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Abstract. The Fruit Fly Optimization algorithm is an intelligent op-
timization algorithm. To improve accuracy, convergence speed, as well
as jumping out of local optimum, a modified Fruit Fly Optimization al-
gorithm (MFFOV) is proposed in this paper. The proposed algorithm
uses velocity in particle swarm optimization and improves smell based
on dimension and random perturbations. As a result of testing ten
benchmark functions, the convergence speed and accuracy are clearly
improved in Modified Fruit Fly Optimization (MFFOV) compared to al-
gorithms of Fruit Fly Optimization (FFO), Particle Swarm Optimization
(PSO), Artificial Bee Colony (ABC), Teaching-Learning-Based Optimiza-
tion (TLBO), Genetic Algorithms (GA), Gravitational Search Algorithms
(GSA), Differential Evaluations (DEs) and Hunter–Prey Optimizations
(HPOs). A performance verification algorithm is also proposed and ap-
plied to two engineering problems. Test functions and engineering prob-
lems were successfully solved by the proposed algorithm.

Keywords: Fruit fly optimization algorithm, particle swarm optimization,
random perturbation, velocity.
2020 MSC : 65K10.

1. Introduction

In the definition of optimization, it can be said that optimization refers to
the process of finding optimal values for the parameters of a system from all
possible values to maximize or minimize its output [20]. Problems in various
disciplines can be turned into optimization problems, and a method to solve
them can be designed accordingly. This reveals the importance of different op-
timization methods and provides an exciting research path for researchers [13].
In recent years, intelligent optimization algorithms have been considered by
many scholars. These algorithms are simple and effective search methods, and
they are mostly used in optimization problems. Some of them include: Particle
Swarm Optimization (PSO) [16], Ant Colony Optimization (ACO) [9], Artificial
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Bee Colony (ABC) [14], Fruit Fly Optimization (FFO) [26], Water Evapora-
tion Optimization (WEO) [15], Symbiotic Organism Search (SOS) [2], Spider
Monkey Optimization (SMO) [28], Lion Optimization Algorithm (LOA) [33],
Golden Search Optimization algorithm (GSO) [24], Snake Optimizer (SO) [12],
Dwarf Mongoose Optimization algorithm (DMO), and Hunter-prey optimizer
(HPO) [23]. Particle Swarm Optimization algorithm was introduced by Eber-
hart and Kennedy in 1995. It was inspired by social behavior of bird flocking
that are looking for food. Each solution is a particle and each particle adjusts
its position in the search space according to the flying experience of its own
and of its neighbors. PSO has shown a good performance in solving many of
optimization problems. Also, the Fruit Fly Optimization algorithm is one of
the intelligent optimization algorithms that was introduced by Taiwan scholar
Wen-Tsao Pan in 2011. It is an optimization algorithm based on the food-
finding behavior of fruit fly. Advantages of this method compared to other
intelligent optimization algorithms include: it is simple, its adjustment pa-
rameters are less (only requires the adjustment of two parameters, namely,
population Size and maximum generation number), its convergence speed is
fast, and it’s easy to implement [8]. Also, this algorithm has been successful
for solving some problems such as the continuous function optimization [25],
Travelling Salesperson Problem [14], Generalized Regression Neural Network
parameter optimization [17], Optimization of industrial Structure configura-
tion [32], Grey neural network parameter optimization [6], multidimensional
knapsack problem [31] and so on. However, there are still some shortcomings,
such as easily trapped into the local optimal value and low convergence accu-
racy. For this purpose, this paper proposes a Modified Fruit Fly Optimization
Algorithm (MFFOV) based on velocity variable, Improve Smellbest based on
dimension and random perturbation. The innovation of the article is as follows:
•Adding the speed variable to the FFO algorithm increases the exploration of
the search and makes individuals move towards the food more accurately in
each iteration.
•The random disturbance gives the misguided individuals more chances to find
food.
•An important weakness of the FFO algorithm is its poor convergence in high
dimensions. This problem is largely solved by examining each dimension in
relation to the position of the fruit fly.
The remainder of this paper is structured as follows: Section 2 provides related
works, A brief introduction of the fruit fly optimization algorithm is indicated
in Section 3, and the Modified Fruit Fly Optimization Algorithm (MFFOV) is
described in Section 4. Results and discussion are given in Section 5. In Section
6, the performance of the proposed algorithm for solving real-world problems
was evaluated. And finally, a conclusion is presented in Section 7.
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2. Related works

