# A NOTE ON 2-PRIME IDEALS 

V. Sharifi ${ }^{\ominus}$ and S. Hadjirezaei ${ }^{\text {© }}$ 凶<br>Article type: Research Article<br>(Received: 27 June 2023, Received in revised form 07 January 2024)<br>(Accepted: 25 February 2024, Published Online: 26 February 2024)


#### Abstract

Let $R$ be a commutative ring with identity. In this paper, we study 2-prime ideals of a Dedekind domain and a Prüfer domain. We prove that a nonzero ideal $I$ of a Dedekind domain $R$ is 2-prime if and only if $I=P^{\alpha}$, for some maximal ideal $P$ of $R$ and positive integer $\alpha$. We give some results of ring $R$ in which every ideal $I$ is 2 -prime. Finally, we define almost 2 -prime, almost 2 -primary and weakly 2 -primary ideals, and investigate some properties of these ideals.


Keywords: 2-prime ideal, almost 2-prime ideal, almost 2-primary ideal, weakly 2 -primary ideal.
2020 MSC: 13C05, 13C13,13C15.

## 1. Introduction

In this paper, we focus on commutative rings with an identity $1 \neq 0$. Throughout the paper, $R$ always denotes a ring, and $I$ denotes an ideal. By a proper ideal $I$ of $R$ we mean an ideal with $I \neq R$. For any proper ideal $I$ of $R$, the radical $\sqrt{I}$ is defined as $\sqrt{I}:=\left\{a \in R: a^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$.

Prime ideals play a central role in commutative ring theory, and so this notion has been generalized and studied in several directions. A proper ideal $P$ of $R$ is said to be a prime ideal if whenever $x y \in P$ for some $x, y \in R$, then $x \in P$ or $y \in P$ [3]. The set of all prime ideals of a ring $R$ is denoted by $\operatorname{Spec}(R)$ and for a ring $R$, set $\mathrm{N}(\mathrm{R})=\left\{a \in R: a^{n}=0\right.$ for some positive integer $\left.n\right\}=\bigcap\{P$ : $P$ is a prime ideal of $R\}[12]$. The importance of some of these generalizations is as important as prime ideals. Let $I$ be an ideal of a commutative ring $R$. We say that $I$ is a primary ideal of $R$ when $I$ is a proper ideal of $R$ and whenever $a, b \in R$ with $a b \in I$ but $a \notin I$, then there exists $n \in \mathbb{N}$ such that $b^{n} \in I$ [11]. An ideal $I$ of a ring $R$ will be called semiprimary if it's radical, $\sqrt{I}$, is prime [7]. It is clear that every primary ideal is semiprimary.

In 2003, Anderson and Smith [1] introduced the notion of a weakly prime ideal. That is, a proper ideal $I$ of $R$ with the property that for $a, b \in R$, $0 \neq a b \in I$ implies $a \in I$ or $b \in I$. In 2005, Bhatwadekar and sharma [6] introduced the notion of an almost prime ideal, which is also a generalization of a prime ideal. A proper ideal $I$ of a ring $R$ is said to be almost prime if for $a, b \in R$ with $a b \in I-I^{2}$, then either $a \in I$ or $b \in I$. It is clear that every prime
ideal is a weakly prime ideal and an almost prime ideal. In 2007, Badawi [4] introduced and investigated the notion of 2 -absorbing ideals. A nonzero proper ideal $I$ of $R$ is called a 2-absorbing ideal if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In 2016, Beddani and Messirdi [5] defined the concept of 2-prime ideals, and they characterized valuation domains in terms of this concept. A proper ideal $I$ of $R$ is said to be a 2 -prime ideal if whenever $x y \in I$ for some $x, y \in R$, then $x^{2} \in I$ or $y^{2} \in I$. Note that every prime ideal is 2 -prime, but the converse is not true. By [12] a domain $R$ is called a valuation domain if, given two nonzero elements $a, b \in R$, either $(a) \subseteq(b)$ or $(b) \subseteq(a)$ and a domain $R$ is called a Dedekind domain if and only if every nonzero proper ideal of $R$ is a product of finitely many prime ideals.

