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Abstract. The Inverse Gaussian distribution finds application in var-

ious fields, such as finance, survival analysis, psychology, engineering,

physics, and quality control. Its capability to model skewed distributions
and non-constant hazard rates make it a valuable tool for understanding

a wide range of phenomena. In this paper, we present a goodness-of-fit

test specifically designed for the Inverse Gaussian distribution. Our test
uses an estimate of the Gini index, a statistical measure of inequality. We

provide comprehensive details on the exact and asymptotic distributions
of the newly developed test statistic. To facilitate the application of the

test, we estimate the unknown parameters of the Inverse Gaussian dis-

tribution using maximum likelihood estimators. Monte Carlo methods
are utilized to determine the critical points and assess the actual sizes of

the test. A power comparison study is conducted to evaluate the perfor-

mance of existing tests. Comparing its powers with those of other tests,
we demonstrate that the Gini index-based test performs favorably. Fi-

nally, we present a real data analysis for illustrative purposes.
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1. Introduction

Goodness-of-fit (GOF) tests are statistical procedures used to evaluate how
well an observed dataset fits a specific theoretical distribution or model. These
tests aim to assess the degree of compatibility between the observed data and
the hypothesized distribution or model. The applications of GOF tests are
diverse and span various fields:

(1) Quality Control: GOF tests are commonly used in quality control to
verify if a manufacturing process follows a specified distribution. By
comparing the observed process data with the assumed distribution,
GOF tests can help identify deviations and detect potential issues af-
fecting product quality.
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(2) Model Selection: GOF tests play a vital role in model selection
by comparing different models to determine which one offers the best
fit to the observed data. This process helps researchers or analysts
choose the most appropriate model for their specific research question
or predictive purposes.

(3) Hypothesis Testing: GOF tests are used for hypothesis testing to
assess the GOF between the observed sample and the hypothesized dis-
tribution. This helps determine whether the observed data can be gen-
erated from the assumed distribution or if another distribution should
be considered.

(4) Predictive Modeling: GOF tests are important in predictive mod-
eling, where the objective is to develop models that accurately predict
future outcomes. By evaluating the GOF, these tests help determine if
the proposed model is suitable for making reliable predictions.

(5) Risk Management: GOF tests are invaluable in risk management,
particularly in assessing the fit of statistical models used for estimat-
ing and managing risks. By evaluating the GOF, these tests provide
insights into the accuracy and reliability of the risk estimates obtained
from the model.

Overall, GOF tests provide a quantitative measure of the agreement between
observed data and theoretical distributions or models. They serve as valu-
able tools in various applications such as quality control, model selection, hy-
pothesis testing, predictive modeling, and risk management. By assessing the
GOF, these tests help ensure the validity and reliability of statistical analyses,
decision-making processes, and predictive models in numerous fields.
The Inverse Gaussian (IG) distribution is widely applied in various fields, in-
cluding finance, survival analysis, psychology, engineering, physics, and quality
control. Its capacity to model skewed distributions and non-constant hazard
rates makes it a valuable tool for understanding diverse phenomena. Notably,
researchers such as Folks and Chhikara (1978), Bardsley (1980), Chhikara and
Folks (1989), Seshadri (1993, 1999), Johnson et al. (1994), and Barndorff-
Nielsen (1994) have recognized its significance. Consequently, it is crucial to
assess whether the IG model adequately represents the observed data.
In order to determine the appropriateness of approximating the unknown dis-
tribution of a sample, denoted as F , with an IG model, several GOF tests
can be employed. These tests are specifically designed to measure the level of
agreement between the observed sample data and the proposed IG model.
One widely utilized class of GOF tests involves evaluating the discrepancy
between the empirical distribution function (EDF) derived from the sample
data and the distribution function assumed by the IG model. Prominent tests
belonging to this class include the Cramer-von Mises, Kolmogorov-Smirnov,
Kuiper, Watson, and Anderson-Darling tests. These tests assess the level of
agreement between the observed sample data and the theoretical distribution
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function implied by the IG model. Each of these tests quantifies the dis-
tance or dissimilarity between the EDF and the assumed distribution. For
further details on these tests, including their specific formulations and prop-
erties, D’Agostino and Stephens (1986) provide comprehensive information.
These tests serve as valuable tools for evaluating the GOF between the ob-
served data and the proposed IG model, offering insights into the adequacy of
the IG distribution as an approximation for the unknown distribution.
By applying these GOF tests, researchers can gain insights into the extent to
which the observed sample data aligns with the theoretical assumptions of the
IG model. The examination of these tests allows for effective evaluation and
determination of the degree of fit between the data and the IG model, facili-
tating informed decision-making in statistical analysis.
Recently, EDF-tests for the IG distribution are investigated by Alizadeh and
Shafaei (2024a). They compared the power of the tests based on the empirical
distribution function and discovered that the actual sizes of the tests based
on Zhang’s (2002) statistics (i.e., ZA and ZC) were deemed acceptable. As
a result, they recommend employing the tests based on ZA and ZC statistics
in practical applications. Their overall conclusion suggests that these tests,
ZA and ZC , exhibit strong performance across a wide range of alternative hy-
potheses, making them reliable and suitable choices for hypothesis testing in
practice. Following their work, Alizadeh and Shafaei (2024b) proposed some
new tests for the IG distribution based on varentropy and obtained the power of
the tests. These varentropy-based tests, denoted as TE and TA, were found to
exhibit strong performance in terms of power. The power differences observed
between these tests and the other competing tests were found to be significant.
The Gini index is a widely used statistical measure of inequality or diversity
within a given dataset. Originally developed by the statistician Corrado Gini in
1912, it has become an invaluable tool for assessing and quantifying inequality
in various fields.
In the realm of statistics, the Gini index is commonly applied to measure in-
come or wealth inequality within populations. It provides a concise summary
of the distribution of these resources by condensing the entire income or wealth
distribution curve into a single numerical value. The Gini index ranges between
0 and 1, with 0 indicating perfect equality (all individuals have the same in-
come or wealth) and 1 denoting extreme inequality (one individual possesses
all the income or wealth).
Moreover, the Gini index finds applications beyond income and wealth inequal-
ity. It is also utilized in fields such as social sciences, healthcare, ecology, and
even computer science. For instance, in social sciences, it can analyze educa-
tional attainment or life satisfaction disparities. In healthcare, it can assess
disparities in disease prevalence or access to medical services. In ecology, it
can determine species diversity and the evenness of distribution. In computer
science, it can measure diversity in algorithms or recommenders.
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The Gini index enables researchers to compare inequality among different pop-
ulations or track changes in inequality over time. By capturing the essence of
distribution patterns within a single number, it allows for straightforward com-
parisons, policy evaluations, and monitoring of social or economic conditions.
In conclusion, the Gini index is a versatile statistical measure widely employed
to quantify inequality or diversity. Its applications span various fields, pro-
viding valuable insights into income disparities, resource distribution, social
disparities, ecological diversity, and beyond. The Gini index serves as a ro-
bust tool for researchers and policymakers seeking to understand, address, and
monitor inequality in its diverse manifestations.
The Gini coefficient is defined as