Fuqing and colleagues (2019) stated in a research article titled A two-stage
differential biogeography-based optimization algorithm and its performance
analysis: Biogeography-based optimization (BBO) has drawn a lot of attention
for its outstanding performance. However, as with certain typical swarm opti-
mization algorithms, BBO severely suffers from premature convergence prob-
lems and the rotational variance of the migration operator. In this paper, a
two-stage differential biogeography-based optimization (TDBBO) is proposed
to address the premature convergence problem and alleviate the rotational
variance [29]. Li and colleagues (2020) stated in a research article titled Im-
proved Fruit Fly Algorithm on Structural Optimization: To improve the effi-
ciency of the structural optimization design in truss calculation, an improved
fruit fly optimization algorithm was proposed for truss structure optimization.
The fruit fly optimization algorithm was a novel swarm intelligence algorithm.
In the standard fruit fly optimization algorithm, it is difficult to solve the
high-dimensional nonlinear optimization problem and easy to fall into the local
optimum. To overcome the shortcomings of the basic fruit fly optimization
algorithm, the immune algorithm self-non-self-antigen recognition mechanism
and the immune system learn-memory-forgetting knowledge processing mech-
anism were employed [18]. Darvish and colleagues (2018) stated in a research
article titled Improved Fruit-Fly Optimization Algorithm and Its Applications
in Antenna Arrays Synthesis: Synthesizing antenna arrays is one of the most
influential optimization problems in the electromagnetics community. In this
paper, an improved fruit-fly optimization algorithm (FOA) [entitled averager
engine linear generation mechanism of candidate solution of FOA (AE-LGMS-
FOA)] is proposed to be used in antenna array synthesis. This improvement
includes adding a new search mechanism to enhance the efficiency of the algo-
rithm for high-dimensional problems [7]. Bezdan and colleagues (2021) stated
in a research articletitled Hybrid fruit-fly optimization algorithm with k-means
for text document clustering: This study models the steelmaking reschedul-
ing problem with flexible processing time as a complex hybrid flowshop in
which two types of disruptions, machine breakdown and processing variation,
are considered concurrently. A weighted sum of the five objectives, including
minimization of the average sojourn time, earliness penalty, tardiness penalty,
cast-break penalty, and system instability penalty, is considered in the pro-
posed algorithm. We develop an effective hybrid fruit fly optimization algo-
rithm (HFOA) that applies two vectors to represent individuals and presents
routing and scheduling neighborhood structures [4].

3. Fruit Fly Optimization Algorithm

The fruit fly optimization algorithm is a method based on the food-finding
behavior of the fruit fly for finding the global optimum. Compared to other
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Table 1. Comparison of some metaheuristic algorithms with their
advantages and disadvantages.

Ref Proposed
algorithm

Optimization
criteria

Comparative
methods Advantages Disadvantages

[35] TDBBO
Algorithm

One-objective
optimization
problems

BB, GBBO,
PBBO,

Algorithm

Solve the problem of early
convergence and reduce rotational
variance in the migration phase

Local
optimization

[29] IRRO-CSO
Algorithm

Multiobjective
and hybrid
optimization
problems

RRO, IRR,
WOA, CSO,
BAT, PSO
Algorithms

Solve the problem of early
convergence in the RRO algorithm
and establish a balance between
exploration and operation in the
combined CSO IRRO algorithm

