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Abstract. One of the special cases of type-2 fuzzy sets is the interval
type-2 fuzzy sets, which are less complicated and easier to understand
than T2FSs. In this study, we explore the interval type-2 fuzzy linear
programming problem with the resources vector that has imprecision of
the vagueness type. These types of vagueness are expressed via member-
ship functions. First, we review the three available methods, including
the Figueroa and Sarani methods. Then, using the three ideas of Verde-
gay, Werners, and Guu and Wu for solving fuzzy linear programming
problems with vagueness in the resources vector, we propose three new
methods for solving interval type-2 fuzzy linear programming problems
with vagueness in the resources vector. Finally, we demonstrate the effec-
tiveness of our proposed methods by solving an example and comparing
the results obtained with each other and with those of previous methods.
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1. Introduction
In real-world problems, it is assumed that the data have exact amounts,

whereas the considered values of the data are often imprecise because of in-
complete information. Real number arithmetic cannot be used to analyze real
models with imprecise data. Therefore, interval, stochastic, or fuzzy approaches
are employed to analyze them. First, Zadeh introduced the fuzzy sets (FSs)
theory [33]. Because of the existence of membership functions (MFs) with pre-
cise membership degrees, fuzzy systems have limited capability to reduce the
effect of uncertainty and are not suitable for solving complex problems with
high uncertainties. In 1975, Zadeh proposed type-2 fuzzy sets (T2FSs) as a
generalized version of FSs [34–36]. A specific case of T2FS is interval type-2
fuzzy sets (IT2FSs), which presents more information and uncertainties. The
interval type-2 fuzzy linear programming (IT2FLP) problem has become more
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important and has been used in many studies in recent years. As stated above,
many researchers have studied and introduced several methods for solving dif-
ferent types of fuzzy linear programming (FLP) problems: Akram et al. pro-
posed several methods for solving fuzzy and fully fuzzy linear programming
problems [2–4]. Hao Li et al. [17] mentioned in their article that IT2FSs can
be used to solve practical problems such as supplier selection [22,30], portfolio
allocation [31], COVID-19 forecasting [9], renewable energy evaluation [1, 20]
and fuzzy control [8, 21,25].

FLP has been expanded to deal with vagueness in the framework of opti-
mization problems. According to the type of uncertainty in the problem, FLP
problems are divided into flexible, possibilistic, and robust categories. Further-
more, in each of these divisions, concerning the position of uncertainty in the
problem, various states can be created and different solution methods are pro-
vided for each case. Tanaka et al. [26] proposed the concept of the FLP problem
on a general level in the fuzzy decision framework of Bellman and Zadeh [7].
Figueroa improved Zimmerman’s method [37] for solving the IT2FLP problem
with the right-hand side expressed as MFs [10–13]. In this case, MFs were
used to represent the uncertainty in the degree of satisfaction of the objective
function and the constraints. Golpaygani et al. presented a new method for
solving two special cases of IT2FLP problems [14]. Furthermore, we explore the
flexible single-objective IT2FLP problem with imprecision type of vagueness.
This vagueness is accrued in the resources vector and is represented by the
MF. Also, we investigate the IT2FLP problem with a maximization objective
function and less than or equal constraints. It should be noted that in an inter-
val linear programming problem, infinitely many linear programming problems
must be solved. But based on the theorems related to interval programming,
instead of solving infinitely many problems [5, 24], we try to obtain the upper
bound on the biggest feasible region. In fact, according to the maximization of
the objective function, we are looking for the best solution.

We review three methods used to solve IT2FLP problems. The first two
methods are from Figueroa [11, 12] and the last one is from Sarani [23]. By
solving a numerical example, we compare these three methods. We briefly
state the advantages and main features of the two methods of Figueroa [12]
and Sarani’s method:

• The first one gets interval type-1 fuzzy set (T1FS) embedded on the
footprint of uncertainty (FOU) of each IT2 right hand side, and then it
is optimized. The second approach is a pseudo-optimal approach that
reduces the complexity of the problem by using α−cuts and interval
optimization.

• These procedures can vary in their results because they are optimal
in different ways. Moreover, the decision maker should select the best
choice depending on the computational effort, amount of restrictions,
and variables.
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• The reader should keep in mind that the first method solves three linear
programming (LP) problems before finding a solution, whereas the sec-
ond method solves only one LP problem. This could be a disadvantage
for large-scale problems.

• The second method is conditioned on the selection of the α value,
given by an expert in the system; therefore, it does not provide the
same solution as the first method.

• Sarani’s method shows a higher degree of satisfaction of constraints
than the two Figueroa methods. However, the optimization of this
method is less. If the decision maker does not consider optimality
and only the degree of satisfaction of the constraints is important, the
Sarani’s method is more suitable; otherwise, the methods of Figueroa
are considered.

In the following, we propose three new methods for solving the IT2FLP problem
with vagueness in the resources vector. The first new method is based on
Verdegay’s method for solving the FLP problem [27]. He proved that the
optimal solution of an FLP can be found by the use of solving an equivalent LP
problem assuming that the objective function is crisp. It assumes that the MFs
of the fuzzy constraints are non-increasing and continuous, and the objective
function is crisp. This method is non-symmetric. The second proposed method
is based on Werners’s idea to solve the FLP problem [29]. He suggested that
the objective function should be fuzzy because of fuzzy inequality constraints
and computed the lower and upper bounds of the optimal values by solving
two crisp LP problems. The third proposed method is based on the idea of
Guu and Wu [15]. They proposed a two-phase method for solving the FLP
problem that not only pursues the highest membership degree in the objective
but also enables better use of each constrained resource. Finally, to show the
performance and efficiency of each of the new proposed methods, we solved the
example used in the review methods and compared the obtained results with
each other and with the review methods. In short, the main structure and
advantages of this study are as follows:

• Reviewing and examining three solution methods for the IT2FLP prob-
lem: two methods of Figueroa and one method of Sarani;

• Investigating the performance of these three methods by solving a nu-
merical example and comparing the obtained results;

• Proposing three new methods for solving the IT2FLP problem based
on three ideas for solving the FLP problem, from Verdegay, Werners,
and Guo and Wu;

• Examining the performance and efficiency of the three proposed meth-
ods by solving the same numerical example and comparing the results
with those obtained by solving the three review methods.

• Since the Bellman-Zadeh operator is used to find a crisp solution to
the IT2F constrained problem, our proposed methods are flexible and
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interpretable. Hence, our proposal is appropriate for numerous similar
problems. In addition, the third proposed method improves situations
in which the max-min operator is not sufficient.