The purpose of this paper is to investigate 2-prime ideals in commutative rings. Among other results, we check some relations between 2-prime ideal and other classical ideals such as prime ideal, semiprimary ideal, and primary ideal. Also, we characterize 2-prime ideals in a Dedekind domain (see Theorem 3.7). In Proposition 3.11, we investigate the properties of a ring in which every proper ideal is 2 -prime. Also, we define $2-\mathrm{N}(\mathrm{R})$ to be the intersection of all 2-prime ideals of $R$ and investigate $2-\mathrm{N}(\mathrm{R})$ in different rings. In section 3, we define almost 2-prime and almost 2-primary ideals. Let $I$ be a proper ideal of a $\operatorname{ring} R$. We say that $I$ is almost 2 -prime if for all $x, y \in R$ such that $x y \in I-I^{2}$, then either $x^{2}$ or $y^{2}$ lies in $I$, and we say that $I$ is almost 2-primary if for all $x, y \in R$ such that $x y \in I-I^{2}$, then $x^{2} \in I$ or $y^{n} \in I$ for some $n \in \mathbb{N}$. Also, we define weakly 2 -primary ideal. Let $I$ be a proper ideal of a ring $R$. We say that $I$ is weakly 2-primary if for all $x, y \in R$ such that $0 \neq x y \in I$, then $x^{2} \in I$ or $y^{n} \in I$, for some $n \in \mathbb{N}$. In section 3 , we give some basic properties of these ideals.

## 2. Preliminaries

Definition 2.1 ([5]). Let $I$ be a proper ideal of a ring $R$. We say that $I$ is 2-prime if for all $x, y \in R$ such that $x y \in I$, then either $x^{2}$ or $y^{2}$ lies in $I$.
Example 2.2. Let $R=\mathbb{Z}_{12}$ and let $I=(\overline{4})=\{\overline{0}, \overline{4}, \overline{8}\}$. For every $a, b \in R$ such that $a b \in I$, we have $a^{2} \in I$ or $b^{2} \in R$. So $I$ is a 2-prime ideal of $R$.

Definition 2.3 ( [13]). $R$ is a Boolean ring if $a^{2}=a$ for all $a \in R$.
Definition 2.4 ( $[8]$ ). A ring $R$ is called a von Neumann regular ring if for every $a \in R$, there exists $x \in R$ such that $a=a^{2} x$.
Definition 2.5 ( [9]). If $R$ denotes a commutative ring with unit in which the elements 0 and 1 are distinct and $F$ denotes the total quotient ring of $R$, then for an ideal $A$ of $R$, let $A^{-1}$ denote the set $\{x \in F \mid x A \subset R\}$. An ideal $A$ is called invertible if $A A^{-1}=R$.

Definition 2.6. An integral domain $R$ is a Prüfer domain if each nonzero finitely generated ideal of $R$ is invertible.

Proposition 2.7. If $R$ is an integral domain, then the following statements are equivalent:
(1) $R$ is a Prüfer domain.
(2) For every prime ideal $P$ of $R$ the ring of quotients $R_{P}$ is a valuation domain.
(3) For every maximal ideal $P$ of $R$, the ring of quotients $R_{P}$ is a valuation domain.

Proof. See [8, Theorem 6.6 and Corollary 6.7].
Proposition 2.8. Let $I$ be an ideal of a ring $R$, then the following properties hold:
(1) If $I$ is 2-prime ideal, then it's radical $\sqrt{I}$ is a prime ideal.
(2) Let $S$ be a multiplicatively closed subset of $R$. If $I$ is a 2-prime ideal of $R$, then the ideal $I R_{S}$ is also a 2-prime ideal of $R_{S}$.
(3) If I is a p-primary ideal, then I is 2-prime if and only if $I R_{p}$ is 2-prime.

