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Abstract. In the present paper, we introduce a new subclass of normal-

ized analytic and univalent functions in the open unit disk associated with

Sigmoid function. Coefficient estimates, convolution conditions, convex-
ity and some other geometric properties for functions in this class are

investigated. Also, subordination and inclusion results are obtained.
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1. Introduction

Let A denote the class of all functions of the type:

f(x) = x+

∞∑
k=2

αkx
k,(1)

which are analytic in the open unit disk U = {x ∈ C : |x| < 1}. Also, suppose
that N denotes the subclass of A consisting of analytic functions of the form:

f(z) = z −
∞∑
k=2

akz
k, (ak > 0, z ∈ U).(2)

The convolution of f given by (2) and g(z) = z −
∑∞

k=2bkz
k is defined by:

(f ∗ g)(z) = z −
∞∑
k=2

akbkz
k = (g ∗ f)(z).(3)

Further, let P be the class of functions:

p(z) = 1 +

∞∑
k=1

ckz
k,(4)

which are analytic and convex in U.
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The logistic Sigmoid function is given by

L(z) =
1

1− e−z
,(5)

which is differentiable. For the purpose of our results, the following lemma
shall be necessary.

Lemma 1.1. Let L(z) be a Sigmoid function and

Φ(z) = 2L(z) = 1 +

∞∑
m=1

(−1)m

2m

( ∞∑
k=1

(−1)k

k!
zk
)m

,(6)

then |Φ(z)| < 2, |z| < 1, where Φ(z) is a modified Sigmoid function.

Setting m = 1, Fadipe-Joseph et al. [4] remarked that

Φ(z) = 1 +

∞∑
k=1

(−1)k+1

2(k!)
zk.(7)

For more details see also [2], [5], [6], [1], [8], [10] and [11–14].
By applying the convolution structure, we consider the function

Xf (z) =
(
(F ∗ F ) ∗ f

)
(z),(8)

where f is given by (2) and

F (z) = 1 +
3

2
z − Φ(z).

With a simple calculation, we conclude that:

Xf (z) = z −
∞∑
k=2

1

4(k!)2
akz

k.(9)

Let f(z) and g(z) be analytic in U. Then f(z) is said to be subordinate to
g(z), written f ≺ g or f(z) ≺ g(z), if there exists a function w analytic in U
with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)). If g is univalent, then
f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U), see [3] and [7].

2. Main Results

In this section, first we define a new subclass of univalent functions. Then we
obtain the sharp coefficient bounds for functions in this subclass. Also, convo-
lution preserving property with some restrictions on parameters is investigated.
Finally, we introduce the integral representation for the functions defined by
(9). By using this class of functions, we can find many interesting geometric
properties.

Definition 2.1. For −1 6 B < A 6 1, 0 6 t 6 1, let Yt(A,B) denotes the
class of functions f ∈ N for which

z
(
Xf (z)

)′
ft(z)

≺ 1 +Az

1 +Bz
,(10)
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or equivalently ∣∣∣∣∣ z
(
Xf (z)

)′ − ft(z)
Aft(z)−Bz

(
Xf (z)

)′
∣∣∣∣∣ < 1,(11)

where Xf (z) is given by (9) and

ft(z) = (1− t) + tf(z), f(z) ∈ N .

For defining this class, we take an idea from [9].

Theorem 2.2. Let f(z) = z −
∞∑
k=2

akz
k be analytic in U. Then f ∈ Yt(A,B)

if and only if:
∞∑
k=2

[( k

4(k!)2
− t
)

(1−B) + t(A−B)
]
ak 6 A−B.(12)

Proof. Let (12) hold true. We have to show that (10) or equivalently (11) is
satisfied. But we have∣∣∣z(Xf (z)

)′ − ft(z)∣∣∣− ∣∣∣Aft(z)−Bz(Xf (z)
)′∣∣∣

=

∣∣∣∣∣z −
∞∑
k=2

k

4(k!)2
akz

k − (1− t)z − tf(z)

∣∣∣∣∣
−

∣∣∣∣∣A(1− t)z +Atf(z)−Bz +

∞∑
k=2

Bk

4(k!)2
akz

k

∣∣∣∣∣
=

∣∣∣∣∣−
∞∑
k=2

( k

4(k!)2
− t
)
akz

k

∣∣∣∣∣−
∣∣∣∣∣(A−B)z −

∞∑
k=2

(
At− Bk

4(k!)2

)
akz

k

∣∣∣∣∣ .
But, putting

At− Bk

4(k!)2
= t(A−B)−

( k

4(k!)2
− t
)
B,

letting z → 1 and applying (12), the above expression is less than or equal to
zero, so (11) holds true and hence f ∈ Yt(A,B).

