

425.4
72.5

is 3881 with an execution time of 358.
Considering the experiment results, it was observed that the parameters of the
number of neighbors, the maximum repetition, and the number of repetitions
for the no-improvement condition are the most important parameters affect-
ing the results, and by increasing their value, better results are obtained, but
the execution and computational time of the algorithm increases. Also, results
showed that the benchmark size has a great effect on setting the parameters of
the maximum repetition and repetitions for the no-improvement.

6. Evaluation and comparison

Scheduling problems are very diverse and have their conditions, character-
istics, and limitations. Considering the studies conducted, no problem was
observed that is exactly similar to the conditions considered in the problem
under study. Therefore, it would not be fair to compare the proposed solu-
tion with previous works because of the differences in the type of problem.
Consequently, it was decided to implement other powerful algorithms and test
them under the same conditions and benchmarks. Considering the studies,
it was observed that the genetic and the simulated annealing algorithms have
shown good and successful performance in solving various scheduling problems.
One of the most common techniques to deal with scheduling problems is the
genetic algorithm. GA has been the most popular technique in evolutionary
computation research [21]. The simulated annealing algorithm is a simple and
effective meta-heuristic optimization algorithm for solving optimization prob-
lems in large search spaces. Also, simulated annealing has proven its success as
a single-state optimization search algorithm for both discrete and continuous
problems [3]. Consequently, in order to evaluate the efficiency of the proposed
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BEST: the best profit obtained in each iteration 

MEAN: the average profits obtained in each iteration 

 

 

𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐯𝐚𝐥𝐮𝐞:     𝑘 = 50  ,   𝑝 = 10  ,   𝑁𝑛 = 50, 𝑝𝑙 = 0.06 →  𝑙 𝑡 = 54    

𝑖𝑡𝑒𝑟𝑚𝑖𝑛 = 300 ,  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 1200 ,  𝑖𝑡𝑒𝑟𝑛𝑖 = 220 

𝐫𝐞𝐬𝐮𝐥𝐭𝐬:     𝑖𝑡𝑒𝑟𝑠𝑡𝑜𝑝 = 411  , 𝑝𝑟𝑓 = 384.5  , 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 = 7.2   

 

Figure 2. Increasing the amount of profit in a experiment
using the proposed ESTS

solution, due to the existence of various and new conditions in the problem
under study and the lack of seeing a problem with completely identical condi-
tions in the literature, the proposed model is compared with both an extended
scheduling based on a genetic algorithm (ESGA) and an extended scheduling
based on a simulated annealing algorithm (ESSA). In both, the same vector
allocation approach used in the proposed ESTS has been improved and ex-
tended.
The proposed ESTS results are compared with the results of ESGA with a large
number of chromosomes and a high number of generations, so that an estimate
of the closeness of this answer to the optimal answer can be obtained according
to the nature of the genetic algorithm in searching the whole problem space.
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Table 5. Experiment results using the proposed ESTS algo-
rithm