Proof. See [5, Proposition 1.3].
Proposition 2.9. Let $R$ be an integral domain. The following statements are equivalent:
(1) $R$ is a valuation domain.
(2) Every principal ideal of $R$ is 2-prime.
(3) Every ideal of $R$ is 2 -prime.

Proof. See [5, Theorem 2.4].

## 3. 2-prime ideals

In this section, we investigate some properties of 2-prime ideals in different rings.

Proposition 3.1. Let $I$ be an ideal of a ring $R$.
(1) If $I$ is a prime ideal of $R$ and $J$ is an ideal of $R$ containing $I$, then $I J$ is a 2-prime ideal of $R$.
(2) If $I$ is a weakly prime and 2-prime ideal of $R$, then $I^{2}$ is a 2-prime ideal.
(3) If $I$ is an almost prime and 2-prime ideal, then $I^{2}$ is a 2-prime ideal.
(4) If 0 is a 2-prime ideal of $R$, then $N(R)$ is a prime ideal.

Proof.

1) Let $x y \in I J \subseteq I$. Then $x \in I$ or $y \in I$. Since $I \subseteq J$, so $x \in J$ or $y \in J$.

Therefore $x^{2} \in I J$ or $y^{2} \in I J$. As a result, $I J$ is a 2 -prime ideal of $R$.
2) Let $x y \in I^{2} \subseteq I$ for some $x, y \in R$. Since $I$ is 2-prime, $x^{2} \in I$ or $y^{2} \in I$. Without loss of generality, let $x^{2} \in I$. If $0 \neq x^{2}$, then since $I$ is weakly prime, $x \in I$. Therefore $x^{2} \in I^{2}$. If $0=x^{2}$, then it is clear that $x^{2} \in I^{2}$.
3) Let $x y \in I^{2} \subseteq I$ for some $x, y \in R$. Since $I$ is 2-prime, $x^{2} \in I$ or $y^{2} \in I$.

Without loss of generality, let $x^{2} \in I$. If $x^{2} \in I^{2}$, we are done. If $x^{2} \in I \backslash I^{2}$, since $I$ is almost prime, then $x \in I$. Thus $x^{2} \in I^{2}$.
4) Let $a, b \in R$ with $a b \in \mathrm{~N}(\mathrm{R})$. Then there exists a positive integer $n$ such that $a^{n} b^{n}=0$. Since 0 is 2-prime hence $\left(a^{n}\right)^{2}=0$ or $\left(b^{n}\right)^{2}=0$. Therefore $a \in$ $\mathrm{N}(\mathrm{R})$ or $b \in \mathrm{~N}(\mathrm{R})$.

Example 3.2. Let $R=K[x, y]$ be a polynomial ring in two variables $x$ and $y$ over a field $K$ and let $I=\left(x^{2}, x y\right)=(x)(x, y)$. Then Proposition 3.1(1) shows that $I$ is a 2-prime ideal of $R$.
This example shows that in a UFD, 2-prime ideals aren't necessarily principal.
Proposition 3.3. Let $R$ be a unique factorization domain, and let $p$ be an irreducible element of $R$. Then for every positive integer $\alpha$, the ideal ( $p^{\alpha}$ ) is 2-prime.
Proof. Let $x y \in P=\left(p^{\alpha}\right)$, where $x=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ and $y=p_{1}^{\gamma_{1}} \cdots p_{k}^{\gamma_{k}}$, where $p_{i}, s$ are distinct irreducible elements of $R$. Then $x y=p_{1}^{\alpha_{1}+\gamma_{1}} \ldots$
$p_{k}^{\alpha_{k}+\gamma_{k}}$. Since $p^{\alpha} \mid x y$, there exists $i \in\{1, \ldots, k\}$ such that $p^{\alpha} \mid p_{i}^{\alpha_{i}+\gamma_{i}}$. Therefore $p_{i}=p$ and $\alpha \leq \alpha_{i}+\gamma_{i}$. Moreover, $\alpha_{i} \geq \frac{\alpha}{2}$ or $\gamma_{i} \geq \frac{\alpha}{2}$. If $\alpha_{i} \geq \frac{\alpha}{2}$, then $x^{2}=p_{1}^{2 \alpha_{1}} \cdots p_{k}^{2 \alpha_{k}} \in\left(p^{\alpha}\right)$, and if $\gamma_{i} \geq \frac{\alpha}{2}$, then $y^{2}=p_{1}^{2 \gamma_{1}} \cdots p_{k}^{2 \gamma_{k}} \in\left(p^{\alpha}\right)$. Finally, ( $p^{\alpha}$ ) is 2-prime.