To prove the converse, let f ∈ Yt(A,B), then

∣∣∣∣∣ z
(
Xf (z)

)′ − ft(z)
Aft(z)−Bz

(
Xf (z)

)′
∣∣∣∣∣ =

∣∣∣∣ ∞∑
k=2

(
k

4(k!)2 − t
)
akz

k

∣∣∣∣∣∣∣∣(A−B)z −
∞∑
k=2

(
At− Bk

4(k!)2

)
akzk

∣∣∣∣ < 1.

But Re(z) 6 |z| for all z, we have:

Re

{ ∞∑
k=2

(
k

4(k!)2 − t
)
akz

k

(A−B)z −
∞∑
k=2

(
At− Bk

4(k!)2

)
akzk

}
< 1.
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By letting z → 1 through positive values and choosing the values of z such that
z
(
Xf (z)

)′
ft(z)

is real, we get the required result, so the proof is complete. �

Remark 2.3. (Sharpness of inequality (12)): We note that the function

G(z) = z − A−B(
1
8 − t

)
(1−B) + t(A−B)

z2,(13)

shows that the inequality (12) is sharp.

Theorem 2.4. Let the functions f(z) = z −
∞∑
k=2

akz
k and g(z) = z −

∞∑
k=2

bkz
k

be in the class Yt(A,B), then (f ∗ g)(z) belongs to Yt(A,B0), where:

B0 6

[(
V

A−B
)2 − t]A− U(

V
A−B

)2 − t− U , U =
k

4(k!)2
− t

and

V = U(1−B) + t(A−B).(14)

Proof. It is sufficient to show that
∞∑
k=2

[( k

4(k!)2
− t
)( 1−B0

A−B0

)
+ t
]
akbk 6 1.

By using Cauchy-Schwarz inequality, from (12), we obtain:

∞∑
k=2

(
k

4(k!)2 − t
)
(1−B) + t(A−B)

A−B
√
akbk 6 1.

Hence, we find the largest B0 such that:

∞∑
k=2

(
k

4(k!)2 − t
)
(1−B0) + t(A−B0)

A−B0
akbk

6
∞∑
k=2

(
k

4(k!)2 − t
)
(1−B) + t(A−B)

A−B
√
akbk 6 1,

or equivalently

√
akbk 6

[(
k

4(k!)2 − t
)
(1−B) + t(A−B)

]
(A−B0)[(

k
4(k!)2 − t

)
(1−B0) + t(A−B0)

]
(A−B)

.

This inequality holds if

A−B(
k

4(k!)2 − t
)
(1−B) + t(A−B)

6

[(
k

4(k!)2 − t
)
(1−B) + t(A−B)

]
(A−B0)[(

k
4(k!)2 − t

)
(1−B0) + t(A−B0)

]
(A−B)

.

After a simple algebraic manipulation, we conclude the required result. �
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Theorem 2.5. Let f ∈ Yt(A,B), then:

Xf (z) =

∫ z

0

1 +AW (s)

s(1 +BW (s))
ft(s)ds, (|W (z)| < 1).(15)

Proof. Since f(z) ∈ Yt(A,B), so (11) holds. Hence

z
(
Xf (z)

)′ − ft(z)
Aft(z)−Bz

(
Xf (z)

)′ = W (z), (|W (z)| < 1).

Therefore, we can write(
Xf (z)

)′
=

(
1 +AW (z)

)
ft(z)

z
(
1 +BW (z)

) .

After integration, we obtain the required result. �

3. Geometric properties of subfamilies of Yt(A,B)

In this section, we introduce two subclasses of Yt(A,B) and obtain some
Geometric properties of functions in these subclasses.

Let P(C,D) consist of all analytic functions g(z) in U for which g(0) = 1
and

g(z) ≺ 1 + Cz

1 +Dz
,(16)

where −1 6 C < D 6 1 and 0 < D 6 1.
Furthermore, suppose that Q(C,D) denote the class of all functions f(z) ∈

Yt(A,B) for which

z
(
Xf (z)

)′
Xf (z)

∈ P(C,D).(17)

Theorem 3.1. f(z) ∈ Q(C,D) if and only if
∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C

]
ak < 1.(18)

