A CRITERION FOR p-SOLVABILITY OF FINITE GROUPS, WHERE $p=7$ OR 11

S. Pouyandeh ${ }^{\text {© }}$ 凶
Article type: Research Article
(Received: 08 August 2023, Received in revised form 26 December 2023)
(Accepted: 28 January 2024, Published Online: xx February 2024)

Abstract

For a finite group G, define $\psi^{\prime \prime}(G)=\psi(G) /|G|^{2}$, where $\psi(G)=\sum_{g \in G} o(g)$ and $o(g)$ denotes the order of $g \in G$. In this paper, we give a criterion for p-solvability by the function $\psi^{\prime \prime}$, where $p \in\{7,11\}$. We prove that if G is a finite group and $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2, p))$, where $p \in\{7,11\}$, then G is a p-solvable group.

Keywords: Finite group, element order, p-solvability, 2020 MSC: Primary 20D10, 20D15, 20D20.

1. Introduction

Let G be a finite group and $\psi(G)=\sum_{g \in G} o(g)$, where $o(g)$ denotes the order of $g \in G$, which was introduced by Amiri et al. (see [1]). They showed that C_{n} is the unique group of order n with the largest value of $\psi(G)$ for groups of that order. In [11], Herzog, Longobardi and Maj determined the exact upper bound for $\psi(G)$ for non-cyclic groups G. There are some applications for $\psi(G)$, for example, $\psi(G)$ is equal to the sum of the number of arcs and the number of vertices of a directed power graph [9].

A finite group G is a \mathscr{B}_{ψ}-group if $\psi(H)<|G|$ for all proper subgroups H of G. In [2], Baniasad Azad showed that if S is a finite simple group, such that $S \neq \operatorname{Alt}(n)$ for any $n \geq 14$, then S is a \mathscr{B}_{ψ}-group. The function ψ has been considered in various works (see [7,12]).

The functions $m(G)=\sum_{g \in G} 1 / o(g), l(G)=\sqrt[n]{\prod_{g \in G} o(g)} /|G|$ and $\psi^{\prime}(G)=$ $\psi(G) / \psi\left(C_{n}\right)$ were introduced in $[5,6,12]$. Many authors investigate the influence of these functions on the structure of a finite group G. For example, if $g \in\left\{\psi^{\prime}, l, m\right\}$, and $g(G)>g\left(C_{2} \times C_{2}\right), g(G)>g\left(S_{3}\right), g(G)>g\left(A_{4}\right)$ or $g(G)>g\left(A_{5}\right)$, then G is cyclic, nilpotent, supersolvable or solvable, respectively (see $[3,5-8,11,12,15]$).

Tărnăuceanu in [14], introduced $\psi^{\prime \prime}(G)=\psi(G) /|G|^{2}$ and also proved the following theorem:
Theorem 1.1. [14, Theorem 1.1] Let G be a finite group. Then the following holds:
« s.pouyandeh124@pnu.ac.ir, ORCID: 0000-0002-2365-0917
https://doi.org/10.22103/jmmr.2024.22002.1488
(C) the Author(s)

Publisher: Shahid Bahonar University of Kerman
How to cite: S. Pouyandeh, A criterion for p-solvability of finite groups, where $p=7$ or 11,
J. Mahani Math. Res. 2024; 13(2): 225-231.
(a) If $\psi^{\prime \prime}(G)>7 / 16=\psi^{\prime \prime}\left(C_{2} \times C_{2}\right)$, then G is cyclic.
(b) If $\psi^{\prime \prime}(G)>27 / 64=\psi^{\prime \prime}\left(Q_{8}\right)$, then G is abelian.
(c) If $\psi^{\prime \prime}(G)>13 / 36=\psi^{\prime \prime}\left(S_{3}\right)$, then G is nilpotent.
(d) If $\psi^{\prime \prime}(G)>31 / 144=\psi^{\prime \prime}\left(A_{4}\right)$, then G is supersolvable.
(e) If $\psi^{\prime \prime}(G)>211 / 3600=\psi^{\prime \prime}\left(A_{5}\right)$, then G is solvable.