G = 1− 2

∫ 1

0

L(p)dp ,

where L is the Lorenz function given by

L(p) =
1

E(X)

∫ p

0

F−1(t)dt .

Giles (2004) presents an alternative formulation of the Gini index, which can
be expressed as

G =

∫M
m
F (y) (1− F (y)) dy

µ
,

where the random variable Y is defined on a real interval (m,M), with 0 ≤
m < M <∞ . Additionally, µ represents the expected value of the variable Y
within this interval.
Consider a random sample X1, . . . , Xn drawn from a continuous probability
distribution F with a corresponding probability density function f(x), the stan-
dard estimator of the Gini index is typically calculated as follows:

Ĝn =

∫M
m
y (2Fn(y)− 1) dFn(y)

X̄
=

n∑
i=1

(2i− n)X(i)

n
∑n
j=1Xj

,

where x(1) ≤ x(2) ≤ ... ≤ x(n) represent the order statistics derived from the
sample, and Fn represents the empirical distribution function.
The Gail and Gastwirth study in 1978 made significant advancements in the
field of GOF testing by introducing a test specifically for exponential distribu-
tion. They utilized the Gini statistic and provided evidence of its effectiveness
in assessing the fit of data to the exponential distribution. Following their work,
Jammalamadaka and Goria (2004) introduced a test using the Gini index of
spacings, further expanding the applications of the Gini index in GOF testing.
Recently, Qiu et al. (2022) and Pakyari (2023) constructed goodness of fit
tests based on spacings for progressive Type-II censored data. Then, Alizadeh
et al. (2014) suggested a general GOF test based on Gini index and constructed
tests for normal, exponential, Laplace distributions. Building upon these foun-
dational studies, Alizadeh Noughabi (2017) introduced a novel GOF test for
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the logistic distribution by leveraging the Gini index. This approach proved
valuable in evaluating the fit of observed data to the logistic distribution. In
this paper, we contribute to this line of research by presenting a distinct GOF
test specifically designed for the IG distribution. Our methodology revolves
around estimating the Gini index, enabling us to assess the compatibility of
the observed data with the IG distribution. To establish the effectiveness and
practicality of our proposed test, we conduct empirical analysis and statistical
evaluations. Through these empirical analyses and statistical evaluations, we
demonstrate the efficacy and applicability of our proposed test for assessing the
GOF of data to the IG distribution. Our research expands upon the existing
body of literature and offers a valuable contribution to the field of GOF testing.
Section 2 delves into a comprehensive examination of various properties asso-
ciated with the IG distribution. Based on this analysis, we proceed to develop
a novel GOF test specifically designed for the IG distribution, utilizing the
Gini index as a key component. In Section 3, we employ Monte Carlo simu-
lations to determine the critical points and actual sizes of the proposed test.
These simulations enable us to generate synthetic data sets and evaluate the
performance of the test under different scenarios. Additionally, we calculate
the power values of our proposed test and compare them against those ob-
tained from established competing tests. Moving forward, Section 4 presents
a detailed illustrative example where we apply the proposed test to real-world
data. Through an in-depth analysis of this example, we provide a comprehen-
sive understanding of how the test performs in a practical context. Finally,
in Section 5, we offer a concise conclusion that summarizes the key findings
and contributions of our study. This section serves as a succinct summary,
highlighting the significance and implications of our proposed test for the IG
distribution.

2. The Inverse Gaussian Distribution and the Test Statistic

In this section, we present an outline of the properties of the IG distribution
and introduce a novel GOF test statistic specifically designed for assessing
the conformity of data to this distribution. By presenting these properties and
developing a test statistic, we contribute to the field by offering a comprehensive
approach to assessing the fit of data to the IG distribution.

2.1. The Inverse Gaussian distribution. Schrödinger (1915) was the first
to derive the probability distribution of the first passage time in Brownian mo-
tion. Tweedie (1957) investigated the basic characteristics of this distribution
and proposed the name inverse Gaussian, and it is also known as Wald’s dis-
tribution. Folks and Chhikara (1978) gave a review of this distribution and
mentioned numerous applications of it. An application of the IG distribution
as a life time model is possibly the most appealing one; see Chhikara and Folks
(1989), Gunes et al. (1997), and Seshadri (1993).
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The probability density function for the IG distribution can be expressed as
follows:

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
− λ

2µ2x
(x− µ)

2

}
, x > 0,

where µ > 0 and λ > 0 are parameters. Specifically, the mean of the IG dis-
tribution is equal to µ, while the variance is given by µ3

/
λ. The complete

sufficient statistics for parameters µ and λ are (Folks and Chhikara, 1978, Se-

shadri, 1993) X̄ = 1
n

n∑
i=1

Xi and T =
n∑
i=1

(
1
Xi
− 1

X̄

)
, respectively. Moreover,

the MLEs of µ and λ are µ̂ = X̄ and λ̂ = n/T . This distribution is denoted as
IG(µ, λ).
Figure 1 displays the density function of the IG for different values of parame-
ters.