Proof. Let f(z) ∈ Q(C,D) then by (10), (16) and (17) we have:∣∣∣∣∣∣∣∣
z −

∞∑
k=2

1
4(k!)2 akz

k − z +
∞∑
k=2

k
4(k!)2 akz

k

Dz
(

1−
∞∑
k=2

k
4(k!)2 akz

k−1
)
− C

(
z −

∞∑
k=2

1
4(k!)2 akz

k
)
∣∣∣∣∣∣∣∣ < 1,

which implies that

Re


∞∑
k=2

(k − 1)
(

1
4(k!)2

)
akz

k−1

(D − C)−
∞∑
k=2

(Dk − C) 1
4(k!)2 akz

k−1

 < 1.
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Now, by choosing the values of z on the real axis and letting z → 1−, we obtain:
∞∑
k=2

k−1
4(k!)2 ak

(D − C)−
∞∑
k=2

(Dk − C) 1
4(k!)2 ak

< 1.

Then after a simple calculation, we conclude the result.
Conversely, assume that the relation (18) holds. We must show that f(z) ∈

Q(C,D), or equivalently

M(z) =

∣∣∣∣∣ Xf (z)− z
(
Xf (z)

)′
Dz
(
Xf (z)

)′ − CXf (z)

∣∣∣∣∣ < 1.

But we have:

M(z) =

∣∣∣∣∣∣∣∣
∞∑
k=2

k−1
4(k!)2 akz

k−1

(D − C)−
∞∑
k=2

(Dk − C) 1
4(k!)2 akz

k−1

∣∣∣∣∣∣∣∣
<

∞∑
k=2

k−1
4(k!)2 ak

(D − C)−
∞∑
k=2

(Dk − C) 1
4(k!)2 ak

.

By using (18), the last inequality is less than one, so the proof is complete. �

Theorem 3.2. Let f(z) ∈ Q(C,D) and

z
(
Xf (z)

)′
Xf (z)

= a+ ib = η.

Then the values of η lie in the circle, with center at
(

1−CD
1−D2 , 0

)
and radius

D−C
1−D2 .

Proof. By (16) and (17), we have:

η = a+ ib =
1 + Cv(z)

1 +Dv(z)
, (|v(z)| < 1).

Then (a+ ib)(1 +Dv(z)) = 1 + Cv(z), or

(a− 1) + ib =
[
(C − aD)− ibD

]
v(z),

and so

(a− 1)2 + b2 < (C − aD)2 + b2D2.

After a simple calculation, we obtain:(
a− 1− CD

1−D2

)2
+ b2 <

(D − C
1−D2

)2
.
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Hence the values of η lie in the circle with center at
(
1−CD
1−D2 , 0

)
and radius

D−C
1−D2 . �

Theorem 3.3. Let 0 6 C2 < C1 < 1, then Q(C1, D) ⊂ Q(C2, D).

Proof. Suppose that f(z) ∈ Q(C,D), then

∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C

]
ak < 1.

We have to prove that

∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C2

]
ak < 1.

But the last inequality holds if

1 +
(D + 1)(k − 1)

D − C2
6 1 +

(D + 1)(k − 1)

D − C1
,

and this by hypothesis definitely holds. �

Theorem 3.4. The class Q(C,D) is a convex set.

Proof. We must show that if fj(z) = z −
∑∞

k=2ak,jz
k (j = 1, 2, . . . ,m) is in

Q(C,D), then the function F (z) =
∑m

j=1 λjfj(z) where
∑m

j=1 λj = 1 is also in

Q(C,D). But we have

F (z) =

m∑
j=1

λj

(
z −

∞∑
k=2

ak,jz
k
)

= z −
m∑
j=1

λj

( ∞∑
k=2

ak,jz
k
)

= z −
∞∑
k=2

( m∑
j=1

λjak,j

)
zk.

Hence
∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C

]( m∑
j=1

λjak,j

)

=

m∑
j=1

[ ∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C

]
ak,j

]
λj .

Since fj(z) ∈ Q(C,D), so by Theorem 3.1 (inequality (18)), we have

∞∑
k=2

1

4(k!)2

(
1 +

(D + 1)(k − 1)

D − C

)
ak,j ≤ 1.
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Hence
m∑
j=1

[ ∞∑
k=2

1

4(k!)2

[
1 +

(D + 1)(k − 1)

D − C

]
ak,j

]
λj ≤

m∑
j=1

λj = 1.

So by Theorem 3.1, F (z) ∈ Q(C,D). �

Conclusion

In Geometric Function Theory, many authors have studied various coeffi-
cient estimates of other classes of univalent functions. By using the Sigmoid
function, convolution structure and subordination, we achieved a new subclass
of univalent functions, the sharp coefficient bounds, convolution preserving
property, integral representation and many other geometric properties.
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