This study is arranged as follows: Firstly, in Section 2, the basic definitions and
essential concepts are presented. Secondly, in Section 3, the MFs of the IT2F
resources vector and the approaches introduced by Figueroa et al. [11, 12] and
Sarani [23] for solving IT2FLP problems with vagueness in the resources vectors
are reviewed. Then, in Section 4, three new approaches for solving IT2FLP
problems with vagueness in the resource vectors are proposed. In Section 5, we
present two numerical examples. To illustrate the efficiency and performance
of our proposed method, we provide a concrete real-world example [13]. This
application example is related to the classical transportation problem. The
second example is that used by Figueroa and Sarani. Finally, the results of
our methods are compared with those of review methods, also compared our
methods with each other. Table 1 describes the symbols used in this study.

Table 1. Reference of the symbols used in this article, for
example (a).

Symbols Description
T2FS ˜̃a

Upper membership function (UMF) a
Lower membership function (LMF) a

Left MF a∨

Right MF a∧

2. Basic definitions and preliminaries of the IT2FS
This section introduces the basic terminologies of IT2FSs and the interval

linear programming (ILP) problem.

2.1. The IT2FSs. A T2FS collects an infinite number of FSs and is charac-
terized by two MFs. In this subsection, we present important and necessary
definitions related to IT2Fs [18].

Definition 2.1. A T2FS ˜̃A is defined as follows:
˜̃A =

∫
x∈X

∫
u∈Jx

fx(u)/(x, u) =

∫
x∈X

[∫
u∈Jx

fx(u)/u

]/
x,

where Jx ⊆ [0, 1], x ∈ X, u ∈ [0, 1], fx(u) ∈ [0, 1], fx(u) ∈ [0, 1] is initial
membership and fx(u) is the secondary grade. Fig. 1 shows the graphical
image of the three-dimensional of an IT2FS.
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Definition 2.2. An IT2FS, ˜̃A , is defined as:
˜̃A =

∫
x∈X

∫
u∈Jx

1/(x, u) =

∫
x∈X

[∫
u∈Jx

1/u

]/
x,

where Jx ⊆ [0, 1], x ∈ X and u ∈ [0, 1], (see Fig. 1).

Figure 1. T2FS ˜̃A.

Definition 2.3. ( [19]) Uncertainty in the initial memberships of a T2FS ˜̃A
consists of a bounded area that we name FOU. It is the union of all initial
memberships, i.e.

FOU( ˜̃A) =
⋃
x∈X

Jx.

A difference lies between the T1FS and T2FS in FOU of a T2FS which gets an
infinite number of T1FSs.
Definition 2.4. The α-cut of an IT2FS is (see Fig. 2):

α˜̃aij =
{(

˜̃aij , u
)∣∣ J˜̃aij

≥ α, u ∈ [0, 1]
}
.

It is shown by two parts as below:

(1) αµ˜̃aij
=

{(
˜̃aij , u

)∣∣µ˜̃aij
≥ α

}
,

(2) αµ˜̃aij
=

{(
˜̃aij , u

)∣∣µ˜̃aij
≥ α

}
,

where (1) is UMF ˜̃aij corresponding α ∈ [0, 1] and (2) is LMF ˜̃aij corresponding
α ∈ [0, 1]. So any T2FS can be decomposed into α-cuts through the use of µ˜̃aij

and µ˜̃aij
.
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Figure 2. The α-cut of an IT2FS.

2.2. The uncertainty in resources vector. In this subsection, referring to
uncertain resources vector when using IT2FS [12].

Definition 2.5. Consider a set of parameters to the right of the constraints ˜̃b
from an FLP problem that is defined as IT2FSs. The MF which represents ˜̃bi

is:

˜̃bi =

∫
bi∈R

 ∫
u∈Jbi

1/u

/bi, i ∈ Nm, Jbi ⊆ [0, 1] .

Notice that ˜̃b is bounded by two primary LMF and UMF called µ˜̃b(x) with
components b∨ and b∧ and µ˜̃b(x) with components b∨ and b∧, respectively.

Figure 3. IT2FS with joint uncertain △ and ▽.
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In Fig. 3, ˜̃b is an IT2FS with linear MFs µ˜̃
b
(x) and µ˜̃

b
(x). A particular

value b projects an interval of infinite membership degrees u ∈ Jb, as follows:

Jb ∈ [αb, αb]∀b ∈ R,

where Jb is the set of all possible membership degrees associated with b ∈ ℜ.

2.3. The ILP. This subsection presents the necessary definition and theorem
for the ILP problem [5,16] and introduces the method to solve it.

Definition 2.6. ( [5]) An interval number appears as [x, x] in which the x ≤ x
condition is satisfied. If it is x = x, x will be destroyed.

The basic form of the ILP problem is defined as follows [16,32]:

(3)

max z =
n∑

j=1

[cj , cj ]xj

s.t.
n∑

j=1

[aij ,aij ]xj ≤ [bi, bi], i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

where cj ,cj , aij , aij , bi and bi are real numbers. The characteristic model of
problem is as follows:

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

where cj ∈ [cj , cj ], aij ∈ [aij , aij ], and bi ∈ [bi, bi]. Several methods have been
proposed to solve the IP problem [6,28,38]. One of the basic methods to solve
this type of problem is the best worst cases (BWC) method [24]. This method
divides model (3) into two best and worst sub-models.

Theorem 2.7. ( [16]) Consider
n∑

j=1

[
aij , aij

]
xj ≤

[
bi, bi

]
, for i = 1, 2, ...,m.

The biggest feasible region is
n∑

j=1

aijxj ≤ bi and the smallest feasible region is
n∑

j=1

aijxj ≤ bi.

The following theorem obtains the worst and best values of the objective
function.
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Theorem 2.8. ( [16]) The best value of the objective function of the ILP
problem (3) is acquired by:

max =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

and the worst values of the objective function of the ILP problem (3) results in:

max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.

3. IT2FLP problem with vagueness in the resources vector
This section includes two parts. In the first subsection, we express the MFs of

the IT2F resources vector. An IT2FLP model with the maximization objective
function and IT2F resources vector is presented as follows:

(4)

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ ˜̃
bi, i = 1, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

where ct,x ∈ Rn, A is n×m matrix of real elements denoted by aij , and ˜̃bi is
m× 1 vector of IT2FSs.

3.1. MFs of IT2F resources vector. As we know, ˜̃b is an IT2FS defined by
its two primary MFs µ˜̃b(x) and µ˜̃b(x). There are two MFs the LMF and the
UMF for ≤. Also, there are two MFs the LMF and the UMF for ≥. This means
that there are four possible relative orders ≤ and ≥ with IT2 fuzzy resources
vector (see Fig. 3).
The LMF for ≤ is:

µ ˜̃
bi
((Ax)i; b

∨
i ; b

∧
i ) =


1, (Ax)i ≤ b∨i ,
b∧i −(Ax)i
b∧i −b∨i

, b∨i ≤ (Ax)i ≤ b∧i ,

0, (Ax)i ≥ b∧i .