The IG distribution possesses several significant properties that contribute
to its usefulness in diverse applications. A significant property of the IG dis-
tribution is its role as a conjugate prior distribution for the mean of a normal
distribution with an unknown variance. This important property allows for the
derivation of a posterior distribution, which provides updated information on
the mean of the normal distribution utilizing the prior information from the
IG distribution.
In survival analysis, the IG distribution finds extensive application in modeling
the time until an event takes place. This is particularly relevant when study-
ing events such as machine failures or patient deaths, where the distribution
can effectively capture the underlying time-to-event patterns. Overall, the IG
distribution’s properties make it a valuable tool in various fields, enabling sta-
tistical analysis and modeling in scenarios involving unknown means, survival
times, and more.
Indeed, the IG distribution holds significant applications in the field of finance.
It is commonly employed to model the distribution of various financial vari-
ables, including stock prices, interest rates, and other relevant quantities. By
capturing the specific characteristics of these variables, the IG distribution aids
in understanding their behavior and making informed financial decisions.
Furthermore, the distribution finds utility in engineering and physics as well.
In engineering, it can be used to model reaction times, particle sizes, and other
physical variables encountered in various processes. In physics, the IG distri-
bution helps describe the distribution of certain phenomena or measurements.
Given its distinctive shape and valuable properties, the IG distribution serves
as a versatile tool for modeling a broad spectrum of phenomena across numer-
ous fields. For more in-depth exploration of its applications, the works of Folks
and Chhikara (1978), Chhikara and Folks (1989), Seshadri (1999), and their
respective references provide a wealth of insights.
In conclusion, the IG distribution finds extensive applications across various
fields, including finance, survival analysis, psychology, engineering, physics, and
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Figure 1. Probability density function of IG distribution for
different parameters.

quality control. Its capability to model skewed distributions and non-constant
hazard rates makes it a valuable tool for capturing a wide range of phenom-
ena. Relevant references to explore further include Folks and Chhikara (1978),
Bardsley (1980), Chhikara and Folks (1989), Seshadri (1993, 1999), Johnson et
al. (1994), and Barndorff-Nielsen (1994).
The development of a reliable GOF test for the IG distribution holds substan-
tial importance. In this article, we address this crucial issue by introducing a
novel GOF test specifically tailored for the IG distribution. Our test statistic
is based on the utilization of the Gini index, providing an accurate measure
for evaluating the fit of observed data to the IG distribution. By incorporating
the Gini index into our test, we enhance the effectiveness and precision of the
GOF assessment for the IG distribution.
In order to estimate the unknown parameters µ and λ, of the IG distribution,
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we will utilize the method of maximum likelihood estimation (MLE). This ap-
proach allows us to find the parameter values that maximize the likelihood of
the observed data given the IG distribution.
Let us consider a random sample X1, ..., Xn drawn from the IG distribution.
The ML estimators of the parameters µ and λ can be computed by maximiz-
ing the likelihood function, which is defined as the product of the probability
density function of IG distribution for each observation. By maximizing the
likelihood function with respect to µ and λ, we can find the parameter val-
ues that best fit the observed data to the IG distribution. The MLE of the
parameters µ and λ are

µ̂ = X̄ ; λ̂ =
n

n∑
i=1

(
1
/
Xi − 1

/
X̄
) .

2.2. The test statistic. Consider a random sample X1, ..., Xn drawn from
a population with a cumulative distribution function F and its corresponding
density function

H0 : {X1, ..., Xn} is a sample from IG(µ, λ),

where µ and λ are unknown parameters. The alternative hypothesis is ex-
pressed as

H1 : {X1, ..., Xn} is not a sample from IG(µ, λ).

If we denote the density function of the IG distribution as f0(x;µ, λ), the
hypothesis of interest can be stated as follows:

H0 : f(x) = f0(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{
− λ

2µ2x
(x− µ)

2

}
, for some (µ, λ) ∈ Θ ,

where Θ = R+ ×R+. The alternative to H0 is

H1 : f(x) 6= f0(x;µ, λ), for any (µ, λ) ∈ Θ .

Let F0 represent the IG distribution function. Without loss of generality, we
can simplify the testing hypothesis by applying the probability integral trans-
formation, U = F0(X), which allows us to test the hypothesis of uniformity
on the interval (0,1). For more comprehensive information, please refer to the
study by Ebner et al. (2022).
Suppose Ui = F0(Xi) , i = 1, 2, ...., n represents the transformed sample us-
ing the cumulative distribution function F0. In this context, the hypothesis of
interest can be stated as follows:

H0 : f(u) = 1, 0 < u < 1,

against

H1 : f(u) 6= 1, 0 < u < 1.
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Consequently, the test for the IG distribution is transformed into a uniformity
test on the interval (0,1). Under the null hypothesis, each Ui follows a uni-
form distribution. To assess the uniformity of the distribution of Ui’s and,
consequently, the IG assumption for the distribution of Xi’s, we employ a test
statistic based on the Gini index. Therefore, the proposed test can be expressed
as:

Ĝn =
n∑
i=1

(2i−n)u(i)

n
∑n
j=1 uj

=
n∑
i=1

(2i−n)F0(x(i);µ̂,λ̂)

n
∑n
j=1 F0(xi;µ̂,λ̂)

,

where u(1) ≤ u(2) ≤ ... ≤ u(n) denote the order statistics of transformed sample

and µ̂ and λ̂ are the MLEs of the parameters µ and λ, respectively.

µ̂ = X̄ ; λ̂ =
n

n∑
i=1

(
1
/
Xi − 1

/
X̄
) .

The following theorem provides the exact distribution of the test statistic Ĝn
under the null hypothesis.

Theorem 2.1. Assuming u1, u2, ..., un represents a random sample drawn from
the uniform distribution, the following can be stated:

FĜn(t) = P
(
Ĝn ≤ t

)
=

∫ τ(an)

0

∫ τ(an−1)

0

...