In [4], Baniasad Azad and Khosravi proved the following theorem:
Theorem 1.2. [4, Main Theorem] Let G be a finite group such that $\psi^{\prime \prime}(G)>$ $\psi^{\prime \prime}\left(D_{2 p}\right)$, where p is a prime number. Then $G \cong O_{p}(G) \times O_{p^{\prime}}(G)$ and $O_{p}(G)$ is cyclic.

In this paper, we focus on the function $\psi^{\prime \prime}(G)$. We give a criterion for p solvability by the function $\psi^{\prime \prime}$, where $p \in\{7,11\}$. We prove that if G is a finite group and $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2, p))$, where $p \in\{7,11\}$, then G is a p-solvable group.

2. A criterion for p-solvability, where $p=7$ or 11

We need the following lemmas.
Lemma 2.1. [16, Lemma 1] Let G be a non-solvable group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Lemma 2.2. [13] Let A be a cyclic proper subgroup of a finite group G, and let $K=\operatorname{core}_{G}(A)$. Then $|A: K|<|G: A|$, and in particular, if $|A|>|G: A|$, then $K>1$.

Lemma 2.3. [4, Lemma 2.1] If $\psi^{\prime \prime}(G)>t$, then G has an element x such that $|G:\langle x\rangle|<1 / t$.
Lemma 2.4. [14] Let H be a normal subgroup of the finite group G. Then $\psi^{\prime \prime}(G) \leq \psi^{\prime \prime}(G / H)$.

Remark 2.5. By using GAP, we can conclude that the only non-solvable groups G with trivial Fitting subgroup of order at most 1482, which satisfy $\psi^{\prime \prime}(G)>$ $\psi^{\prime \prime}(\operatorname{PSL}(2,7))$, are A_{5} and S_{5} (see Table 1).

Theorem 2.6. (a) If G has no composition factor isomorphic to A_{5} and $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2,7))$, then G is a solvable group.
(b) If G is a finite group and $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2,7))$, then G is a 7 -solvable group.

Proof. (a) We prove that G is solvable by induction on $|G|$. If $|G| \leq 59$, then G is a solvable group. If G has a non-trivial normal solvable subgroup N then, by Lemma 2.4,

$$
\psi^{\prime \prime}(\operatorname{PSL}(2,7))<\psi^{\prime \prime}(G) \leq \psi^{\prime \prime}(G / N)
$$

Structure of G	IdGroup (G)	Out (G)	$\psi^{\prime \prime}(G)$	$\psi^{\prime \prime}(G)>\psi^{\prime \prime}(K)$	$\psi^{\prime \prime}(G)>\psi^{\prime \prime}(H)$
A_{5}	$(60,5)$	C_{2}	$211 / 3600$	true	true
S_{5}	$(120,34)$	1	$157 / 4800$	true	true
PSL $(2,7)$	$(168,42)$	C_{2}	$715 / 28224$	false	true
PSL $(2,7): C_{2}$	$(336,208)$	1	$593 / 37632$	false	true
A_{6}	$(360,118)$	$C_{2} \times C_{2}$	$1411 / 129600$	false	true
PSL $(2,8)$	$(504,156)$	C_{3}	$3319 / 254016$	false	true
PSL $(2,11)$	$(660,13)$	C_{2}	$1247 / 145200$	false	false
S_{6}	$(720,763)$	C_{2}	$3271 / 518400$	false	false
$A_{6}: C_{2}$	$(720,764)$	C_{2}	$4363 / 518400$	false	false
$H(9)=A_{6} \cdot C_{2}$	$(720,765)$	C_{2}	$3571 / 518400$	false	false
PSL $(2,13)$	$(1092,25)$	C_{2}	$809 / 132496$	false	false
PSL $(2,11): C_{2}$	$(1320,133)$	1	$9593 / 1742400$	false	false
$\left(A 6 \cdot C_{2}\right): C_{2}$	$(1440,5841)$	1	$8383 / 2073600$	false	false
A_{7}	NA	C_{2}	$12601 / 6350400$	false	false
PSL $(3,3)$	NA	C_{2}	$44539 / 31539456$	false	false
PSU $(3,3)$	NA	C_{2}	$43639 / 36578304$	false	false
PSU $(3,3): C_{2}$	NA	1	$93535 / 146313216$	false	false
M_{11}	NA	1	$53131 / 62726400$	false	false