itermin = 1000, itermax = 3000, iterni = 250, exe i→
prf

computational time
, 1 ≤ i ≤ 10

k

p
lt Nn exe 1 exe 2 exe 3 exe 4 exe 5 exe 6 exe 7 exe 8 exe 9 exe 10

60 20 1605
76.1

1792
81.8

1738
71.5

1810
82.6

1728
74.6

1762
60.0

1732
74.1

1785
65.1

1741
78.1

1763
74.5

500

30
60 40 1873

134.3
1899
132.1

1897
131.7

1963
132.3

1858
132.9

1934
111.9

1991
151.3

1897
125.8

1879
134.2

1945
130.5

90 70 2100
277.2

1980
225.3

1943
303.2

2092
299.7

2028
296.9

2100
320.8

2058
305.2

1986
297.4

2081
299.9

2044
296.5

90 100 2141
426.3

2142
421.8

2064
425.2

2049
380.0

2135
359.4

2089
373.2

2087
374.6

2125
360.4

2112
384.3

2095
405.8

60 20 2298
52.9

2427
49.7

2516
52.7

2270
41.2

2328
44.1

2378
43.3

2451
44.1

2335
46.8

2482
51.6

2504
44.3

500

50
75 40 2736

135.7
2759
136.3

2830
164.5

2684
96.8

2793
185.3

2798
136.2

2841
143.0

2766
118.4

2794
133.6

2818
128.4

75 70 2975
309.2

2939
311.5

2971
371.5

2914
369.3

2925
367.0

2938
361.1

2958
360.4

2933
341.5

2972
328.9

2948
363.8

75 100 2956
437.1

2995
436.2

264
436.6

2993
439.2

2904
439.0

2949
440.8

2982
437.2

2991
439.5

3032
437.1

2975
439.7

60 20 3160
59.1

3224
51.0

3243
76.4

3204
55.6

3163
59.1

3167
49.2

3209
52.6

3241
57.3

3184
54.9

3227
62.7

500

100
60 45 3552

87.1
3673
221.7

3691
207.1

3588
129.3

3677
262.1

3697
269.1

3675
185.3

3649
144.8

3691
252.7

3676
196.5

90 75 3754
235.1

3767
333.8

3766
340.4

3760
316.4

3753
298.8

3763
238.9

3759
284.5

3765
322.7

3766
305.7

3758
244.4

90 100 3829
493.6

3861
454.1

3869
447.9

3881
358.0

3821
417.5

3846
401.7

3854
370.4

3860
418.7

3858
426.9

3872
350.8

In ESGA, the three main genetic operators including selection, crossover, and
mutation, have been adopted. The proposed ESTS is also compared with the
ESSA with a specified initial and final temperature and a linear temperature
reduction method. Several (Nn) neighbors are generated and the fitness of
the best neighbor (bn.fit) is compared with the fitness of the current answer
(a.fit); if it is higher it is selected as the new answer (Eq.(28)); otherwise, the
Boltzmann probability function (PR) is calculated (Eq.(29) and (Eq.(30)). A
random number (between zero and one) is generated; if it is less than or equal
to the Boltzmann probability, the best neighbor is chosen as the new answer;
otherwise, the same current answer will be considered the new answer. Then,
the temperature is reduced. The temperature reduction mechanism (TR) is
considered linearly (Eq.(31) and Eq.(32)). The initial temperature (Tb) and
final temperature (Tf ) are considered equal to 100 and 1, respectively (Ti: the
temperature of the i’th iteration).

if (bn · fit > a · fit)→ a = bn(28)

else → E =
(bn · fit− a · fit)

a · fit
(29)

PR = e−E/Ti(30)

TR = (Tb − Tf )/itermax(31)

Ti = Ti − TR(32)

The stopping conditions of ESTS, ESGA, and ESSA algorithms are consid-
ered the same. The benchmark files are tested under the same software and
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hardware conditions. To obtain better results in the ESGA, we have gradually
increased the number of initial populations and the probability of crossover
and mutation. Also, the number of initial answers and the number of neigh-
bors have gradually increased in the ESSA. Considering the obtained results,
the efficiency of the various algorithms can be compared.
The most important goal of analyzing the complexity of algorithms is to es-
timate their execution time, which is especially considered in this study. In
the experiments, the execution time of the algorithms is carefully recorded so
that they can be accurately compared and evaluated. In order to evaluate the
profitability, the maximum profit obtained using the algorithms is compared.
The maximum profit and the algorithm computational time to obtain it for
all benchmarks are shown in Table 6. It is observed that in all benchmarks,
the proposed ESTS obtains more profit in lower computational times, and as
the benchmark size increases, the difference increases. For example, in the ex-
periment of the benchmark with 500 tasks on 50 nodes, the maximum profit
obtained using the ESTS, ESGA, and ESSA is about 3032, 2934, and 2864,
with a computational time of 437, 1260, and 3760, respectively. The difference
in the maximum profit obtained for all benchmarks is shown in Figure 3. Fig-
ure 4 shows the difference in computational time of the algorithms to obtain
the maximum profit. Furthermore, The difference in computational time of the
algorithms for obtaining similar profits is shown in Table 7 and Figure 5.