Example 3.2 shows that every 2-prime ideal of a unique factorization domain is not, in general, a power of a prime ideal.

Theorem 3.4. Let $R$ be a von Neumann regular ring. If 0 is a 2-prime ideal of $R$, then $R$ is a field.
Proof. Let $0 \neq a \in R$. Since $R$ is a von Neumann regular ring, there exists an element $x \in R$ such that $a=a^{2} x$. So $a(1-a x)=0$. Since 0 is a 2 -prime ideal of $R$, hence $a^{2}=0$ or $(1-a x)^{2}=0$. If $a^{2}=0$, then $a^{2} x=0$. Therefore $a=0$, a contradiction. Hence $(1-a x)^{2}=0$, which implies $1+a^{2} x^{2}-2 a x=0$. So $1=2 a x-a^{2} x^{2}=a\left(2 x-a x^{2}\right)$. This implies that $a$ is a unit element of $R$. Hence $R$ is a field.

Proposition 3.5. If $R$ is a Noetherian integral domain, then the following statements are equivalent:

1. $R$ is a Dedekind domain.
2. $R$ is integrally closed and every nonzero prime ideal of $R$ is maximal.
3. For every maximal ideal $P$ of $R$, the ring of quotients $R_{P}$ is a valuation domain.

Proof. See [8, Theorem 6.20].
Lemma 3.6. Let $I$ and $J$ be some proper comaximal ideals of a ring $R$. Then $I J$ is not a 2-prime ideal of $R$.

Proof. Let $I J$ be a 2-prime ideal of $R$. Since $I$ and $J$ are comaximal ideals of $R$, there exist $x \in I, y \in J$ such that $x+y=1$. We have $x y \in I J$, so $x^{2} \in I J$ or $y^{2} \in I J$. If $x^{2} \in I J$, since $x+y=1$ then $x^{2}+x y=x \in I J \subseteq J$. Hence $1 \in J$, a contradiction. Similarly if $y^{2} \in I J$, then $I=R$, a contradiction. So $I J$ is not 2-prime.

Theorem 3.7. Let $R$ be a Dedekind domain and let $I$ be a nonzero ideal of $R$. Then the following statements are equivalent:
(1) $I=P^{\alpha}$, for some maximal ideal $P$ of $R$ and positive integer $\alpha$.
(2) $I$ is a semiprimary ideal of $R$.
(3) $I$ is a 2-prime ideal of $R$.
(4) $I$ is a primary ideal of $R$.