Table 1. $K=\operatorname{PSL}(2,7)$ and $H=\operatorname{PSL}(2,11)$

By the inductive hypothesis, G / N is a solvable group and consequently, G is solvable. Now suppose that G has no non-trivial normal solvable subgroup. Since $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2,7))=715 / 168^{2}$, Lemma 2.3 implies there exists an element $x \in G$ such that

$$
\begin{equation*}
|G:\langle x\rangle|<168^{2} / 715<40 \tag{1}
\end{equation*}
$$

Using Lemma 2.2, $\left|\langle x\rangle: \operatorname{core}_{G}(\langle x\rangle)\right| \leqslant 38$. Therefore,

$$
\left|G: \operatorname{core}_{G}(\langle x\rangle)\right|=|G:\langle x\rangle| \cdot\left|\langle x\rangle: \operatorname{core}_{G}(\langle x\rangle)\right| \leqslant 1482
$$

Since $\operatorname{core}_{G}(\langle x\rangle)=1,|G| \leqslant 1482$. Let G be a non-solvable group. By Lemma 2.1, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of some isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$. If H is non-solvable then $|K|=|K / H| \cdot|H|$ divides $|G|$. Therefore, $3600 \leq|G|$. This is a contradiction and H is solvable. So $H=1$.

Since G has no composition factor isomorphic to A_{5} and $|G| \leqslant 1482$, we have the following cases:
(1) Let $K \cong \operatorname{PSL}(2,7)$. Since $|\operatorname{Out}(\operatorname{PSL}(2,7))|=2$, it follows that $|G / K|$ is a divisor of 2 . If $|G / K|=1$ then $G \cong \operatorname{PSL}(2,7)$. Moreover since $\psi^{\prime \prime}(\operatorname{PSL}(2,7))<\psi^{\prime \prime}(G)$, we get a contradiction. If $|G / K|=2$ then G is a non-solvable group of order 336. By GAP, we can see that $\psi(G) \leqslant 2355$. Therefore,

$$
\frac{715}{168^{2}}=\psi^{\prime \prime}(\operatorname{PSL}(2,7))<\psi^{\prime \prime}(G) \leqslant \frac{2355}{336^{2}}
$$

i.e. $2860<2355$, which is a contradiction.
(2) Let $K \cong A_{6}$. Then, $|G / K| \mid 4$ and we have the following cases:

- If $|G / K|=1$ then $G \cong A_{6}$. By Lemma 2.4,

$$
\frac{715}{168^{2}}=\psi^{\prime \prime}(\operatorname{PSL}(2,7))<\psi^{\prime \prime}(G)=\psi^{\prime \prime}\left(A_{6}\right)=\frac{1411}{360^{2}}
$$

which is a contradiction.