Table 6. Comparison of the maximum profit obtained

k
p
→ 50

6
50
10

500
30

500
50

500
100

ESTS → 415.8
73.7

437.3
74.7

2142.1
421.8

3032.8
437.1

3881.6
358.0

prf

computational time
ESGA→ 412.8

96.5
431.6
131.0

2036.1
1077.6

2934.1
1260.6

3765.3
1946.0

ESSA→ 413.5
665.1

431.7
1043.5

2063.4
3052.3

2864.9
3760.8

3685.9
4602.0
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Figure 3. Comparison of the maximum profit obtained

In order to better understand the superiority of the proposed algorithm in
terms of profitability and execution time, their improvement percentage has
been calculated. Table 8 shows the percentage of profitability improvement of
the proposed ESTS compared to the ESGA and ESSA in the various bench-
marks. It is observed that, in terms of profitability, the proposed ESTS algo-
rithm is about 0.7% to 5.2% better than ESGA and 0.5% to 5.3% better than
ESSA for the various benchmarks. The percentage of computational time im-
provement of the ESTS for obtaining the most profit is also shown in Table 9.
According to the table, it can be claimed that the proposed ESTS is about 1.3
to 5.4 times better than ESGA and 7 to 13 times better than ESSA in terms
of computational time.

Table 8. The percentage of profitability improvement (prf)
of the proposed ESTS compared to the ESGA and ESSA

k

p
→

50

6

50

10

500

30

500

50

500

100
ESGA→ 0.726 1.32 5.206 3.36 3.088
ESSA→ 0.556 1.29 3.814 5.86 5.309

Eventually, evaluation and comparison of results show that the proposed
ESTS achieves more profit for all benchmark files. ESTS is also more efficient
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Figure 4. Comparison of the algorithms’ computational time
for obtaining the maximum profit (prf)

Table 9. The percentage of the computational time improve-
ment of the proposed ESTS compared to ESGA and ESSA for
obtaining the maximum profit (prf)

k

p
→

50

6

50

10

500

30

500

50

500

100
ESGA→ 130 175 255 288 543
ESSA→ 902 1396 723 860 1285

than ESGA and much more efficient than ESSA in terms of computational
time. It seems that one of the most significant reasons for the superiority of
the proposed algorithm over other algorithms is that it does not get trapped
in local optimal due to the use of memory and the useful tabu list tool. Con-
sequently, it can achieve good solutions faster. Furthermore, using appropriate
mechanisms to generate good and mutated neighborhood solutions has led to
faster convergence to good solutions. Therfore, the results indicate that the
proposed algorithm is an efficient and fast approach and can probably be useful
and successful for solving various scheduling problems.
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Figure 5. Comparison of the algorithms computational time
for obtaining similar profit (prf)

7. Conclusion and future work

This paper has investigated the efficiency and profitability of heterogeneous
parallel systems. Proper use of the system’s heterogeneous resource capacity
is necessary to achieve high efficiency and profitability, and an efficient alloca-
tion and scheduling approach is very effective in achieving goals. In this study,
the system resources are heterogeneous in terms of processing speed and cost.
Input tasks have a specified profit and time limit. If a task is completed after
the time limit, it will be penalized and its profit will be reduced. The penalty
is proportional to delay. The main goal is to improve the system’s profitability
using an efficient solution with low computational time. The proposed ap-
proach is an extended tabu search-based scheduling algorithm (ESTS), which
reaches suitable solutions in a low computational time. In order to evaluate
the efficiency of the proposed solution, an experimental design was carried out
in comparison with both an extended scheduling based on a genetic algorithm
(ESGA) and an extended scheduling based on a simulated annealing algorithm
(ESSA) under the same conditions. Benchmark files of different sizes were
tested, and the results showed that the proposed ESTS obtained good-quality
solutions in lower computational times. The results showed that, in terms of
profitability, the proposed ESTS is about 0.7% to 5.2% better than ESGA and
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0.5% to 5.3% better than ESSA for the various benchmarks. In terms of com-
putational time, it is about 1.3 to 5.4 times better than ESGA and 7 to 13
times better than ESSA. Experiments on the benchmark with 500 tasks on 50
and 100 heterogeneous resources showed that the proposed solution can solve
large-size problems well. This study has tried to consider the significant condi-
tions and challenges of heterogeneous parallel systems. However, the existence
of some other specific challenges in some real systems cannot be denied, such
as the failure probability in processing resources, the cancellation of some tasks
before or during processing, etc. These challenges as well as other potential
ones can be explored in future research.
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