Proof. $(1 \Rightarrow 2)$ It is obvious.
$(3 \Rightarrow 1)$ Let $I$ be a 2 -prime ideal. Since $R$ is a Dedekind domain, there exist some distinct prime ideals $P_{1}, \ldots, P_{n}$ of $R$ such that $I=P_{1}^{i_{1}} P_{2}^{i_{2}} \ldots$
$P_{n}^{i_{n}}$, for some positive integers $i_{j}, 1 \leq j \leq n$. Since $I \neq 0, P_{j} \neq 0$, for every $j=1, \ldots, n$, and since $R$ is a Dedekind domain, $P_{j}$ is a maximal ideal for every $j=1, \ldots, n$. Let $n \geq 2$. Since $P_{1}^{i_{1}}+P_{2}^{i_{2}} \cdots P_{n}^{i_{n}}=R$, there exist $x \in P_{1}^{i_{1}}$ and $y \in P_{2}^{i_{2}} \cdots P_{n}^{i_{n}}$ with $x+y=1$. Since $x y \in I$ and $I$ is a 2-prime ideal, $x^{2} \in I$ or $y^{2} \in I$. If $x^{2} \in I$, since $x+y=1$ then $x^{2}+x y=x \in I \subseteq P_{2}^{i_{2}} \cdots P_{n}^{i_{n}}$. Hence $1 \in P_{2}^{i_{2}} \cdots P_{n}^{i_{n}}$. Therefore $P_{j}=R$, for $j=2, \ldots, n$, a contradiction. Thus $n=1$ and $I=P_{1}^{i_{1}}$.
$(2 \Rightarrow 4)$ Let $I$ be a semiprimary ideal of $R$. Then $\sqrt{I}=P$ and $P$ is prime. If $P=0$, then $I=0$. So $I$ is primary. If $P \neq 0$, then $P$ is a maximal ideal, and so $I$ is primary by [11, Proposition 4.9].
$(4 \Rightarrow 3)$ Let $Q$ be a P-primary ideal of $R$. By Proposition $3.5, R_{P}$ is a valuation domain. Then by Proposition 2.9, $Q R_{P}$ is a 2-prime ideal of $R$. Consequently, $Q$ is a 2 -prime ideal by Proposition 2.8.

Example 3.8. Let $n=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$ be the factorization of positive integer $n$ into powers of distinct primes. Then 2-prime ideals of $R=\mathbb{Z}_{n}$ are in the form $\left(\overline{p_{i}^{\beta}}\right)$ for all $\beta=1, \ldots, \alpha_{i}$ and $i=1, \ldots, t$.

Because by [5, Proposition 1.3(8)] every 2-prime ideal of $\mathbb{Z}_{n} \cong \frac{\mathbb{Z}}{n \mathbb{Z}}$ is in the form of $\frac{I}{n \mathbb{Z}}$, where $I$ is a 2-prime ideal of $\mathbb{Z}$ containing $n \mathbb{Z}$. Since $\mathbb{Z}$ is a Dedekind domain and $n \mathbb{Z} \subseteq I$, by Proposition 3.7, $I=\left(p_{i}^{\beta}\right)$ for some $\beta=1, \ldots, \alpha_{i}$ and $i=1, \ldots, t$. So every 2-prime ideal of $\mathbb{Z}_{n}$ is in the form $\left(\overline{p_{i}^{\beta}}\right)$ for some $\beta=1, \ldots, \alpha_{i}$ and $i=1, \ldots, t$.

Proposition 3.9. Every ideal of $R$ is semiprimary if and only if $\operatorname{Spec}(R)$ is totally ordered by inclusion.

Proof. $\Leftarrow)$ Let $\operatorname{Spec}(R)$ be totally ordered by inclusion and let $I$ be an ideal of $R$. Then $\sqrt{I} \in \operatorname{Spec}(R)$. Therefore $I$ is semiprimary.
$\Rightarrow)$ let every ideal of $R$ is semiprimary and let $P, Q \in \operatorname{Spec}(R)$. Then $P \cap Q$ is a semiprimary ideal. Let $P \nsubseteq Q$. Then there exists an element $x \in P \backslash Q$. Assume that $q \in Q$. Hence $x q \in P \cap Q$. Since $P \cap Q$ is semiprimary, $x \in$ $\sqrt{P \cap Q}$ or $q \in \sqrt{P \cap Q}$. If $x \in \sqrt{P \cap Q}$, then $x \in Q$, a contradiction. Thus $q \in \sqrt{P \cap Q} \subseteq P$. Therefore $Q \subseteq P$.
Proposition 3.10. Let $R$ be a Prüfer domain. Then every primary ideal is 2-prime.
Proof. Let $Q$ be a $P$-primary ideal. Proposition 2.7 implies that $R_{P}$ is a valuation domain. Now, it follows from Proposition 2.9 that $Q R_{P}$ is a 2-prime ideal. So Proposition 2.8 implies that $Q$ is 2 -prime.