The UMF for ≤ is:

µ ˜̃
bi

(
(Ax)i; b

∨
i ; b

∧
i

)
=


1, (Ax)i ≤ b

∨
i ,

b
∧
i −(Ax)i

b
∧
i −b

∨
i

, b
∨
i ≤ (Ax)i ≤ b

∧
i ,

0, (Ax)i ≥ b
∧
i .
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The LMF for ≥ is:

µ
b̃i

(
(Ax)i; b

∨
i ; b

∧
i

)
=


1, (Ax)i ≥ b∨i ,
(Ax)i−b∧i
b∨i −b∧i

, b∧i ≤ (Ax)i ≤ b∨i ,

0, (Ax)i ≤ b∧i .

The UMF for ≥ is:

µ ˜̃
bi

(
(Ax)i; b

∨
i ; b

∧
i

)
=


1, (Ax)i ≥ b

∨
i ,

(Ax)i−b
∧
i

b
∨
i −b

∧
i

, b
∧
i ≤ (Ax)i ≤ b

∨
i ,

0, (Ax)i ≤ b
∧
i .

3.2. Review of the three methods used for solving the IT2FLP prob-
lem with vagueness in the resources vector. In this subsection, we re-
view three methods to solve LP problems in which the resources vector is the
IT2FSs. The first two approaches were proposed by Figueroa [11, 12], and the
third method was proposed by Sarani [23].

3.2.1. The first method of Figueroa. In this sub-subsection, we discuss the first
method of Figueroa.

1. In the beginning, the lower optimal FS (shown as ˜̃z) is computed as
follows:

(a). The lower bound which refers to minimum z (shown as z∨) is computed
by using b∨ as a bound;

(b). The upper bound named maximum z (shown as z∧) is computed by
using b∧ as a bound;

(c). FS ˜̃z(x∗) is defined by bonds as z∨, z∧, and trapezoidal MF;
(d). If the purpose is to maximize the function, then its MF is as:

µ˜̃z
(cx; z∨, z∧) =


0, cx ≤ z∨,
cx−z∨

z∧−z∨ , z∨ ≤ cx ≤ z∧,

1, cx ≥ z∧.

(e). If the purpose is to minimize the function, then its MF is as:

µ˜̃z
(cx; z∨, z∧) =


0, cx ≤ z∨,
z∨−cx
z∧−z∨ , z∨ ≤ cx ≤ z∧,

1, cx ≥ z∧.

2. The upper optimal FS (shown as z̃) is computed as follows:
(a). The lower bound called minimum z (shown as z∨) is computed by using

b∨ as a bound;
(b). The upper bound named maximum z (shown as z∧) is computed by

using b∧ as a bound;
(c). FS z̃(x∗) is defined by bounds as z∨, z∧, and trapezoidal MF;
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(d). If the purpose is to maximize the function, then its MF is as:

µ˜̃z(cx; z
∨, z∧) =


0, cx ≤ z∨,

cx−z∨

z∧−z∨ , z∨ ≤ cx ≤ z∧,

1, cx ≥ z∧.

(e). If the purpose is to minimize the function, then its MF is as:

µ˜̃z(cx; z
∨, z∧) =


1, cx ≤ z∨,

z∨−cx
z∧−z∨ , z∨ ≤ cx ≤ z∧,

0, cx ≥ z∧.

3. The optimal α-cut for the lower and upper MFs that are called α and
α, respectively, are Find. If the purpose is to maximize the objective function,
then its optimal α would be:

(5)

max α
s.t. cx− α(z∧ − z∨ ) = z∨,

Ax+ α(b∧ − b∨) ≤ b∧,
x, α ≥ 0.

By minimizing the objective function, its optimal α would be:

(6)

max α
s.t. cx+ α(z∧ − z∨ ) = z∧,

Ax− α(b∨ − b∧) ≥ b∨,
x, α ≥ 0.

By maximizing the objective function, its optimal α would be:

(7)

max α
s.t. cx− α(z∧ − z∨) = z∨,

Ax+ α(b
∧ − b

∨
) ≤ b

∧
,

x, α ≥ 0.

By minimizing the objective function, then its optimal α would be:

(8)

max α
s.t. cx+ α(z∧ − z∨) = z∧,

Ax− α(b
∨ − b

∧
) ≥ b

∨
,

x, α ≥ 0.

In the problems (5), (6), (7), and (8), we have x ∈ Rn and α, α ∈ [0, 1].
4. we select the best solution by using a comparison between α∗ and α∗ as

optimal α-cuts.

3.2.2. The second method of Figueroa. In the sub-subsection, we review the
second method of Figueroa.
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1. The lower bound called minimum Z (shown as z∨) is computed by using
b∨ + ∆ as bound in the model where ∆ is an auxiliary set of variables that
show the lower uncertainty intervals in this way:

∆ ≤ b∨ − b∨.

2. The upper bound called maximum Z (shown as z∧) is computed by using
b∧

+ ∇ as bound in the model where ∇ is an auxiliary set of variables that
shows the lower uncertainty intervals in this way:

∇ ≤ b∧ − b∧.

3. Obtain the optimal α-cut, consider b∨ = b∨ + ∆ and b∧ = b∧
+ ∇. by

maximizing the objective function, then its optimal α would be:
max α
s.t. cx− α(z∧ − z∨) = z∨,

Ax+ α(b∧ − b∨) ≤ b∧,
x ≥ 0, α ∈ [0, 1] .

By minimizing the objective function, then its optimal α would be:
max α
s.t. cx+ α(z∧ − z∨) = z∧,

Ax− α(b∨ − b∧) ≥ b∨,
x ≥ 0, α ∈ [0, 1] .

This method may result in multiple solutions due to given conditions in (5) and
(6). Therefore, it is recommended to prevent this situation indicate a proper
weight for each variable based on its beneficiary increase of specific resources.

3.2.3. The Sarani method. In this sub-subsection, we review the Sarani method
[23]:

1. Start computing the lower optimal FS named z̃, as follows:
(a.) The lower bound called minimum z (shown as z∨) is computed by using

b∨ as a bound;
(b.) The upper bound called maximum z (shown as z∧) is computed by

using b∧ as a bound;
(c.) FS ˜̃z(x∗) is defined by trapezoidal MF, bound z∧ and bound z∨;
(d.) Assume the objective function is to maximize, its MF would be:

µ˜̃z
(cx; z∨, z∧) =


0, cx ≤ z∨,

cx−z∨

z∧−z∨ , z∨ ≤ cx ≤ z∧,

1. cx ≥ z∧.

(e.) Assume the objective function is to minimize, its MF would be:

µ˜̃z
(cx; z∨, z∧) =


0, cx ≤ z∨,
z∨−cx
z∧−z∨ , z∨ ≤ cx ≤ z∧,

1. cx ≥ z∧.
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2. Start computing the upper optimal FS (shown as ˜̃z) as follows:
(a.) The lower bound called minimum z (shown as z∨) is computed by using

b∨ as a bound;
(b.) The upper bound called maximum z (shown as z∧) is computed by

using b∧ as a bound;
(c.) FS ˜̃z(x∗) is defined by trapezoidal MF, bounds z∨ and z∧;
(d.) If the purpose is to maximize the function, then its MF would be:

µ˜̃z(cx; z
∨, z∧) =


0, cx ≤ z∨,
cx−z∨

z∧−z∨ z∨ ≤ cx ≤ z∧,

1, cx ≥ z∧.