Early
Convergence and
entanglement in
local optimality

[27] CMVO
Algorithm

Chaos theory in
increasing local
MVO search

ABC, MVO,
MFO Algorithm Increase convergence Increase

execution time

[5] LFMVO
Algorithm

The average best
fit

MFO, MVO,
PSO Algorithm

Increase the convergence speed
compared to the compared

algorithms

Early
convergence

[30]
FPSO +
FGA

Algorithm

Optimization
issues in 10
functions

PSO, GA
Algorithm

Utilizing fuzzy logic to eliminate
early convergence and

entanglement in local optimization

Increase
execution time

[26] FFO
Algorithm

One-objective
optimization
problems

- Simple, easy to implement Group
collaboration

Early
Convergence and
entanglement in
local optimality

species, the fruit fly has stronger senses and perception, especially in vision
and smell. The smell organs of fruit flies can find all kinds of scents suspended
in the air, even when the food is located 40 km away. When a fruit fly gets
close to the food location, it finds food using its vision and then flies in that
direction. The mathematical model for the description of this algorithm is as
follows [29]:
Step 1. The initial location of the swarm of fruit fly is randomly initialized.

Init Xaxis(1)
Init Yaxis

Step 2. The random direction and distance to search of food for each fruit
fly are defined.

Xi = Xaxis +Random V alue(2)
Yi = Yaxis +Random V alue

where i = 1, 2, 3, ... population size of fruit flies.
Step 3. Because the food location cannot be known, first the distance to
the origin is calculated (Dist), then the smell concentration judgment value (S)
(the inverse of distance) is calculated.

(3) Disti =
√
X2

i + Y 2
i
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(4) Si =
1

Disti
Step 4. The smell concentration judgment value of each fruit fly is replaced
in the fitness function, and then the intensity of the smell of that location is
found (Smelli).

(5) Smelli = Function(Si)

Step 5. The one fruit fly with minimum smell concentration among the fruit
fly swarm is determined.

(6) [bestSmell bestIndex] = min(Smell)

Step 6. If the intensity of the smell in this iteration is better than the
previous value, then the best smell concentration value and (X,Y ) coordinate
are kept; at this moment, the fruit fly swarm can fly toward the food location
using vision (Vision searching process).

Smellbest = bestSmell(7)
Xaxis = X(bestIndex)

Yaxis = Y (bestIndex)

Step 7. . Steps 2 − 6 of the optimization algorithm are repeated until the
stop condition is reached.
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4. Modified Fruit Fly Optimization (MFFOV)

This paper presents a modified fruit fly optimization (MFFOV) with the aim
of eliminating the local optimum and improving the accuracy and convergence
speed of the fruit fly optimization algorithm. (Herein, we have n-number of
fruit flies represented by X = (x1, x2, ..., xn) in D-dimensional, such that, ith
fruit fly, xi = (xi1, xi2, ..., xin)).

4.1. Adding velocity variable. In the PSO algorithm, the particles are gath-
ered to the most optimal point in each iteration; this operation is done intelli-
gently (Figure 1). In the FFO algorithm, however, in each iteration, particles
are distributed from the most optimal point without any intelligence (Figure
2). In this section, the next position of the particles will be made intelligently;
thus, the change of speed and position is as follows:

Vix = w∗Vix + c1rand()(Pix −Xi) + c2rand()(Gx −Xi)(8)
Viy = w∗Viy + c1rand()(Piy − Yi) + c2rand()(Gy − Yi)

and

Xi(t+ 1) = Vix(t+ 1) +Xi(t)(9)
Yi(t+ 1) = Viy(t+ 1) + yi(t)

where w is inertia weight, c1 and c1 are acceleration constants, and rand() is
random function. is the best local position experienced by i − th fruit fly on
the x direction, and Piy is the best local position experienced by i − th fruit
fly on the y direction. Gx is the best position experienced by all fruit flies on
the x direction, and Gy is the best position experienced by all fruit flies on the
y direction.

4.2. Random perturbation. When the fitness value (Smellbest) compared
with the fitness value in the previous iteration was not better, a random value
(in search space) is added to swarm position. To find the best swarm location,
this process can be put on a loop with a low number of iterations (we used
n = 10).
if bestSmell > Smellbest

Xaxis = X(bestindex);

Yaxis = Y (bestindex);

Smellbest = bestSmell;

Else

For i = 1 : n
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Figure 1. Update the position of the particles to the most
optimal point (red point) in the sphere function in the PSO
algorithm.

Figure 2. Update the position of the particles from the most
optimal point (red point) in the sphere function in the FFO
algorithm.