Proposition 3.11. Let $R$ be a ring such that every ideal of $R$ is 2-prime. Then the following properties hold:
(1) $\operatorname{Spec}(R)$ is totally ordered by inclusion.
(2) $\frac{R}{N(R)}$ is a valuation domain.

Proof. (1) By Proposition 2.8(1), every 2-prime ideal is semiprimary. So by Proposition 3.9, we are done.
(2) $\mathrm{N}(\mathrm{R})$ is a prime ideal and $\frac{R}{N(R)}$ is an integral domain. On the other hand, every ideal of $\frac{R}{N(R)}$ is in the form of $\frac{I}{N(R)}$, where $I$ is an ideal of $R$. By hypothesis $I$ is a 2-prime ideal. So by [5, Proposition 1.3(8)], $\frac{I}{N(R)}$ is 2-prime. Now, by Proposition 2.8 and Proposition $2.9(1 \Leftrightarrow 3), \frac{R}{N(R)}$ is a valuation domain.

Definition 3.12. Let $R$ be a ring. We define $2-N(R)$ to be the intersection of all 2-prime ideals of $R$.

By Proposition 3.1(1), for every $P \in \operatorname{Spec}(R), P^{2}$ is a 2-prime ideal. So $2-\mathrm{N}(\mathrm{R}) \subseteq \bigcap\left\{P^{2} \mid P\right.$ is prime $\}$. In the following, we investigate some cases in which equality holds.
Proposition 3.13. If $R$ is a ring such that for every 2-prime ideal $I$ of $R$, $(\sqrt{I})^{2} \subseteq I$. Then 2- $N(R)=\bigcap\left\{P^{2} \mid P\right.$ is prime $\}$.
Proof. It is clear that 2-N(R) $\subseteq \bigcap\left\{P^{2} \mid P\right.$ is prime $\}$. Conversely, let $I$ be a 2-prime ideal of $R$. Then $\sqrt{I}$ is prime. So $\bigcap\left\{P^{2} \mid P\right.$ is prime $\} \subseteq(\sqrt{I})^{2} \subseteq I$. Then $\bigcap\left\{P^{2} \mid P\right.$ is prime $\} \subseteq 2-\mathrm{N}(\mathrm{R})$.
Corollary 3.14. Let $R$ be a ring such that every 2-prime ideal of $R$ is prime. Then $2-N(R)=\bigcap\left\{P^{2} \mid P\right.$ is prime $\}$.
Proof. Since every 2-prime ideal $I$ is prime, $\sqrt{I}=I$. Therefore $(\sqrt{I})^{2}=I^{2} \subseteq I$. So by Proposition 3.13, 2-N $(\mathrm{R})=\bigcap\left\{P^{2} \mid P\right.$ is prime $\}$.

Example 3.15. In a Boolean ring, $2-N(R)=N(R)$, because every 2-prime ideal is prime.
Example 3.16. Let $R=\mathbb{Z}_{n}$ and let $n=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$ for some distinct prime integers $p_{i}$ and, $1 \leq i \leq t$. By Example 3.8, every 2-prime ideal of $R$ is in the form of $\left(\overline{p_{i}^{\beta}}\right)$ for all $\beta=1, \ldots, \alpha_{i}$ and $i=1, \ldots, t$. Thus $2-N(R)=\bigcap\{P \mid$ $P$ is 2-prime $\}=\bigcap_{i=1}^{t}\left(\overline{p_{i}^{\alpha_{i}}}\right)=\prod_{i=1}^{t}\left(\overline{p_{i}^{\alpha_{i}}}\right)=0$.