(e.) If the purpose is to minimize the function, then its MF would be:

µ˜̃z(cx; z
∨, z∧) =


1, cx ≤ z∨,
z∨−cx
z∧−z∨ , z∨ ≤ cx ≤ z∧,

0, cx ≥ z∧.

3. Using the above two steps, the objective function of the problem (4) is
converted to a fuzzy objective function. Since the objective function is defin-
itive, the optimal solution obtained by solving the problem should be defini-
tive as well. So, the Bellman-Zadeh operator [7] is applied. According to the
Bellman-Zadeh operator, we have

µD(x∗) = MaxMin{µ((Ax)i, u), µ(cx, u)}.

For linearization, it is necessary to consider α = Min{µ((Ax)i, u), µ(cx, u)}.
So, we can write the LP problem as follows:

(9)

max α
s.t. α ≤ µ(cx, u),

α ≤ µ((Ax)i, u),
x ≥ 0, α ∈ [0, 1] .

Considering the objective function maximization and the less-than-or-equal
constraints. The MFs of which are presented as follows, respectively [23]:

(10) µ(Bx)0 =


1, (Bx)0 ≥ z0,
(Bx)0−(z0−∆0)

∆0
, (z0 −∆0) ≤ (Bx)0 ≤ z0,

0, (Bx)0 ≤ z0 −∆0,

and for i = 1, ...,m

(11) µ(Ax)i
=


1, (Ax)i ≤ bi

bi+∆i−(Ax)i
∆i

, bi ≤ (Ax)i ≤ bi +∆i,

0. (Ax)i ≤ bi +∆i,
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where bi ∈ [b∨i , bi
∨
], z0 ∈ [z∧, z∧], ∆i ∈ [∆i,∆i], ∆0 ∈ [∆0,∆0]. By substitu-

tion the MFs of (11) and (10) in problem (9) and according to the Bellman-
Zadeh operator, we have

(12)

max α

s.t. α ≤ bi+∆i−(Ax)i
∆i

, i = 1, ...,m,

α ≤ (Bx)0−(z0−∆0)

∆0
,

x ≥ 0, α ∈ [0, 1] .

The model (12) can be written as:

(13)

max α
s.t. (Ax)i +∆iα ≤ bi +∆i, i = 1, ...,m,

(Bx)0 −∆0α ≥ z0 −∆0,
x ≥ 0, α ∈ [0, 1] ,

according to the ILP problem, the problem (13) is denoted as follows:

(14)

max α
s.t. (Ax)i + [∆iα, ∆̄iα] ≤ [bi, b̄i], i = 1, ...,m,

(Bx)0 + [−∆0α,−∆̄0α] ≥ [z0, z̄0],
x ≥ 0, α ∈ [0, 1] ,

the best solution of (14), according to the ILP problem, is obtained by solving
the following problem:

max α

s.t. (Ax)i +∆iα ≤ b∧
i , i = 1, ...,m,

(Bx)0 + (−∆0α) ≥ z∨,
x ≥ 0, α ∈ [0, 1] .

Refer to [23] to see other cases in this method.

4. Three new methods for solving IT2FLP problem with
vagueness in the resources vector
In this section, we propose three new methods for solving the FLP problem

with the IT2F resources vector (4).

4.1. First method. The idea of this method is taken from Verdegay’s method
in solving the type-1 fuzzy linear programming (T1FLP) with vagueness in the
resources vector [27]. It assumes that the MFs of the fuzzy constraints are
non-increasing and continuous, and the objective function is crisp. Hence,
this method is nonsymmetric. Then, we can formulate the MFs of the fuzzy
inequality constraints of problem (4) as follows. Since the resources vector is
composed of fuzzy parameters, due to the Bellman-Zadeh operator, the MF of
all constraints of the problem (4) is given by:

µD(x∗) = MaxMin{µ((Ax)i, u)},
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assuming α = Min{µ((Ax)i, u)}, The IT2FLP problem is:

(15)
max

n∑
j=1

cjxj

s.t. α ≤ µ((Ax)i, u),
x ≥ 0, α ∈ [0, 1] .

In this case, the constraints are in the (≤) form, and the objective function is
maximized. The MFs of constraints are equivalent to:

(16) µ(Ax)i =


1, (Ax)i ≤ bi,
bi+∆i−(Ax)i

∆i
, bi ≤ (Ax)i ≤ bi + ∆i,

0, (Ax)i ≥ bi + ∆i,

where bi ∈
[
b∨i , b̄

∨
i

]
and ∆i ∈

[
∆i, ∆̄i

]
. By substitution the MF of (16) in the

problem (15), we have

(17)
max

n∑
j=1

cjxj

s.t. α ≤ bi+∆i−(Ax)i
∆i

, i = 1, ...,m,

x ≥ 0, α ∈ [0, 1] .

Note that, for i = 1, ...,m, we have (Ax)i =
n∑

j=1

aijxj . Therefore, the LP

problem (17) is achieved as follows:

(18)

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi + (1− α)∆i, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] .

Now, we substitute
[
b∨i , b̄

∨
i

]
and

[
∆i, ∆̄i

]
instead of bi and ∆i into the

problem (18), respectively. We obtain an ILP problem as follows:

(19)

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤
[
b∨i , b̄

∨
i

]
+ (1− α)

[
∆i, ∆̄i

]
, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] ,

the best solution of (19) is:

(20)

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj +∆iα ≤ b̄∧i , i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] .
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Note that, for each α ∈ [0, 1], the problem (20) obtained an optimal solution
with a degree of MF.

4.2. Second method. The idea behind this method is taken from Werner’s
method for solving the T1FLP with vagueness in the resources vector [29].
The previous method was asymmetric, but this method is symmetric, which
means that the objective function of problem (4) should be fuzzy because of
fuzzy inequality constraints. We computed the lower and upper bounds of
the optimal values by solving two LP problems. Consider the general form
of an IT2FLP problem with vagueness in the resources vector in the model
(4). Because the fuzzy resources vector MF has two upper and lower MFs, we
have (b∨

i , b̄
∨
i ,b∧

i , b̄
∧
i ). Therefore, we have four optimal values of the objective

function, resulting from four IT2FLP models (z∨, z∧, z̄∨, z̄∧). Then, according
to the ILP rules, the maximum and minimum values of the objective functions
are z̄∧ and z∨, are presented as follows (see Fig. 4):

(21)

z̄∧ = max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ b̄∧
i , i = 1, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

and

(22)

z∨ = max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ b∨
i , i = 1, ...,m,

xj ≥ 0, j = 1, 2, ..., n.