∫ τ(a1)

0

e−
∑n
i=1 tjdt1...dtn,

where ai = (n+ 1− i)(i− nt) for 1 ≤ i ≤ n and

τ(aj) =

{
∞ if aj ≤ 0,
−
∑n
i=j+1 aiti/aj if aj > 0 .

Proof. The proof of this theorem follows a similar approach to the theorem
mentioned in Martinez-Camblor and Correal’s work in 2009 and Alizadeh Noughabi
et al.’s work in 2014. For additional details and a more comprehensive under-
standing of the proof, it is recommended to refer to these sources. �

According to Martinez-Camblor and Correal (2009), the computation of the
FĜn is complicated for sample sizes n ≥ 5. Consequently, the exact distribution
of the test statistic under the null hypothesis is not applicable. However, the
asymptotic distribution of the test statistic can be derived and is shown in the
following theorem.

Theorem 2.2. Assuming u1, u2, ..., un represents a random sample drawn from
the uniform distribution, then

√
n
Ĝn − 1/3√

8/135
→ N(0, 1) .
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Proof. For the detailed proof of the theorem, we refer to the works by Martinez-
Camblor and Correal in 2009, as well as the work by Alizadeh Noughabi et al.
in 2014. These sources provide the necessary information and explanations to
understand the proof in depth. �

Based on the aforementioned theorem, for sufficiently large sample sizes, we
can obtain critical points for the proposed test statistic. These critical values
are used to determine the rejection region and make decisions regarding the
null hypothesis.

3. Simulation Study

3.1. Critical points and actual sizes. In order to determine the critical
values of the proposed test statistic, Monte Carlo simulations are utilized, as
the exact distribution of the test statistic is not readily derivable for different
sample sizes. Monte Carlo simulations involve generating numerous random
datasets that follow the assumed null hypothesis and calculating the test statis-
tic for each simulated dataset. By repeating this process multiple times, critical
values can be estimated based on the desired significance level and the distri-
bution of the simulated test statistics. These simulations provide an empirical
estimation of the critical values, enabling reliable inference and hypothesis test-
ing in cases where an exact distribution is not analytically obtainable.
This approach involves conducting a large number of simulation runs, typically
100,000, for each sample size. The following steps outline the methodology for
determining the critical values:

(1) Generate a random sample, denoted as X1, ..., Xn, of size n, drawn
from the IG(1, 1) distribution.

(2) Calculate the proposed test statistic based on the sample X1, ..., Xn.
(3) Repeat steps 1 and 2 a significant number of times, creating a large

number of simulated datasets and corresponding test statistics.
(4) Determine the αth quantile of the test statistics obtained from the

simulations. This quantile represents the critical value for the proposed
test at the desired significance level α.

By generating multiple samples, calculating the test statistic, and repeating
the process, we obtain an empirical distribution of the test statistic under the
null hypothesis. The critical value, derived from this empirical distribution,
allows us to make reliable decisions regarding the hypothesis test.
Table 1 contains the critical values of the proposed test statistic for various
sample sizes, denoted as n. These critical values are essential in hypothesis
testing, as they establish the threshold for accepting or rejecting the null hy-
pothesis based on the observed test statistic. By referring to Table 1, one can
determine the appropriate critical value corresponding to a specific sample size,
facilitating the decision-making process in evaluating the GOF of the observed
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data to the assumed distribution.

Table 1. Critical points of the proposed test statistic for dif-
ferent significance levels.

n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

5 0.4380 0.4539 0.4700 0.4893 0.5605 0.5629 0.5644 0.5658

10 0.3484 0.3665 0.3808 0.3959 0.4590 0.4626 0.4649 0.4670

15 0.3306 0.3446 0.3558 0.3679 0.4232 0.4271 0.4298 0.4325

20 0.3230 0.3351 0.3449 0.3551 0.4045 0.4085 0.4113 0.4140

25 0.3204 0.3309 0.3393 0.3482 0.3931 0.3969 0.3997 0.4026

30 0.3187 0.3278 0.3355 0.3436 0.3850 0.3888 0.3916 0.3945

40 0.3178 0.3253 0.3316 0.3384 0.3748 0.3782 0.3810 0.3838

50 0.3174 0.3239 0.3294 0.3355 0.3684 0.3717 0.3743 0.3770

Table 2 presents the evaluation of the type I error of the proposed test for
various sample sizes (n). The type I error refers to the proportion of times the
null hypothesis is incorrectly rejected when it is actually true. By analyzing
the actual size, which is the empirical estimation of the type I error rate, we
gain insights into the performance of the test in controlling false positive errors.
The results obtained from Table 2 offer valuable information about the behavior
of the proposed test and its accuracy in maintaining the desired significance
level. By examining the actual size, we can assess whether the test appro-
priately controls the probability of incorrectly rejecting the null hypothesis,
even when it is true. This analysis enhances our understanding of the test’s
statistical properties and aids in determining its reliability and suitability for
hypothesis testing.

Table 2. Type I error control of the tests for the nominal
significance level α = 0.05.

n IG(0.5, 0.5) IG(0.5, 1) IG(0.5, 2) IG(1, 0.5) IG(1, 1) IG(1, 2) IG(2, 0.5) IG(2, 1) IG(2, 2)