- If $|G / K|=2$ then G is a non-solvable group of order 720. By GAP, we can see that $\psi(G) \leqslant 12557$. Therefore, $\frac{715}{168^{2}}<\frac{12557}{720^{2}}$, which is a contradiction.
- If $|G / K|=4$ then $|G|=1440$. Therefore, by (1), $|G:\langle x\rangle| \leqslant 38$. By Lemma 2.2, $|G| \leqslant 38 \cdot 37=1406$, which is a contradiction.
(3) Let $K \cong \operatorname{PSL}(2,8)$. Then, $|G / K| \mid 3$. If $|G / K|=1$ then $G \cong \operatorname{PSL}(2,8)$, which is a contradiction since $\psi^{\prime \prime}(\operatorname{PSL}(2,7))>\psi^{\prime \prime}(\operatorname{PSL}(2,8))=3319 / 504^{2}$. If $|G / K|=3$ then $|G| \geqslant 3|\operatorname{PSL}(2,8)|=1512$, which is a contradiction.
(4) Let $K \cong \operatorname{PSL}(2,11)$. Then, $|G / K|$ is a divisor of 2 . Since $\psi^{\prime \prime}(\operatorname{PSL}(2,7))>$ $\psi^{\prime \prime}(\operatorname{PSL}(2,11))$, we get that $|G / K|=2$. Therefore, G is a non-solvable group of order 1320. By GAP, we can see that $\psi(G) \leqslant 11993$. Therefore,

$$
\frac{715}{168^{2}}<\frac{11993}{1320^{2}}
$$

which is a contradiction.
(5) Let $K \cong \operatorname{PSL}(2,13)$. Then $|G / K|$ divides 2. Similar to the above, $|G / K|=2$ which implies that $|G|=2184$, which is a contradiction.
(b) Similarly to the above we get that $|G| \leqslant 1482$. Now suppose that G is not a 7 -solvable group. Therefore, G is non-solvable, by Lemma 2.1, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of some isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$. As we mentioned above, H is a solvable group.

Let $K / H \cong A_{5}$. If H is 7 -solvable then G is 7 -solvable. If H is not a 7 solvable group then $|H| \geq 168$ we have $|G| \geq 60 \cdot 168$ which is a contradiction.

The proof is now complete.
Theorem 2.7. If G is a finite group and $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2,11))$, then G is an 11-solvable group.

Proof. We prove that G is solvable by induction on $|G|$. If $|G| \leq 659$ or $11 \nmid|G|$ then G is an 11-solvable group. If G has a non-trivial normal 11-solvable subgroup N then, by Lemma 2.4,

$$
\psi^{\prime \prime}(\operatorname{PSL}(2,11))<\psi^{\prime \prime}(G) \leqslant \psi^{\prime \prime}(G / N)
$$

So, by the inductive hypothesis, G / N is an 11 -solvable group and consequently, G is 11-solvable. Therefore, suppose that G has no non-trivial normal 11-solvable subgroup. Since $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2,11))=3741 / 660^{2}=$ $1247 / 145200$, Lemma 2.3 implies there exists an element $x \in G$ such that $|G:\langle x\rangle| \leq 116$. Using Lemma 2.2, $\left|\langle x\rangle: \operatorname{core}_{G}(\langle x\rangle)\right| \leqslant 115$. Therefore,

$$
\left|G: \operatorname{core}_{G}(\langle x\rangle)\right|=|G:\langle x\rangle| \cdot\left|\langle x\rangle: \operatorname{core}_{G}(\langle x\rangle)\right| \leqslant 116 \cdot 115=13340 .
$$

Since $\operatorname{core}_{G}(\langle x\rangle)=1,|G| \leqslant 13340$ and G is not an 11-solvable group. By Lemma 2.1, G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is isomorphic to the direct product of some copies of a non-abelian simple group S and
$|G / K|||\operatorname{Out}(K / H)|$. If H is not an 11-solvable group then $| K|=|K / H| \cdot| H \mid$ divides $|G|$. Therefore, $60 \cdot 660 \leq|G|$ which is a contradiction. Thus, H is 11 -solvable and so, $H=1$. By [10], we have

$$
\begin{aligned}
S \in & \{\operatorname{PSL}(2, q) \mid q=5,7,8,11,13,16,17,19,23,25,27,29\} \\
& \cup\left\{A_{6}, A_{7}, \operatorname{PSL}(3,3), \operatorname{PSU}(3,3), M_{11}\right\}
\end{aligned}
$$