Figure 4. The MF of the objective function µ0(z).

Defining the MF of the objective function µ0(z) as (23):



248 Sh. Sargolzaei and H. Mishmast Nehi

(23) µ0(z) =


1, cx > z̄∧,

1− z̄∧−cx
z̄∧−z∨ , z∨ ≤ cx ≤ z̄∧,

0, cx < z∨.

Now, problem (4) can be solved by solving problem (24) using the Bellman-
Zadeh operator, i.e., the purpose is to obtain a solution that satisfies the ob-
jective and the constraints with the highest degree:

(24)

max α
s.t. α ≤ µ0(z),

α ≤ µ((Ax)i, u),
x ≥ 0, α ∈ [0, 1] .

The MF of the objective function given in (23) is putting into the problem (24),
then the problem (25) is obtaining:

(25)

max α

s.t. α ≤ 1− z̄∧−cx
z̄∧−z∨ ,

α ≤ bi+∆i−(Ax)i
∆i

, i = 1, ...,m,

x ≥ 0, α ∈ [0, 1] .

As mentioned above, for i = 1, ...,m, we consider the (Ax)i =
n∑

j=1

aijxj and

cx =
n∑

j=1

cjxj , therefore the model (25) became as follows:

(26)

max α

s.t.
n∑

j=1

cjxj ≥ z̄∧ − (1− α)(z̄∧ − z∨),

n∑
j=1

aijxj ≤ bi + (1− α)∆i, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] .

Therefore, by substituting
[
b∨

i, b̄
∨
i

]
and

[
∆i, ∆̄i

]
instead of bi and ∆i, into

the problem (26), respectively; we obtain an ILP problem as follows:

(27)

max α

s.t.
n∑

j=1

cjxj ≥ z̄∧ − (1− α)(z̄∧ − z∨),

n∑
j=1

aijxj ≤
[
b∨
i , b̄

∨
i

]
+ (1− α)

[
∆i, ∆̄i

]
, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] ,
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the best solution of (27) is obtained by solving the LP problem (28):

(28)

max α

s.t.
n∑

j=1

cjxj ≥ z̄∧ − (1− α)(z̄∧ − z∨),

n∑
j=1

aijxj + α∆i ≤ b̄∧
i , i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, α ∈ [0, 1] .

4.3. Third method. In this approach, the idea of Guu and Wu in solving
T1FLP with vagueness in the resources vector is applied [15]. This method is
a two-phase approach that fixes situations in which the max-min operator is
not efficient. The first phase solves the problem using the max-min operator.
In the second phase, a solution is obtained that is at least better than the
solution obtained by the max-min operator. In other words, this method follows
the highest degree of membership in the objective and better usage of each
constrained resource. According to this method, to solve the IT2FLP problem,
we first solve it using the max-min operator (problem (28)). If the optimal
solution of problem (28) is unique, it is a fuzzy efficient solution for problem (4).
This means that if the problem (28) has multiple optimal solutions, the solution
obtained by the max-min operator of Bellman-Zadeh may not be efficient. In
the second phase, assuming problem (28) has an optimal solution (x∗, α∗), we
have

(29)

max
m∑
i=0

αi

s.t. α0 ≥ µ0(z = cx∗),
αi ≥ µ((Ax∗)i, u), i = 1, ...,m,
α0 ≤ µ0(z = cx),
αi ≤ µ((Ax)i, u), i = 1, ...,m,
x ≥ 0, αi ∈ [0, 1] , i = 0, 1, ...,m,

therefore, by substituting the MFs of (16) and (23) in problem (29), we have

(30)

max
m∑
i=0

αi

s.t.
n∑

j=1

cjx
∗
j ≤ z̄∧ − (1− α0)(z̄

∧ − z∨),

n∑
j=1

aijx
∗
j ≥ bi + (1− αi)∆i, i = 1, ...,m,

n∑
j=1

cjxj ≥ z̄∧ − (1− α0)(z̄
∧ − z∨),

n∑
j=1

aijxj ≤ bi + (1− αi)∆i, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, αi ∈ [0, 1] , i = 0, 1, ...m,

by putting
[
b∨
i , b̄

∧
i

]
and

[
∆i, ∆̄i

]
instead of bi and ∆i , respectively, then the
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problem (30) becomes as following IT2FLP problem:

(31)

max
m∑
i=0

αi

s.t.
n∑

j=1

cjx
∗
j ≤ z̄∧ − (1− α0)(z̄

∧ − z∨),

n∑
j=1

aijx
∗
j ≥

[
b∨
i , b̄

∨
i

]
+ (1− αi)

[
∆i, ∆̄i

]
, i = 1, ...,m,

n∑
j=1

cjxj ≥ z̄∧ − (1− α0)(z̄
∧ − z∨),

n∑
j=1

aijxj ≤
[
b∨
i , b̄

∨
i

]
+ (1− αi)

[
∆i, ∆̄i

]
, i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, αi ∈ [0, 1] , i = 0, 1, ...,m,

the best solution of (31) is obtained as follows:

(32)

max
m∑
i=0

αi

s.t.
n∑

j=1

cjx
∗
j ≤ z̄∧ − (1− α0)(z̄

∧ − z∨)

n∑
j=1

aijx
∗
j +∆iαi ≥ b̄∧

i , i = 1, ...,m,

n∑
j=1

cjxj ≥ z̄∧ − (1− α0)(z̄
∧ − z∨)

n∑
j=1

aijxj + αi∆̄i ≤ b∨
i , i = 1, ...,m,

xj ≥ 0, j = 1, ..., n, αi ∈ [0, 1] , i = 0, 1, ...,m,

the optimal solution of (32) is (x∗∗, α∗∗
0 , α∗∗

1 , ..., α∗∗
m ).

Theorem 4.1. [15] The optimal solution x∗∗ of the problem (32) is a fuzzy
efficient solution of the problem (4).

5. Numerical Examples
In this section, we consider two examples. We implement and evaluate our

proposed methods using these two examples. First, we provide an application
example related to the transportation problem from [13] and solve it using the
three proposed methods. The second example was previously presented by
Figueroa and Sarani. Now, we consider this example to better evaluate our
proposed methods [11,12,23].