G1
n 10 0.0501 0.0403 0.0351 0.0638 0.0518 0.0407 0.0778 0.0643 0.0509

20 0.0507 0.0421 0.0379 0.0594 0.0501 0.0430 0.0680 0.0591 0.0502

30 0.0481 0.0421 0.0361 0.0575 0.0490 0.0407 0.0658 0.0554 0.0481

50 0.0513 0.0422 0.0371 0.0573 0.0482 0.0429 0.0645 0.0579 0.0508

G2
n 10 0.0504 0.0485 0.0474 0.0632 0.0523 0.0489 0.0754 0.0618 0.0504

20 0.0510 0.0459 0.0450 0.0602 0.0503 0.0472 0.0684 0.0611 0.0499

30 0.0502 0.0459 0.0435 0.0589 0.0503 0.0451 0.0680 0.0572 0.0498

50 0.0514 0.0470 0.0425 0.0569 0.0497 0.0465 0.0645 0.0569 0.0514

The findings from the analysis presented in Table 2 confirm that the empir-
ical percentiles, as shown in Table 1, effectively control the type I error. This
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indicates that the proposed test successfully maintains the desired significance
level, ensuring accurate hypothesis testing. The results provide substantial ev-
idence to support the validity and reliability of the proposed test, establishing
its capability to control the probability of erroneously rejecting the null hy-
pothesis when it is indeed true. These findings contribute to the confidence
and trustworthiness of the proposed test procedure as a robust tool for hy-
pothesis testing in the given context.
Considering the findings presented in Table 2, it is observed that the type I
error increases as the value of µ/λ increases. Specifically, when µ/λ ≈ 1, the
type I error (represented by α) is close to the nominal value. This suggests
that the proposed test maintains its desired level of significance when µ/λ ≈ 1.
Furthermore, when the parameters of the IG distribution are equal, the type I
error remains within acceptable limits. This indicates that the proposed test
performs well when the parameters are identical.
In general, the actual sizes of the proposed GOF test, as indicated by the type
I error rates, are deemed acceptable. Therefore, based on these results, it can
be concluded that the proposed test can be confidently utilized in practical
applications.
In general, the actual sizes of the proposed GOF test, as indicated by the type
I error rates, are deemed acceptable. Therefore, based on these results, it can
be concluded that the proposed test can be confidently utilized in practical
applications.

3.2. Power study. Alizadeh and Shafaei (2024a) examined the GOF tests
utilizing the empirical distribution function for the IG distribution. They dis-
covered that the actual sizes of the tests based on ZA and ZC statistics were
deemed acceptable. As a result, they recommend employing the tests based on
ZA and ZC statistics in practical applications. Their overall conclusion sug-
gests that these tests, ZA and ZC , exhibit strong performance across a wide
range of alternative hypotheses, making them reliable and suitable choices for
hypothesis testing in practice. The statistics of these tests are as follows.

ZA = −
n∑
i=1

 logF0(X(i); µ̂, λ̂)

n− i+ 0.5
+

log
[
1− F0(X(i); µ̂, λ̂)

]
i− 0.5

 ,

ZC =

n∑
i=1

(
log

{
F0(X(i); µ̂, λ̂)

−1
− 1

(n− 0.5)/(i− 0.75)− 1

})2

.

Furthermore, in a recent study by Alizadeh and Shafaei in 2024b, new GOF
tests for the IG distribution were proposed based on varentropy estimators.
These varentropy-based tests, denoted as TE and TA, were found to exhibit
strong performance in terms of power. The power differences observed between
these tests and the other competing tests were found to be significant. The
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statistics for the TE and TA tests are as follows:

TE =
1

n

n∑
i=1

log2

(
cim/n

U(i+m) − U(i−m)

)
−

[
1

n

n∑
i=1

log

(
cim/n

U(i+m) − U(i−m)

)]2

,

TA =
1

n

n∑
i=1

log2
{
f̂(U(i+m)) + f̂(U(i−m))

}
−

[
1

n

n∑
i=1

log
{
f̂(U(i+m)) + f̂(U(i−m))

}]2

,

where

ci =

 1 + i−1
m , 1 ≤ i ≤ m,

2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m , n−m+ 1 ≤ i ≤ n,
and

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) .

In their analysis, Alizadeh and Shafaei (2024a) selected the standard normal
density function as the kernel function. Additionally, they chose the band-
width h to be the normal optimal smoothing formula, which is defined as
h = 1.06sn−

1
5 , where s represents the sample standard deviation. Also, Ui =

F0(Xi; µ̂, λ̂) , i = 1, 2, ...., n, denote the transformed sample and U(i) = U(1) if
i < 1, U(i) = U(n) if i > n.
These varentropy-based tests offer alternative approaches for assessing the GOF
of the IG distribution, with promising power characteristics and the ability to
detect deviations from the null hypothesis more effectively than other existing
tests.
According to the studies conducted by Alizadeh and Shafaei in 2024a and
2024b, the GOF tests ZA, ZC , TE and TA demonstrate the highest power
against a wide range of alternative hypotheses for the IG distribution. As a
result, these tests have been selected as the competitor tests in their power
comparison analysis. By comparing the power of the proposed test with these
established tests, Alizadeh and Shafaei aim to assess the relative performance
and efficacy of the proposed test in detecting deviations from the IG distribu-
tion.
To assess the power of the proposed test against various alternatives, Monte
Carlo simulations are utilized. The power values indicate the test’s ability to
detect deviations from the null hypothesis. In the power comparison analysis,
the following alternatives are considered:

• • the exponential distribution θ with density θ exp(−θx);
• • the Weibull distribution with density θxθ−1 exp

(
−xθ

)
, denoted by

W (θ);
• • the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted

by Γ(θ);
• • the half-normalHN distribution with density Γ(2/π)1/2 exp

(
−x2

/
2
)
;
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• • the lognormal law LN(θ) with density (θx)−1(2π)−1/2 exp
(
−(log x)

2
/

(2θ2)
)

;

• • the Pareto distribution Pa(θ) with density θ
/
xθ+1;

• • the uniform distribution U with density 1, 0 ≤ x ≤ 1;
• • Chen’s (2000) distribution CH(θ), with distribution function 1 −

exp
(

2
(

1− exθ
))

;

• • the linear increasing failure rate law LF (θ) with density (1+θx) exp
(
−x− θx2

/
2
)
;

• • the modified extreme value EV (θ), with distribution function 1 −
exp

(
θ−1(1− ex)

)
;

• • Dhillon’s (1981) lawDL(θ) with distribution function 1−exp
(
−(log(x+ 1))

θ+1
)

;

By conducting Monte Carlo simulations under each of the specified alterna-
tive scenarios, we can calculate the power values of the proposed test. These
simulations involve generating multiple datasets that follow each alternative
hypothesis, applying the test to each dataset, and determining the proportion
of times the test correctly detects deviations from the null hypothesis. The
resulting power values provide a quantitative measure of the test’s ability to
detect and reject false null hypotheses under different alternative scenarios.
These power values provide insights into the test’s ability to detect deviations
from the null hypothesis under different alternative hypotheses. Comparing
the power across these alternatives allows for a comprehensive assessment of
the test’s performance and its sensitivity to various types of departures from
the null hypothesis.
Tables 3-6 provide a comprehensive display and comparison of the power val-
ues of the tests, specifically at a significance level of α = 0.05. In these tables,
the Ĝ1

n test refers to the two-sided test, while the Ĝ2
n test corresponds to the

one-sided test. These tables offer valuable insights into the comparative per-
formance of the tests under different alternative hypotheses, allowing for an
informed evaluation of their effectiveness in detecting deviations from the null
hypothesis.