(1) Let $K \cong \operatorname{PSL}(2,11)$. Since $\psi^{\prime \prime}(\operatorname{PSL}(2,11))<\psi^{\prime \prime}(G)$, we get $|G / K|=2$ and so, G is a non-solvable group of order 1320 .
$G \nexists \operatorname{SL}(2,11)$, since $\operatorname{PSL}(2,11)$ is not subgroup of $\operatorname{SL}(2,11)$. Also $G \nsubseteq C_{2} \times \operatorname{PSL}(2,11)$, since $\mathrm{F}(G)=1$. Therefore, $G \cong \operatorname{PSL}(2,11): C_{2}$ and by GAP, we have $\psi^{\prime \prime}\left(\operatorname{PSL}(2,11): C_{2}\right)=9593 / 1742400$. Therefore, we get a contradiction.
(2) Let $K \cong \operatorname{PSL}(2,23)$. Since $\psi^{\prime \prime}(\operatorname{PSL}(2,11))>\psi^{\prime \prime}(\operatorname{PSL}(2,23))$, we get $|G / K|=2$. Hence $|G|=2|\operatorname{PSL}(2,23)|$.
We know that $|G|=|G:\langle x\rangle||\langle x\rangle|$, where $|\langle x\rangle|<|G:\langle x\rangle|<117$. Therefore, $|G:\langle x\rangle|<109$ and so, $|G|<109 \cdot 108$ which is a contradiction.
(3) Let $K \cong M_{11}$. Since $\operatorname{Out}\left(M_{11}\right)=1$, it follows that $G \cong M_{11}$ which is a contradiction since $\psi^{\prime \prime}(\operatorname{PSL}(2,11))>\psi^{\prime \prime}\left(M_{11}\right)$.
(4) Other cases, since $H=1$, we have $|G|=|G / K| \cdot|K|$ and $|G / K| \mid$ \mid Out(K)|. Therefore, $11 \nmid|G|$ and so, G is 11 -solvable.
The proof is now complete.
Example. We note that using GAP, we have $\psi^{\prime \prime}\left(A_{5} \times C_{7}\right)=9073 / 176400>$ $715 / 28224=\psi^{\prime \prime}(\mathrm{PSL}(2,7))$. Therefore $A_{5} \times C_{7}$ is a 7 -solvable group but we know $A_{5} \times C_{7}$ is not a solvable group.

Remark 2.8. We note that of using GAP, we have

$$
\begin{aligned}
& \psi^{\prime \prime}(\operatorname{PSL}(2,31))=\frac{\psi(\operatorname{PSL}(2,31))}{|\operatorname{PSL}(2,31)|^{2}}=\frac{181227}{14880^{2}}=\frac{60409}{73804800} \\
& \psi^{\prime \prime}(\operatorname{PSL}(2,32))=\frac{\psi(\operatorname{PSL}(2,32))}{|\operatorname{PSL}(2,32)|^{2}}=\frac{877983}{32736^{2}}=\frac{292661}{357215232}
\end{aligned}
$$

and so $\psi^{\prime \prime}(\operatorname{PSL}(2,32))>\psi^{\prime \prime}(\operatorname{PSL}(2,31))$, but $\operatorname{PSL}(2,32)$ is not a 31 -solvable group.

Therefore $\psi^{\prime \prime}(G)>\psi^{\prime \prime}(\operatorname{PSL}(2, p))$ is not a sufficient condition for p-solvability of G. We believe that the following conjecture holds:
Conjecture. If G is a finite group and p is a prime such that

$$
\psi^{\prime \prime}(G)>\max \left\{\psi^{\prime \prime}(S): S \text { is a simple group and } p| | S \mid\right\}
$$

then G is a p-solvable group.

3. Conclusion

In this paper, we obtained a criterion for p-solvability by the function $\psi^{\prime \prime}$, where $p \in\{7,11\}$. We proved that if G is a finite group and $\psi^{\prime \prime}(G)>$ $\psi^{\prime \prime}(\operatorname{PSL}(2, p))$, where $p \in\{7,11\}$, then G is a p-solvable group.