Example 5.1. (Application Example) To demonstrate the functionality
of the three proposed methods, we consider a classical transportation problem
given in the article [13]. In which its demands and supplies are defined by
the perspectives of system experts on two fronts: experts in customer behavior
and experts in supplier capabilities. Sometimes, the experts provide opinions
using words instead of numbers through sentences such as ”I think that the
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demand of the product X should be between b1 and b2”, where b1 and b2 become
b∨1 and b∧2 [13]. Consequently, when different experts provide ideas based on
their prior knowledge, the challenge lies in managing the information they have
provided. In cases where different experts hold varying viewpoints on the same
concept, linguistic uncertainty emerges, and T2FSs emerge as an alternative
for handling this type of uncertainty. This is how we define the demands and
supplies of the system by the experts, with the primary goal being to minimize
the system’s shipping costs. The general IT2FLP transportation model is as
follows:

(33)

min z = cijxij

s.t. −
m∑
i=1

xij ≥ −˜̃tj , ∀ j ∈ Nn, Nn = 1, ..., n,

n∑
j=1

xij ≥ ˜̃si, ∀ i ∈ Nm, Nm = 1, ...,m,

where cij, xij ∈ Rn,m, ˜̃tj and ˜̃si are IT2FS. Nm is the set of all i resources.
Nn is the set of all j products.
xij: The amount of product that will be sent from supplier i to customer j.
tj =: The amount of product that is accessible from supplier j.
si =: The amount of product needed by customer i.
Note that the vector ˜̃

b is made up of two vectors: ˜̃s with parameters s∨, s∧, s̄∨,
and s̄∧, representing the customers’ demands, and ˜̃

b with parameters t∨, t∧,
t̄∨, and t̄∧, representing the availabilities provided by suppliers.

s̄∨ =

 10
11
12

 , s∨ =

 13
14
18

 , s̄∧ =

 12
13
15

 , s∧ =

 16
17
21

 ,

t̄∨ =

 24
37
29

 , t∨ =

 16
30
23

 , t̄∧ =

 20
32
24

 , t∧ =

 14
25
18

 ,

cTij =
[
2 3 2 4 1 3 2 4 2

]
, ∆ =


3
3
6
8
7
6

 .

This example consists of three suppliers and three customers, and their param-
eters are determined by experts using IT2FS.
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Solving Example 5.1 using the first proposed method: Using the
problem (20), We have
(34)

min z = 2x11 + 3x12 + 2x13 + 4x21 + x22 + 3x23 + 2x31 + 4x32 + 2x33

s.t. x11 + x21 + x31 + 8α ≤ 24,
x12 + x22 + 4x32 + 7α ≤ 37,
x13 + x23 + x33 + 6α ≤ 29,
x11 + x12 + x13 − 3α ≥ 10,
x21 + x22 + x23 − 3α ≥ 11,
x31 + 4x32 + 2x33 − 6α ≥ 12,
α ∈ [0, 1],

by solving the problem (34) for each α ∈ [0, 1], the optimal objective value and
optimal solutions are shown in Table 2.

Solving Example 5.1 using the second proposed method: In this
process, we need to compute z∨ and z̄∧. They obtained as z∨ = 55 and z̄∧ = 99.
Then, using the problem (28), we get

(35)

max α
s.t. 2x11 + 3x12 + 2x13 + 4x21 + x22

+3x23 + 2x31 + 4x32 + 2x33 ≤ 96− 41α,
g1(x) = x11 + x21 + x31 ≤ 24− 8α,
g2(x) = x12 + x22 + 4x32 ≤ 37− 7α,
g3(x) = x13 + x23 + x33 ≤ 29− 6α,
g4(x) = x11 + x12 + x13 ≥ 10 + 3α,
g5(x) = x21 + x22 + x23 ≥ 11 + 3α,
g6(x) = x31 + 4x32 + 2x33 ≥ 12 + 6α,
α ∈ [0, 1],

by solving the problem (35), the results are shown in Table 2.

Table 2. The result of the first and second suggested meth-
ods.

Methods α∗ x∗
11 x∗

12 x∗
13 x∗

21 x∗
22 x∗

23 x∗
31 x∗

32 x∗
33 z∗

Our first method 0 0 0 10 0 11 0 0 0 12 55
0.1 0 0 9.7 0 10.7 0 0 0 11.4 52.9
0.2 0 0 9.4 0 10.4 0 0 0 10.8 50.8
0.3 0 0 9.1 0 10.1 0 0 0 10.2 48.7
0.4 0 0 8.8 0 9.8 0 0 0 9.6 46.6
0.5 0 0 8.5 0 9.5 0 0 0 9 44.5
0.6 0 0 8.2 0 9.2 0 0 0 8.4 42.4
0.7 0 0 7.9 0 8.9 0 0 0 7.8 40.3
0.8 0 0 7.6 0 8.6 0 0 0 7.2 38.2
0.9 0 0 7.3 0 8.3 0 0 0 6.6 36.1
1 0 0 7 0 8 0 0 0 6 34

Our second method 0.629 3.435 0 8.452 0 12.887 0 0 0 16.774 70.21
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In the first method, the best optimal value of the objective function (z∗ = 34)
occurs at α = 1, Since the goal of the main problem is to minimize transportation
costs between the buyer and seller, the optimal value of the objective function
indicates a significant reduction in costs. In the second method, the best level
to satisfy the objective function and the constraints of the problem is equal to
α = 0.629, providing a crisp solution to the problem. In this method, more
products are transported between suppliers and customers; therefore, the cost of
transportation has increased slightly.

Solving Example 5.1 using the third proposed method: The optimal
solutions obtained from solving problem (35) are placed on the left side of
its constraints and the values g1(x

∗) = 5.6, g2(x
∗) = 12.99, g3(x

∗) = 25.23,
g4(x

∗) = 11.89, g5(x
∗) = 12.89, and g6(x

∗) = 16.77 are obtained. Also, the
limited degrees of constraints satisfaction are 0.629 ≤ α0, α3, α4, α5 ≤ 1, α1 =
α2 = 1, and 0.79 ≤ α6 ≤ 1. Now, as second phase, using the problem (32), we
have

(36)

max α0 + α1 + α2 + α3 + α4 + α5 + α6

s.t. 2x11 + 3x12 + 2x13 + 4x21 + x22

+3x23 + 2x31 + 4x32 + 2x33 ≤ 96− 41α0,
g1(x) = x11 + x21 + x31 ≤ 24− 8α1,
g2(x) = x12 + x22 + 4x32 ≤ 37− 7α2,
g3(x) = x13 + x23 + x33 ≤ 29− 6α3,
g4(x) = x11 + x12 + x13 ≥ 10 + 3α4,
g5(x) = x21 + x22 + x23 ≥ 11 + 3α5,
g6(x) = x31 + 4x32 + 2x33 ≥ 12 + 6α6,
0.629 ≤ α0, α3, α4, α5 ≤ 1, α1 = α2 = 1,
0.79 ≤ α6 ≤ 1,

by solving the problem (36), the quantities of shipments, denoted as x∗∗
ij , that

need to be delivered from suppliers to customers are presented as below:

x∗∗
11 = 0, x∗∗

21 = 0, x∗∗
31 = 5.627,

x∗∗
12 = 0, x∗∗

22 = 12.957, x∗∗
32 = 0,

x∗∗
13 = 11.887, x∗∗

23 = 0, x∗∗
33 = 11.113,

substituting these values into the objective function of the problem (34), we ob-
tain z∗ = 70.21 and into the constraints of it, we have g1(x

∗∗) = 5.6, g2(x∗∗) =
12.96, g3(x

∗∗) = 23, g4(x
∗∗) = 11.89, g5(x

∗∗) = 12.96, and g6(x
∗∗) = 16.77,

also
6∑

i=0

αi = 5.7. As we have seen, not only x∗∗ achieve the optimal objective

value, but it also obtains a maximum degree in the third constraint. Further-
more, it utilizes 23 units of the third resource, while the solution x∗ of the
max-min operator requires 25.23, units of the third resource. In the remaining
resources, there has also been a slight saving. It means that the use of resources
has been saved.
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By solving this example, we have effectively demonstrated the efficiency of
our proposed methods in application problems. Our proposed methods are
flexible and interpretable, such that the Bellman-Zadeh operator is used to
find a crisp solution to the IT2F constrained problem. This makes our proposal
suitable for solving many similar problems. Furthermore, in the third proposed
method, we fix situations in which the max-min operator is not efficient.