## 4. Almost 2-prime and almost 2-primary ideals

In this section, we give the definitions of almost 2-prime, almost 2-primary, and weakly 2-primary ideals, and investigate their properties.
Definition 4.1. Let $I$ be a proper ideal of a ring $R$. We say that $I$ is almost 2-prime if for all $x, y \in R$ such that $x y \in I-I^{2}$, then either $x^{2}$ or $y^{2}$ lies in $I$.
Example 4.2. It is clear that every idempotent ideal is almost 2-prime. Also, every 2-prime ideal and every almost prime ideal is almost 2-prime ideal.
Example 4.3. Let $R=\mathbb{Z}_{6}$ and let $I=(\overline{0})$ be an ideal of $R$. Since $I$ is idempotent, it is an almost 2-prime ideal of $R$. But I is not 2-prime.

Note that if $I$ and $J$ are prime ideals of $R$, then $I \cap J$ need not be almost 2 -prime ideal of $R$; see the following example.

Example 4.4. Let $R=K[x, y]$ be the polynomial ring in two variables $x$ and $y$ over a field $K$, and set $I=(x)$ and $J=(y)$. Then $I$ and $J$ are prime ideals of $R$ and $I \cap J=(x y)$. It is clear that $x y \in(I \cap J)-(I \cap J)^{2}$, but $x^{2} \notin I \cap J$ and $y^{2} \notin I \cap J$.
Definition 4.5. Let $I$ be a proper ideal of a ring $R$. We say that $I$ is almost 2-primary if for all $x, y \in R$ such that $x y \in I-I^{2}$, it holds that $x^{2} \in I$ or $y^{n} \in I$ for some $n \in \mathbb{N}$.
Example 4.6. It is obvious that every primary ideal, every almost prime ideal, every almost 2-prime ideal, and every idempotent ideal of $R$ are almost 2primary. Also, proper ideals of fully idempotent rings and of Boolean rings are almost 2-primary. Recall that $R$ is said to be a fully idempotent ring if every ideal of $R$ is idempotent [13].
Proposition 4.7. Let $I$ be an ideal of R.I is almost 2-primary if and only if $(I: x) \subseteq\left(I^{2}: x\right) \cup \sqrt{I}$ for all $x \in R$ such that $x^{2} \notin I$.
Proof. $\Rightarrow$ ) Let $I$ be an almost 2-primary ideal of $R$ and $y \in(I: x)$. Then $x y \in I$. If $x y \in I^{2}$, then $y \in\left(I^{2}: x\right)$. If $x y \notin I^{2}$, then $x y \in I-I^{2}$, and so $x^{2} \in I$ or $y^{n} \in I$, for some $n \in \mathbb{N}$. Since $x^{2} \notin I$, hence $y^{n} \in I$ and $y \in \sqrt{I}$. Finally, $(I: x) \subseteq\left(I^{2}: x\right) \bigcup \sqrt{I}$.
$\Leftarrow)$ Let $x y \in I-I^{2}$. Then $y \in(I: x)$. Since $(I: x) \subseteq\left(I^{2}: x\right) \cup \sqrt{I}$, hence $y \in\left(I^{2}: x\right)$ or $y \in \sqrt{I}$. Thus $x y \in I^{2}$ or $y^{n} \in I$. Since $x y \notin I^{2}$ hence $y^{n} \in I$ for some $n \in \mathbb{N}$. Therefore $I$ is almost 2-primary.

Proposition 4.8. Let $I$ be an ideal of $R$ such that $I=\sqrt{I}$. Then $I$ is almost 2-primary if and only if $I$ is almost prime.
Proof. Suppose that $I$ is almost 2-primary and that $a, b \in R$ with $a b \in I-I^{2}$. Assume that $a \notin I$. If $a^{2} \in I$, then $a \in \sqrt{I}=I$. So $a^{2} \notin I$ implies that $b^{n} \in I$ for some $n \in \mathbb{N}$, and hence $b \in \sqrt{I}=I$. Thus $I$ is an almost prime ideal. The converse is trivial.