Xnew = X(bestindex) +
1

2π
e

−X(bestindex)2

2
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Ynew = Y (bestindex) +
1

2π
e

−Y (bestindex)2

2

Distnew =
√
(Xnew)2 + (Ynew)2

Snew =
1

Distnew

Smellnew = smellfunction(Snew)

if Smellnew > bestSmell

Smellbest = Smellnew

Xaxis = X(new)

Yaxis = Y (new)

End

End

4.3. Improve Smellbest based on dimension. We can improve Smellbest
by checking each dimension in the fruit fly position, such that if by substituting
the value of one dimension (at a time) of the position of each fruit fly into the
corresponding dimension value of Gbestposition, the fitness value improves, the
Smellbest is updated.
(10) For each dimension j, 1 toD

For each fruit fly i, 1 to n

Pos = Gbestposition

Pos = Xij

if f(Pos) > Smellbest

Smellbest = f(Pos)

Gbestposition = Pos

End

End

End

Gbestposition is the position of the best fruit fly in the current iteration.
Smellbest is the smell of the best fruit fly in the current iteration. is -th
dimension in the position of -th fruit fly.



A new improved fruit fly optimization algorithm ... – JMMR Vol. 13, No. 2 (2024) 81

5. Results and Discussion

In this section, the MFFOV algorithm is evaluated on 10 test functions
and compared to advanced swarm based optimization algorithms. Benchmark
functions can be divided into two groups: unimodal and multi-modal function.
These 10 benchmark functions are the classical functions used by many re-
searchers [23]. From these 10 classical functions, the first eight are unimodal,
and the second two are multi-modal. The unimodal functions (f1–f8) are suit-
able for determining algorithms’ exploitation, because they have a global opti-
mum and no local optimum. Multi-modal functions (f9, f10) have many local
optima and are useful for examining the exploration and avoiding the algo-
rithms’ local optima. These benchmark functions are given in Table 4, where
DIM represents the dimensions of the function and RANGE is the boundary of
the functions. In this section, the following 8 metaheuristics are applied to the
previously discussed problem: FFO, PSO, ABC, TLBO, GA, GSA, DE, and
HPO. Table 2 compares the mean, variance, and mean computation time of at
least 30 independent simulations between PSO, GA, FFO, and MFFOV.

To provide a fair comparison between the proposed algorithm and another
selected set of algorithms, we followed the same initialization process for all the
compared algorithms. For all experiments, the common parameter settings for
all algorithms were as follows: The number of individuals used in the search
process is set to 80, and the number of iterations is set to 1000. The values
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Figure 3. The flowchart of MFFOV.

Table 2. Comparison between PSO, GA, FFO and MFFOV
for different typical fitness functions (the mean of calculation
time).

Function Dimension Algorithm Optimal value Average value Standard deviation Running time/s
f1 30 PSO 4.11e− 08 6.25e− 07 7.11e− 06 5.697

30 GA 0.1758 9.75e− 01 4.33e− 01 4.014
30 FFO 0.0745 1.85e+ 00 3.35e+ 00 2.035
30 MFFOV 0 0 0 3.865

f5 30 PSO 0.0385 1.85e+ 01 3.35e+ 01 4.481
30 GA 4.96e− 03 1.35e− 02 7.28e− 01 3.239
30 FFO 0.0985 1.85e+ 00 3.35e+ 00 1.967
30 MFFOV 3.13e− 06 8.62e− 05 4.18e− 05 3.175

f9 30 PSO 2.83e+ 03 2.15e+ 04 1.35e+ 01 4.865
30 GA 1.43e+ 02 3.24e+ 03 6.01e+ 02 3.451
30 FFO 5.47e+ 03 1.85e+ 04 3.35e+ 04 12.074
30 MFFOV 0 0 0 3.362

of c1, c2, will influence MFFOV performance. Here, we suggest and take the
values 0.1 and 3.0, respectively. Furthermore, the value of w is 0.76 in the first
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iteration and w*0.99 in all subsequent iterations (Other parameters of each
algorithm are shown in Table 3).

Table 3. The parameter settings.