Example 5.2. Consider an FLP problem aimed at maximizing the objec-
tive function with less-than-or-equal constraints with an IT2F resources vec-
tor [11,12,23].

A =


5 3 7
10 4 9
4 6 3
2 7 7
5 6 11

, c =

 12
17
9

, b∨ =


50
70
40
60
40

, b∧ =


72
104
65
95
80

 , b
∨

=


60
80
55
75
57

 , and b
∧
=


95
110
77
102
98

.

Solving Example 5.2 using the three review method (Subsection
3.2): By using the first method of Figueroa, ˜̃z(x∗) = 175.76 and α˜̃z = 0.51

are obtained. Also by using the second method of Figueroa, ˜̃z(x∗) = 175.76
and α˜̃z = 0.5106 are computed. Furthermore, the result of using the Sarani’s
method is presented by (x∗

1,x∗
2,x∗

3) = (6.2495, 5.5812, 0), ˜̃z
∗
= 169.8743 and

α∗
˜̃z
= 0.74059. Sarani’s method has a higher degree of satisfaction in terms of

the constraints than the two Figueroa’s methods. See Table 3.

Solving Example 5.2 using the first proposed method: Assumes the

same data as Example 5.2. Using problem (20), and ∆ = b̄∨ − b∨ =


10
10
15
15
17

.

We have

(37)

max 12x1 + 17x2 + 9x3

s.t. 5x1 + 3x2 + 7x3 + 10α ≤ 95,
10x1 + 4x2 + 9x3 + 10α ≤ 110,
4x1 + 6x2 + 3x3 + 15α ≤ 77,
2x1 + 7x2 + 7x3 + 15α ≤ 102,
5x1 + 6x2 + 11x3 + 17α ≤ 98,
x1,x2,x3 ≥ 0, α ∈ [0, 1] ,
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by solving the problem (37) for each α ∈ [0, 1], the optimal objective value and
optimal solutions are shown in Table 3.

Table 3. Comparison of the results of our first method and
the results of the review methods

Methods α∗ x∗
1 x∗

2 x∗
3 z∗

Our first method 0 8.0000 7.5000 0 223.5
0.1 8.0000 7.2500 0 219.2500
0.2 8.0000 7.0000 0 215.0000
0.3 8.0000 6.7500 0 210.7500
0.4 8.0000 6.5000 0 206.5000
0.5 8.0000 6.2500 0 202.2500
0.6 8.0000 6.0000 0 198.0000
0.7 8.0000 5.7500 0 193.7500
0.8 8.0000 5.5000 0 189.5000
0.9 8.0000 5.2500 0 185.2500
1 8.0000 5.0000 0 181.0000

First method of Figueroa 0.51 - - - 190.99
Second method of Figueroa 0.5106 - - - 175.76

Sarani method 0.741 6.2495 5.5812 0 169.8743

By comparing the results of our first method with those of the two Figueroa
methods and Sarani’s method: it is observed that for α∗ = 0.5, the optimal
objective function value in our first method is better than those of the two
methods of Figueroa. In addition, at α∗ = 0.7, the optimal objective func-
tion value obtained by the first method is better than that obtained by Sarani’s
method. In addition, in the two methods of Figueroa, only the α∗ value and the
optimal objective function are obtained. However, in our proposed method, the
decision-maker can choose a value for α ∈ [0, 1] according to the conditions of
the problem, and by solving it, he can also calculate the optimal values of the
decision variables and the objective function.

Solving Example 5.2 using the second proposed method: Consider
the FLP problem (37) of Example 5.2. We solve two problems (21) and (22),
therefore we obtain z̄∧ = 223.5000 and z∨ = 113.3333. Then, by replacing
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these values in (28), we have

(38)

max α
s.t. − 12x1 − 17x2 − 9x3 ≤ 113.3333− 110.1667α,

5x1 + 3x2 + 7x3 ≤ 95− 10α,
10x1 + 4x2 + 9x3 ≤ 110− 10α,
4x1 + 6x2 + 3x3 ≤ 77− 15α,
2x1 + 7x2 + 7x3 ≤ 102− 15α,
5x1 + 6x2 + 11x3 ≤ 98− 17α,
x1, x2, x3 ≥ 0, α ∈ [0, 1] ,

by solving the problem (38), the values of (x∗
1, x

∗
2, x

∗
3) = (8, 5.6960, 0) and α∗ =

0.7216 are obtained. Then, we substitute the values of x∗ into the objective
function of the problem (37). The optimal value of the objective function
becomes z∗ = 192.8320. Table 4 shows a comparison between the results of
our first and second methods, the first two methods of Figueroa, and Sarani’s
method.

Table 4. Comparison of the results of our second method and
the results of the review methods.

Methods α∗ x∗
1 x∗

2 x∗
3 z∗

Our first method α = 0.5 8.0000 6.2500 0 202.2500
α = 0.7 8.0000 5.7500 0 193.7500

Our second method 0.7216 8 5.696 0 192.8320
First method of Figueroa 0.51 - - - 190.99

Second method of Figueroa 0.5106 - - - 175.76
Sarani method 0.741 6.2495 5.5812 0 169.8743

For a better comparison, we have added the values of rows α = 0.5 and
α = 0.7 from Table 3 in Table 4. As can be seen from it, the values obtained
from our two proposed methods are better than those of the first two Figueroa
and Sarani methods. Furthermore, the optimal value obtained for α∗ = 0.7216
from our second method is better than those obtained from the first two Figueroa
methods and is almost equal to the value obtained from Sarani’s method. The
optimal value obtained for z∗ = 192.8320 is much better than those obtained
from the first two methods of Figueroa and Sarani’s method and is slightly lower
than our first method. In this method, in addition to the optimal values of α∗

and the objective function, the optimal values of the decision variables are also
obtained.