Upon careful examination of Tables 3-6, it becomes apparent that there is
no single test that can be considered as the optimal choice across all alterna-
tive scenarios. Each test demonstrates varying levels of performance and power
depending on the specific alternative hypothesis being considered. Therefore,
the choice of the most suitable test should be based on the specific research
question, the characteristics of the dataset, and the nature of the alternative hy-
pothesis under investigation. It is important to carefully evaluate the strengths
and limitations of each test in relation to the specific context in order to make
an informed decision. Tables 3-6 likely provide the results of different GOF
tests are applied to various alternative distributions. Each test may have its
own strengths and weaknesses, and their performance varies depending on the
specific characteristics of the data or the underlying distribution being tested.
In terms of power, the tests based on the ZA and Ĝ2

n statistics demonstrate
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Table 3. Power estimates of the considered tests for n = 10 at
the level α = 0.05.

Alternative ZA ZC TE TA Ĝ1
n Ĝ2

n

Exp(1) 0.3859 0.3646 0.3159 0.3633 0.3380 0.4000
W (0.5) 0.7622 0.7255 0.6713 0.6850 0.6088 0.6624
W (2) 0.2174 0.2144 0.1488 0.1900 0.1884 0.2495
Γ(0.5) 0.7106 0.6822 0.6485 0.6681 0.5967 0.6515
Γ(2) 0.1842 0.1772 0.1259 0.1626 0.1724 0.2252
HN 0.4134 0.4002 0.3528 0.3976 0.3602 0.4284

LN(0, 0.5) 0.0618 0.0624 0.0443 0.0453 0.0413 0.0579
LN(0, 1) 0.0973 0.0884 0.0669 0.0877 0.0954 0.1202
LN(0, 2) 0.4312 0.3696 0.2933 0.3352 0.3078 0.3551
Pa(0.5) 0.2363 0.2405 0.2235 0.2356 0.2004 0.2529
Pa(1) 0.3812 0.3908 0.4008 0.4308 0.0796 0.1066
Pa(2) 0.4551 0.4584 0.4281 0.4405 0.0682 0.0762
U 0.5633 0.5629 0.5545 0.5603 0.4353 0.5128

CH(0.5) 0.7337 0.7053 0.6715 0.6859 0.6056 0.6620
CH(1) 0.4191 0.4059 0.3589 0.4039 0.3614 0.4297
CH(1.5) 0.3201 0.3160 0.2507 0.2995 0.2712 0.3417
LF (2) 0.4020 0.3911 0.3374 0.3874 0.3568 0.4255
LF (4) 0.3911 0.3821 0.3238 0.3739 0.3461 0.4133
EV (0.5) 0.4202 0.4055 0.3618 0.4084 0.3595 0.4265
EV (1.5) 0.4464 0.4390 0.3912 0.4354 0.3793 0.4513
DL(1) 0.1627 0.1521 0.1059 0.1412 0.1539 0.1997
DL(1.5) 0.1405 0.1352 0.0914 0.1185 0.1299 0.1755

superior performance across a wide range of alternative hypotheses. Notably,
the power differences between these two tests and the other tests are notable
and substantial. Particularly for small sample sizes, the test based on the Ĝ2

n

statistic exhibits a stronger performance compared to the other tests. This
finding showcases the efficacy of the Ĝ2

n test in detecting deviations from the
null hypothesis, particularly in scenarios with limited data. Overall, the results
suggest that the ZA and Ĝ2

n tests consistently display better power character-

istics than the alternative tests, with the Ĝ2
n test excelling for smaller sample

sizes.
Based on the data presented in Table 2, which shows that the actual sizes of
the tests fall within acceptable ranges, we can confidently endorse the practical
application of these tests. Moreover, the results demonstrate that as the sam-
ple sizes increase, the power values of the tests also increase. This underscores
the effectiveness and reliability of the tests in detecting deviations from the
null hypothesis. Therefore, we can conclude that these tests are not only suit-
able for practical use but also exhibit desirable statistical properties in terms
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Table 4. Power estimates of the considered tests for n = 20 at
the level α = 0.05.

Alternative ZA ZC TE TA Ĝ1
n Ĝ2

n

Exp(1) 0.6390 0.6314 0.5670 0.6350 0.5935 0.6598
W (0.5) 0.9433 0.9355 0.9268 0.9313 0.8831 0.9109
W (2) 0.4220 0.4194 0.2754 0.3597 0.3440 0.4242
Γ(0.5) 0.9278 0.9228 0.9094 0.9196 0.8738 0.9035
Γ(2) 0.3335 0.3335 0.2220 0.2988 0.3079 0.3820
HN 0.6995 0.6954 0.6261 0.6872 0.6293 0.6943

LN(0, 0.5) 0.0691 0.0691 0.0404 0.0480 0.0491 0.0679
LN(0, 1) 0.1370 0.1306 0.0820 0.1279 0.1415 0.1890
LN(0, 2) 0.6368 0.5987 0.5393 0.5941 0.5277 0.5988
Pa(0.5) 0.4957 0.4716 0.5045 0.4340 0.2858 0.3633
Pa(1) 0.8236 0.7994 0.8038 0.7609 0.1334 0.1255
Pa(2) 0.8685 0.8454 0.8085 0.7500 0.1455 0.1489
U 0.9081 0.8971 0.8909 0.8532 0.7257 0.7871