Algorithm Parameter Value Ref(s)

PSO c1 c2 1.4961 [1]

w 0.9

TLBO Teaching factor T 1, 2 [3]

GA Pc 0.95 [1]

Pm 0.001

GSA Gc 1 [22]

DE CR 0.9 [1]

F 0.95

HPO C ∈ [1, 0.002] [23]

β 0.1

Table 4. Benchmark functions used in experiments.

Function D Range class fmin

f1(x) =
D∑
i=1

x2i 30 [−100, 100] Unimodal 0

f2(x) =| xi | +
D∏
i=1

| xi | 30 [−10, 10] Unimodal 0

f3(x) =
D∑
i=1

(
i∑

j=1

xj)
2 30 [−100, 100] Unimodal 0

f4(x) = max| xi |, 1 6 i 6 D 30 [−100, 100] Unimodal 0

f5(x) =
D∑
i=1

ix4i + random[0, 1) 30 [−128, 128] Unimodal 0

f6(x) =
D−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2] 30 [−30, 30] Unimodal 0

f7(x) =
D∑
i=1

([xi + 0.5])2 30 [−100, 100] Unimodal 0

f8(x) =
D−1∑
i=1

−xi sin(
√
| xi |) 30 [−500, 500] multimodal −418.9829∗5

f9(x) =
1

4000

D∑
i=1

x2i −
D∏
i=1

cos(
xi√
i
) + 1 30 [−600, 600] multimodal 0

f10(x) = 0.1{sin2(3πx1) +
D−1∑
i=1

(xi − 1)2[1 +

sin2(3πxi+1)] + (xn − 1)[1 + sin2(2πxn)]}+
D∑
i=1

µ(xi, 5, 100, 4)

30 [−50, 50] multimodal 0

Table 5 summarizes the mean (ave) and standard deviation (stdv). Table 6
summarizes the Wilcoxon test p-values at the 0.05 significance level for MFFOV
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against the other seven algorithms. According to Table 5, MFFOV performed
better than FFO, PSO, ABC, TLBO, GA, GSA, DE, and HPO in 1, 2, 3, 6,
9, and 10 benchmark test functions, respectively.

Table 5. Test Results of each Algorithm for each Function.

F result FFO PSO ABC TLBO GA GSA DE HPO MFFOV

f1 avg 1.85e + 00 6.25e− 07 1.45e− 23 1.00e− 152 9.75e− 01 4.00e− 57 8.57e− 46 0 0

stdv 3.35e + 00 7.11e− 06 6.99e− 22 2.02e− 152 4.33e− 01 4.27e− 55 2.38e− 46 0 0

f2 avg 1.85e + 01 8.35e− 04 8.35e− 21 8.25e− 26 4.72e− 02 5.72e− 32 2.55e− 25 2.91e− 92 0

stdv 3.35e + 01 6.26e− 03 3.47e− 18 8.51e− 26 7.88e− 01 4.32e− 30 3.57e− 25 1.11e− 91 0

f3 avg 1.85e + 01 7.35e− 05 1.25e− 13 9.86e− 21 5.44e− 01 7.44e− 65 9.39e− 52 6.83e− 144 0

stdv 3.35e + 01 3.44e− 04 1.74e− 13 1.82e− 20 3.11e− 01 6.24e− 61 5.66e− 52 3.72e− 143 0

f4 avg 1.85e + 02 2.15e + 00 4.36e− 05 6.39e− 19 4.75e + 00 6.61e− 43 8.25e− 36 5.40e− 77 4.22e− 07

stdv 3.35e + 02 8.99e− 01 7.78e− 04 1.05e− 54 1.42e + 00 1.28e− 43 3.76e− 36 1.62e− 76 5.62e− 07

f5 avg 1.85e + 00 1.85e + 01 5.91e− 05 7.14e− 00 1.35e− 02 5.14e− 08 5.14e− 05 9.22e− 37 8.62e− 05

stdv 3.35e + 00 3.35e + 01 4.41e− 04 3.02e− 00 7.28e− 01 1.33e− 08 1.74e− 05 2.43e− 35 4.18e− 05

f6 avg 1.85e + 01 6.25e− 07 5.65e− 06 4.37e− 13 2.38e− 01 4.74e− 25 5.57e− 33 0 0