Acknowledgments

The author would like to thank the referees for their valuable comments which improved the manuscript.

References

[1] Amiri, H., Jafarian Amiri, S.M., \& Isaacs I.M. (2009). Sums of element orders in finite groups. Comm. Algebra 37(9), 2978-2980. https://doi.org/10.1080/00927870802502530
[2] Baniasad Azad, M. (2023). The simple \mathscr{B}_{ψ}-groups. arXiv preprint arXiv:2309.03881
[3] Baniasad Azad M., \& Khosravi B. (2018). A criterion for solvability of a finite group by the sum of element orders. J. Algebra 516, 115-124. https://doi.org/10.1016/j.jalgebra.2018.09.009
[4] Baniasad Azad, M., \& Khosravi, B. (2020). A criterion for p-nilpotency and p-closedness by the sum of element orders. Comm. Algebra 48(12) 5391-5395. https://doi.org/10.1080/00927872.2020.1788571
[5] Baniasad Azad, M., Khosravi, B., \& Rashidi, H. (2022). On the sum of the inverses of the element orders in finite groups. Comm. Algebra 51(2), 694-698. https://doi.org/10.1080/00927872.2022.2109043
[6] Baniasad Azad, M., \& Khosravi, B. (2021) Properties of finite groups determined by the product of their element orders. Bull. Aust. Math. Soc., 103(1), 88-95. https://doi.org/10.1080/00927872.2020.1788571
[7] Baniasad Azad, M., \& Khosravi, B. (2022) On two conjectures about the sum of element orders. Can. Math. Bull. 65(1), 30-38. https://doi.org/10.4153/S0008439521000047
[8] Baniasad Azad, M., Khosravi, B., \& Jafarpour, M. (2022) An answer to a conjecture on the sum of element orders. J. Algebra Appl. 21(4), 2250067. https://doi.org/10.1142/S0219498822500670
[9] Chakrabarty, I., Ghosh, S., \& Sen, M. K. (2009) Undirected power graphs of semigroups. Semigroup Forum. 78(3), 410-426. DOI:10.1007/s00233-008-9132-y
[10] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A.,\& Wilson, R. A. (1985). Atlas of Finite Groups, Oxford Univ. Press, Oxford. https://doi.org/10.1017/S001309150002839X
[11] Herzog, M., Longobardi, P., \& Maj, M. (2018). An exact upper bound for sums of element orders in non-cyclic finite groups. J. Pure Appl. Algebra 222(7) 1628-1642. https://doi.org/10.1016/j.jpaa.2017.07.015
[12] Herzog, M., Longobardi, P., \& Maj, M. (2018). Two new criteria for solvability of finite groups. J. Algebra 511, 215-226. https://doi.org/10.1016/j.jalgebra.2018.06.015
[13] Lucchini, A. (1998). On the order of transitive permutation groups with cyclic pointstabilizer. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 9(4), 241-243.
[14] Tărnăuceanu, M. (2020). Detecting structural properties of finite groups by the sum of element orders. Israel J. Math. 238(2), 629-637. DOI:10.1007/s11856-020-2033-9
[15] Tărnăuceanu, M. (2020). A criterion for nilpotency of a finite group by the sum of element orders. Commun. Algebra 49(4) 1571-1577. https://doi.org/10.48550/arXiv.1903.09744

A criterion for p-solvability of finite groups, where $p=7$ or 11 - JMMR Vol. 13, No. 2 (2024) 231
[16] Xu, H., Chen, G., \& Yan, Y. (2014). A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters. Comm. Algebra 42(12), 5374-5380. DOI:10.1080/00927872.2013.842242

Sara Pouyandeh
Orcid number: 0000-0002-2365-0917
Department of Mathematics
Payamenoor University
Tehran, Iran
Email address: s.pouyandeh124@pnu.ac.ir