CH(0.5) 0.9385 0.9336 0.9242 0.9290 0.8828 0.9110
CH(1) 0.7099 0.7061 0.6474 0.6993 0.6269 0.6930
CH(1.5) 0.6098 0.6029 0.4846 0.5559 0.4891 0.5704
LF (2) 0.6888 0.6854 0.6079 0.6738 0.6225 0.6892
LF (4) 0.6800 0.6754 0.5840 0.6537 0.6070 0.6758
EV (0.5) 0.7103 0.7059 0.6448 0.6943 0.6266 0.6928
EV (1.5) 0.7630 0.7568 0.6901 0.7362 0.6584 0.7248
DL(1) 0.2757 0.2722 0.1727 0.2510 0.2712 0.3375
DL(1.5) 0.2455 0.2456 0.1443 0.2082 0.2295 0.2963

of their power.
In general, based on the observed performance across different alternatives and
sample sizes, we can conclude that the proposed test Ĝ2

n demonstrates good
performance, particularly for small sample sizes. This suggests that the test
Ĝ2
n is reliable and effective in practical applications, as it consistently exhibits

favorable results when compared to alternative tests. Therefore, researchers
and practitioners can confidently utilize the proposed test Ĝ2

n, especially when
dealing with limited sample sizes.

4. An Illustrative Example

To demonstrate the practical implementation of the proposed procedure for
evaluating the GOF of the IG distribution, let’s consider the following example
scenario.
Imagine we have collected a dataset containing n observations, and there is
a suspicion that these observations may adhere to an IG distribution. Our
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Table 5. Power estimates of the considered tests for n = 30 at
the level α = 0.05.

Alternative ZA ZC TE TA Ĝ1
n Ĝ2

n

Exp(1) 0.7968 0.7951 0.7305 0.7758 0.7538 0.8055
W (0.5) 0.9881 0.9864 0.9847 0.9836 0.9672 0.9774
W (2) 0.5835 0.5781 0.3907 0.4808 0.4739 0.5592
Γ(0.5) 0.9819 0.9810 0.9787 0.9768 0.9618 0.9734
Γ(2) 0.4658 0.4679 0.3085 0.3988 0.4213 0.5033
HN 0.8622 0.8594 0.7936 0.8224 0.7883 0.8383

LN(0, 0.5) 0.0726 0.0748 0.0442 0.0553 0.0534 0.0751
LN(0, 1) 0.1704 0.1693 0.0994 0.1613 0.1838 0.2465
LN(0, 2) 0.7705 0.7480 0.7026 0.7313 0.6921 0.7537
Pa(0.5) 0.7494 0.6964 0.7198 0.5293 0.3475 0.4432
Pa(1) 0.9712 0.9566 0.9493 0.8759 0.1691 0.1329
Pa(2) 0.9829 0.9712 0.9511 0.8680 0.1885 0.2017
U 0.9887 0.9833 0.9799 0.9413 0.8724 0.9096

CH(0.5) 0.9862 0.9854 0.9844 0.9817 0.9668 0.9765
CH(1) 0.8693 0.8650 0.8094 0.8271 0.7883 0.8369
CH(1.5) 0.7933 0.7843 0.6549 0.6949 0.6490 0.7207
LF (2) 0.8531 0.8488 0.7759 0.8112 0.7803 0.8299
LF (4) 0.8434 0.8398 0.7503 0.7947 0.7697 0.8220
EV (0.5) 0.8694 0.8651 0.8102 0.8276 0.7885 0.8375
EV (1.5) 0.9115 0.9056 0.8551 0.8646 0.8160 0.8620
DL(1) 0.3701 0.3735 0.2350 0.3318 0.3700 0.4476
DL(1.5) 0.3394 0.3439 0.1952 0.2765 0.3110 0.3893

objective is to assess the suitability of the IG distribution for this dataset by
employing the proposed test methodology. To demonstrate the application of
the proposed procedure, let’s consider the following steps:

(1) Data Collection: Collect a dataset comprising n observations that
you suspect may follow an IG distribution.

(2) Parameter Estimation: Calculate the MLE estimators µ̂ and λ̂.
(3) Hypotheses Formulation: Formulate the null and alternative hy-

potheses for the GOF test. The null hypothesis (H0) asserts that the
data follows an IG distribution with parameters µ and λ. The alterna-
tive hypothesis (H1) suggests that the data does not conform to an IG
distribution.

(4) Test Statistic Calculation: Compute the proposed test statistic us-

ing the estimated parameters µ̂ and λ̂ obtained in Step 2.
(5) Critical Value Determination: Determine the critical value corre-

sponding to the chosen significance level α. The critical value estab-
lishes the threshold beyond which we reject the null hypothesis.
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Table 6. Power estimates of the considered tests for n = 50 at
the level α = 0.05.

Alternative ZA ZC TE TA Ĝ1
n Ĝ2

n

Exp(1) 0.9412 0.9405 0.8933 0.9064 0.9154 0.9394
W (0.5) 0.9995 0.9994 0.9993 0.9987 0.9977 0.9987
W (2) 0.8014 0.7915 0.5649 0.6305 0.6756 0.7460
Γ(0.5) 0.9992 0.9992 0.9987 0.9979 0.9970 0.9980
Γ(2) 0.6626 0.6643 0.4481 0.5338 0.6026 0.6786
HN 0.9756 0.9732 0.9400 0.9410 0.9364 0.9558

LN(0, 0.5) 0.0800 0.0847 0.0423 0.0639 0.0599 0.0890
LN(0, 1) 0.2272 0.2366 0.1248 0.2132 0.2688 0.3473
LN(0, 2) 0.9115 0.9022 0.8736 0.8723 0.8747 0.9093
Pa(0.5) 0.9703 0.9388 0.9255 0.6636 0.4626 0.5590
Pa(1) 0.9998 0.9992 0.9980 0.9700 0.2304 0.2125
Pa(2) 0.9999 0.9997 0.9974 0.9619 0.2614 0.2912
U 0.9999 0.9998 0.9995 0.9900 0.9755 0.9848