stdv 3.35e + 01 2.12e− 06 1.58e− 06 1.22e− 13 2.48e− 01 4.39e− 24 3.67e− 33 0 0

f7 avg 1.85e + 02 2.41e− 01 5.34e− 11 4.34e− 18 2.77e− 03 9.45e− 29 0 0 4.62e− 29

stdv 3.35e + 02 6.63e− 02 1.11e− 09 7.52e− 16 4.62e− 02 4.77e− 29 0 0 5.55e− 29

f8 avg 1.85e + 05 −6.54e + 04 −4.10e + 04 −7.14e + 02 −6.67e + 05 −1.22e + 01 −5.35e + 02 −6.24 + 02 −2.85e + 02

stdv 3.35e + 05 3.73e + 02 2.10e + 02 1.03e + 02 7.84e + 05 2.04e + 01 07.11e + 02 5.88 + 02 4.11e + 02

f9 avg 1.85e + 03 2.15e + 04 1.54e + 04 0 3.24e + 04 0 0 0 0

stdv 3.35e + 03 1.35e + 01 5.44e + 03 0 6.01e + 03 0 0 0 0

f10 avg 1.85e + 02 8.24e + 04 3.14e + 04 2.20e− 03 2.17e + 04 7.76e− 09 2.54e− 08 0 0

stdv 3.35e + 02 1.41e + 02 7.92e + 02 4.44e− 03 8.14e + 03 9.32e− 09 4.62e− 08 0 0
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Table 6. P-values of the Wilcoxon test.

Function FFO PSO ABC TLBO GA GSA DE HPO MFFOV

P-value P-value P-value P-value P-value P-value P-value P-value P-value

f1 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 NAN NAN

f2 1.78e− 06 1.78e− 06 1.78e− 06 1.77e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 NAN

f3 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 NAN

f4 1.77e− 06 1.77e− 06 1.76e− 06 1.77e− 06 1.78e− 06 1.78e− 06 1.77e− 06 1.78e− 06 1.78e− 06

f5 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06

f6 1.78e− 06 1.74e− 06 1.78e− 06 1.78e− 06 1.76e− 06 1.78e− 06 1.78e− 06 NAN NAN

f7 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 NAN NAN 1.78e− 06

f8 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06 1.78e− 06

f9 1.77e− 06 1.78e− 06 1.78e− 06 NAN 1.78e− 06 NAN NAN NAN NAN

f10 1.78e− 06 4.65e− 04 2.52e− 05 1.78e− 06 1.78e− 06 3.78e− 03 1.76e− 06 NAN NAN

5.1. Qualitative Analysis of MFFOV. Figure 4 presents the qualitative
results, including search landscapes, convergence curves, average fitness curves
in logarithmic shapes, search history and trajectory of the first individual,
associated with the MFFOV algorithm in solving a selected set of test functions
for up to 200 iterations.

6. Performance of MFFOV Algorithm on Constrained Prob-
lems

MFFOV was also tested with two constrained engineering design problems:
a tension/compression spring and a three-bar truss. Unlike basic test func-
tions, real-world problems have equality and inequality constraints; therefore,
MFFOV should be equipped with a constraints control method to optimize
such problems. The performance of the algorithm in dealing with constrained
optimization problems is significantly influenced by the employed constraint
handling technique (CHT). In recent decades, many constraint control meth-
ods have been developed for optimization algorithms. Some popular CHTs
among them are the death penalty, co-evolutionary, adaptive, annealing, dy-
namic and static [21]. The death penalty function, the simplest method, assigns
a big objective value. It eliminates impossible solutions by optimization algo-
rithms during the optimization process. The advantages of this method are
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Figure 4. Convergence behavior and search history of the
proposed MFFOV algorithm.

low computational costs and simplicity [11]. The methods were compared us-
ing the death penalty method, because most of the algorithms used the same.
The results of the MFFOV algorithm were compared with the algorithms that
previously solved these problems. The number of search agents was set to 80,
and the maximum number of iterations was set to 1000.