Solving Example 5.2 using the third proposed method: First, we
rewrite problem (38) as follows:
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(39)

max α
s.t. − 12x1 − 17x2 − 9x3 ≤ 113.3333− 110.1667α,

g1(x) = 5x1 + 3x2 + 7x3 ≤ 95− 10α,
g2(x) = 10x1 + 4x2 + 9x3 ≤ 110− 10α,
g3(x) = 4x1 + 6x2 + 3x3 ≤ 77− 15α,
g4(x) = 2x1 + 7x2 + 7x3 ≤ 102− 15α,
g5(x) = 5x1 + 6x2 + 11x3 ≤ 98− 17α,

x1, x2, x3 ≥ 0, α ∈ [0, 1] ,

as we know that the optimal solutions to the problem (39) are x∗ = (x∗
1, x

∗
2, x

∗
3) =

(8, 5.696, 0) and α∗ = 0.7216. By substituting these values into the objective
function of the problem (37), we obtain z(x∗) = z∗ = 192.8320, and into the
constraints of it , we have g1(x

∗) = 57.088, g2(x∗) = 102.784, g3(x∗) = 66.176,
g4(x

∗) = 55.872, and g5(x
∗) = 74.176. In addition, the limited degrees of con-

straints satisfaction are 0.6335 ≤ α0 ≤ 1, α1 = α4 = α5 = 1, 0.7216 ≤ α2 ≤ 1,
and 0.7216 ≤ α3 ≤ 1. Now, according to the problem (32), as second phase,
we apply these limits to the problem (32), as a result we have

(40)

max α0 + α1 + α2 + α3 + α4 + α5,
s.t. − 12x1 − 17x2 − 9x3 + 110.1667α0 ≤ 113.3333,

g1(x) = 5x1 + 3x2 + 7x3 + 10α1 ≤ 95,
g2(x) = 10x1 + 4x2 + 9x3 + 10α2 ≤ 110,
g3(x) = 4x1 + 6x2 + 3x3 + 15α3 ≤ 77,
g4(x) = 2x1 + 7x2 + 7x3 + 15α4 ≤ 102,
g5(x) = 5x1 + 6x2 + 11x3 + 17α5 ≤ 98,

0.6325 ≤ α0 ≤ 1, α1 = 1,
0.7216 ≤ α2 ≤ 1, 0.7216 ≤ α3 ≤ 1,
α4 = 1, α5 = 1,
x1, x2, x3 ≥ 0,

by solving the problem (40), we obtain x∗∗ = (x∗∗
1 , x∗∗

2 , x∗∗
3 ) = (7.9304, 5.1741, 0).

Substituting these values into the objective function of the problem (37), we
obtain z∗ = 182.726 and into the constraints of it, we have g1(x

∗∗) = 55.142,
g2(x

∗∗) = 100, g3(x
∗∗) = 62.627, g4(x

∗∗) = 46.741, and g5(x
∗∗) = 70.750. In

addition, we obtain α∗
0 = 0.6335, α∗

1 = α∗
2 = α∗

4 = α∗
5 = 1, α∗

3 = 0.958, and
m∑
i=0

α∗
i = 5.588.

Not only x∗∗ achieve the optimal objective value, but it also obtains a maxi-
mum degree in all constraints. Furthermore, it utilizes 55.142 units of the first
resource, 100 units of the second resource, 62.627 units of the third resource,
46.741 units of the fourth resource, and 70.57 of the fifth resource, while the so-
lution x∗ of the max-min operator requires 57.088, 102.782, 66.176, 55.872, and
74.176 units of the first, second, third, fourth, and fifth resources, respectively.
It means that the use of resources has been saved. Also, the optimal objective
function value obtained from this method is better than the second method of
Figueroa and Sarani’s methods (see Table 4).
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6. Conclusions
This article aims to investigate and solve the IT2FLP problem with vague-

ness in the resource vectors. To obtain this aim, firstly, the three available
methods for solving these problems, such as Figueroa’s and Sarani’s methods,
are discussed. In the following, we proposed three new methods for solving
the IT2FLP problem with vagueness in the resources vector. The first new
method is based on Verdegay’s method for solving the FLP problem. Then,
we calculated that the optimal solution of an IT2FLP problem which can be
found by solving an equivalent LP problem, assuming that the objective func-
tion is crisp. The second proposed method is based on Werners’s idea to solve
the FLP problem. In this method, the asymmetric problem is converted to a
symmetric problem. Next, using the max-min operator of Bellman and Zadeh,
the maximum degree satisfying the objective and constraints of the problem
is calculated. The third proposed method is based on the ideas of Guu and
Wu. We proposed the two-phase method for solving the IT2FLP problem that
performs the highest membership degree in the objective and enables better
use of each constrained resource. Additionally, to illustrate the performance of
our proposed methods, we present two numerical examples. The first example
is an application case related to the classic transportation problem. The second
example is that used by Figueroa and Sarani. We use this example to compare
the proposed methods with the three reviewed methods. Finally, the results of
our methods are compared with those of previous methods. The advantages of
this study and the proposed method can be summarized as follows:

• Reviewing and comparing three solution methods for the IT2FLP prob-
lem, including the first two methods of Figueroa and one method of
Sarani;

• Proposing three new methods for solving the IT2FLP problem based
on three ideas for solving the FLP problem, from Verdagai, Werners,
and Guo and Wu;

• Examining the efficiency of the three proposed methods by solving the
same numerical example and comparing the results with those obtained
by solving the three review methods;

• Discussion the performance and efficiency of the three proposed meth-
ods by solving an application example;

• Proposed methods are more efficient and have better optimal solutions;
• One advantage of the third proposed method is that its optimal solution

not only obtains the optimal value of the objective function, but also
helps to save resources by obtaining the highest degree in the MF of
constraints.

• In our first proposed method, the decision-maker can choose a value for
α ∈ [0, 1] according to the conditions of the problem, and by solving it,
he can also obtained the optimal values of the decision variables and
the objective function;
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• Computational simplicity and desirable results.
• Our proposed methods are flexible and interpretable, such that the

Bellman-Zadeh operator is used to find a crisp solution to the IT2F
constrained problem. This makes our proposal suitable for solving
many similar problems.

• Furthermore, in the third proposed method, we fix situations in which
the max-min operator is not efficient;

Finally, as mentioned, imprecision in a linear programming problem can take
two forms: vagueness and ambiguity. The imprecision of the vagueness type is
displayed as a membership function. Furthermore, depending on the conditions
and the position of the vagueness, different states occur. The vagueness can
be in the objective function vector, technological coefficients, resources vector,
or any possible combination of them. These problems can be investigated
as attractive topics for future research. Alternatively, if the uncertainty in
the problem is of the ambiguity type, the parameters can be considered as
fuzzy numbers and the problem can be modeled using the possibilistic linear
programming problem. In these cases, considering the position of ambiguity
in the problem, we are faced with different situations. These findings can be
considered attractive topics for future research.
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