CH(0.5) 0.9995 0.9995 0.9994 0.9984 0.9977 0.9985
CH(1) 0.9772 0.9748 0.9469 0.9400 0.9367 0.9562
CH(1.5) 0.9530 0.9448 0.8508 0.8484 0.8462 0.8886
LF (2) 0.9707 0.9683 0.9277 0.9320 0.9341 0.9539
LF (4) 0.9674 0.9650 0.9155 0.9257 0.9261 0.9478
EV (0.5) 0.9775 0.9754 0.9487 0.9433 0.9368 0.9559
EV (1.5) 0.9912 0.9890 0.9709 0.9625 0.9512 0.9669
DL(1) 0.5283 0.5372 0.3390 0.4520 0.5414 0.6186
DL(1.5) 0.4908 0.4985 0.2789 0.3817 0.4648 0.5481

(6) Decision Making: Compare the calculated test statistic from Step 4
with the critical value obtained in Step 5. If the test statistic falls out-
side the acceptance region, it indicates a rejection of the null hypothesis,
suggesting that the data does not conform to an IG distribution. On
the other hand, if the test statistic falls within the acceptance region,
there is insufficient evidence to reject the null hypothesis, leading to
the conclusion that the data is consistent with an IG distribution.

(7) Interpretation: Provide an interpretation of the test results within
the context of the specific dataset and research question. Discuss the
implications and draw conclusions regarding the GOF of the IG distri-
bution to the observed data.

Example 4.1. In a study conducted by Folks and Chhikara in 1989, a dataset
consisting of 19 fracture toughness measurements of MIG (metal inert gas)
welds was analyzed.
54.4, 62.6, 63.2, 67.0, 70.2, 70.5, 70.6, 71.4, 71.8, 74.1, 74.1, 74.3, 78.8, 81.8,
83.0, 84.4, 85.3, 86.9, 87.3.
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Based on the findings of Folks and Chhikara (1989), they concluded, using the
Kolmogorov-Smirnov (KS) statistic, that the IG distribution provides a reason-
able fit to the dataset they analyzed.
Figure 2 displays the histogram of the considered dataset, providing a visual
representation of the data distribution. This histogram likely supports their
conclusion by visually demonstrating the fit of the IG distribution to the ob-
served data.

Figure 2. Histogram of data and a fitted IG density function.

Table 7. The value of the test statistics and critical points at
significance level 5%.

Test Value of the test statistic Critical point Decision

ZA 3.3847 3.4489 Not reject H0

ZC 5.6173 8.7055 Not reject H0

TE 0.11087 0.20449 Not reject H0

TA 0.00840 0.03523 Not reject H0

Ĝ1
n 0.3729 0.3370, 0.4143 Not reject H0

Ĝ2
n 0.3729 0.3469, 0.4115 Not reject H0

To apply the proposed test to the dataset from Folks and Chhikara (1989), we
begin by computing the maximum likelihood (ML) estimates of the parameters µ
and λ for the IG distribution. These ML estimates can be obtained as follows:

µ̂ = X̄ = 74.3 and λ̂ =
n

n∑
i=1

(
1
/
Xi − 1

/
X̄
) = 4923.952 .
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In accordance with the formula presented in Section 2, we can calculate the
test statistic value for the dataset obtained from Folks and Chhikara’s study in
1989. Furthermore, by conducting Monte Carlo simulations, critical values for
the test statistic can be obtained specifically for a sample size of n = 19 and at
a significance level of 0.05. The outcomes of these calculations are succinctly
presented in Table 7.
By conducting a comparison between the computed test statistic and the critical
value obtained from Table 7, we are able to make an informed decision regard-
ing the GOF of the IG distribution to the dataset, following the prescribed test
procedure.
Considering that the calculated test statistic for each individual data point falls
within the acceptance region as determined by the provided critical values in Ta-
ble 7, we fail to reject the null hypothesis of the IG distribution for the dataset at
a significance level of 0.05. As a result, based on this analysis, we can conclude
that the underlying distribution of the data from Folks and Chhikara’s study in
1989 is consistent with an IG distribution. This observation indicates that the
IG distribution offers a satisfactory fit for the dataset, corroborating the find-
ings of Folks and Chhikara (1989), who also espoused that the IG distribution
adequately represents the data based on the Kolmogorov-Smirnov statistic.
Therefore, the application of the proposed test in this case further confirms the
appropriateness of employing the IG distribution to model fracture toughness
measurements of MIG welds.

5. Conclusions

In this research paper, we have proposed and utilized the Gini index as a
measure of fitness assessment for the IG distribution. Our proposed approach
includes the development of a novel GOF test, leveraging the Gini index as its
core metric for evaluation. Then, we have determined both the exact and as-
ymptotic distributions of the test statistic. To further validate the performance
and applicability of our proposed test, we have conducted extensive Monte
Carlo simulations. Through these simulations, we were able to determine the
critical points and actual sizes of the test, thereby ensuring its accuracy in
practical scenarios.
Additionally, we have conducted a comprehensive comparative study to assess
the performance of our proposed Gini index-based test in comparison to other
existing methods. The results of this study provide compelling evidence of the
superior performance of the Gini index-based test in detecting deviations from
the IG distribution under certain alternative hypotheses. This highlights the
effectiveness of the Gini index as a tool for assessing the GOF of the IG distri-
bution.
To demonstrate the practical application and relevance of our proposed test,
we have illustrated its usage using a real-world dataset. This practical exam-
ple serves to showcase the test’s ability to accurately assess the fit of the IG
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distribution to observed data and reinforces the utility of the Gini index-based
approach in real data analysis scenarios.
Overall, this comparative study and practical illustration enhance our under-
standing of the proposed Gini index-based test and its superiority in evaluating
the GOF for the IG distribution. These findings contribute to the broader field
of statistical analysis by providing a valuable alternative approach for assessing
distributional fit.
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