6.1. Three-bar truss design problem. Consider the three-bar truss design
shown in figure 5, taken from Naruei [23]. This problem involved two variables
and three inequality constraints. The design optimization problem can be for-
mulated as follows:

min f(X) = (2
√
2x1 + x2) ∗ l

s.t. g1(X) =

√
2x1 + x1√

2x21 + 2x1x2
P − σ ≤ 0

g2(X) =
x2√

2x21 + 2x1x2
P − σ ≤ 0

g2(X) =
1√

2x21 + 2x1x2
P − σ ≤ 0

Where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, l = 100cm, P = 2
KN

cm2
, and σ = 2

KN

cm2
.

The proposed MFFOV method was applied to the three-bar truss design
problem, and the optimal solutions were compared to earlier results reported
by CS [11], WCA [10], MFO [19], and OBSCA [1]. The MFFOV algorithm
achieved better results than all algorithms except WCA (Table 7).
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Figure 5. Three-bar truss design problem [23].

Table 7. Comparison results for three-bar truss design prob-
lem.

Algorithm Optimal values for variables constraints Optimal weight
X1 X2 g1 g2 g3

CS [11] 0.78867 0.40902 −0.00029 −0.26853 −0.73176 263.9716
WCA [10] 0.788651 0.408316 −0.000000 −1.464024 −0.535975 263.8958
MFO [19] 0.78901 0.44025 −0.0241817 −1.440996 −0.5831856 267.1907
OBSCA [1] 0.77457 0.46647 −0.01173657 −1.406186 −0.6055509 265.7285
MFFOV 0.78847 0.408902 −0.0000054 −1.463386 −0.536669 263.9032

6.2. Tension/compression spring. The tension/compression spring design
problem (Figure 6.) is described in [19]. The design optimization problem
involves three continuous variables and four nonlinear inequality constraints.

min f(X) = (x3 + 2)x2x
2
1

s.t. g1(X) = 1− x32x3
71785x41

≤ 0

g2(X) =
1√

2x21 + 2x1x2
P − σ ≤ 0

g3(X) = 1− 140.45x1
x22x3

≤ 0

g4(X) =
x1 + x2
1.5

− 1 ≤ 0

Where 0.25 ≤ x1 ≤ 1.3, 0.05 ≤ x2 ≤ 2, 2 ≤ x3 ≤ 15

The proposed MFFOVmethod was applied to the tension/compression spring
design problem, and the optimal solutions were compared to earlier results re-
ported by MPM [3], WCA [10], PSO and MVO [22]. The MFFOV algorithm
achieved better results than all other algorithms (Table 8).
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Figure 6. Tension/compression spring design problem [23].

Table 8. Comparison results for r tension/compression
spring.

Algorithm Optimal values for variables constraints Optimal weight
X1(d) X2(D) X3(N) g1(x) g2(x) g3(x) g4(x)

MPM [3] 0.05000 0.31590 14.2500 −0.000014 −0.003782 −3.938302 −0.756067 0.0128334
WCA [10] 0.051689 0.356718 11.288957 −1.65e− 13 −7.90e− 14 −4.053399 −0.727864 0.012665

PSO 0.05000 0.310414 15.0000 −3.30e− 06 −0.01737 −3.858675 −0.759724 0.0131926
MVO [22] 0.05000 0.315956 14.22623 −0.0001287 −0.0036433 −3.9448 −0.756029 0.01281694
MFFOV 0.051691 0.35677 11.285441 −2.28e− 05 −1.26e− 05 −4.054073 −0.727692 0.01266468

7. Conclusions

Targeting the phenomenon of easily relapsing into local extremum and low
convergence accuracy of the fruit fly optimization algorithm, this paper pro-
poses an adaptive fruit fly optimization algorithm based on velocity in parti-
cle swarm optimization, improved Smellbest based on dimension, and random
perturbation. Experimental results for a set of benchmark test functions and
engineering design problems seem to show that hybridization provides a more
effective trade-off between exploitation and exploration of the search space. The
proposed MFFOV algorithm has been shown to be competitive and efficient
when compared with the others; however, further research is required to exam-
ine the efficiencies of the proposed algorithm on other real-world optimization
and large-scale optimization problems.
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