Weakly primary ideals have been introduced and studied in [2]. In the following, we define the concept of weakly 2-primary ideal which is a mild generalization of the notion of weakly primary ideal.
Definition 4.9. Let $I$ be a proper ideal of a ring $R$. We say that $I$ is weakly 2-primary if for all $x, y \in R$ such that $0 \neq x y \in I$, then $x^{2} \in I$ or $y^{n} \in I$, for some $n \in \mathbb{N}$.
Example 4.10. Let $R=\frac{\mathbb{Z}_{2}[X, Y, Z, T]}{\left(X^{2}, Z^{3}, Z T, X Y Z, X Y T\right)}$ and let $x, y$, $z$, and $t$ be the cosets of the ideal $\left(X^{2}, Z^{3}, Z T, X Y Z, X Y T\right)$ with representatives $X, Y, Z$, and $T$, respectively. So we have $R=\mathbb{Z}_{2}[x, y, z, t]$ where $x^{2}=z^{3}=z t=x y z=$ $x y t=0$. Let $I=(x y)$ be an ideal of $R$. As $z t=0 \in I$ but $z^{2} \notin I$ and $t \notin \sqrt{I}$, $I$ is not a 2-primary ideal, and since $0 \neq x y \in I$ but $x \notin I$ and $y \notin \sqrt{I}$, $I$ is not a weakly primary ideal of $R$. Now we show that $I$ is a weakly 2-primary ideal of $R$. Suppose that $f, g \in R$ are such that $0 \neq f g \in I$. By the relations $x^{2}=z^{3}=0$ we have

$$
\begin{aligned}
& \quad f=a_{0}+a_{1} x+a_{2} z+a_{3} x z+a_{4} z^{2}+a_{5} x z^{2} \\
& \text { and } \\
& g=b_{0}+b_{1} x+b_{2} z+b_{3} x z+b_{4} z^{2}+b_{5} x z^{2} \\
& \text { where } a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{Z}_{2}[y, t] \text {, and } a_{i}, b_{i} \in \mathbb{Z}_{2}[y] \text { for } i=2,3,4,5 \text {. Then }
\end{aligned}
$$

$f g=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{2} b_{0}\right) z+\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right) x z+$
$\left(a_{0} b_{4}+a_{2} b_{2}+a_{4} b_{0}\right) z^{2}+\left(a_{0} b_{5}+a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}+a_{5} b_{0}\right) x z^{2}$.
Now, $f g \in I$ implies that
$a_{0} b_{0}=0$
$a_{0} b_{1}+a_{1} b_{0}=y c_{0}$
$a_{0} b_{2}+a_{2} b_{0}=t c_{1}$
for some $c_{0}, c_{1} \in \mathbb{Z}_{2}[y, t]$. Note that $f g=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x$ because $z t=$
$x y z=x y t=0$. Since $f g \neq 0$, (1) implies that just one of the $a_{0}$ or $b_{0}$ is 0 . Let
$a_{0}=0$ and $b_{0} \neq 0$. We show that $a_{2}=0$. If $a_{2} \neq 0$, as $a_{2} \in \mathbb{Z}_{2}[y]$ then by (3),
$b_{0}=t c_{2}$ for some $c_{2} \in \mathbb{Z}_{2}[y, t]$. So by (2), $a_{1} t c_{2}=y c_{0} \in \mathbb{Z}_{2}[y, t]$. Since $\mathbb{Z}_{2}[y, t]$
is a UFD, $c_{0}=t c_{3}$ for some $c_{3} \in \mathbb{Z}_{2}[y, t]$. Thus $f g=a_{1} b_{0} x=y c_{0} x=y t c_{3} x=$
0 , a contradiction. It follows that $a_{2}=0$ and then $f^{2}=a_{0}^{2}+a_{2}^{2} z^{2}=0 \in I$.
By symmetry, if $a_{0} \neq 0$ and $b_{0}=0$, then $g^{2}=0 \in I$. Therefore, $I$ is a weakly
2-primary ideal of $R$.

Proposition 4.11. Let $I$ and $P$ be ideals of $R$ with $I \subseteq P$.
(1) If $P$ is an almost 2-primary ideal of $R$, then $\frac{P}{I}$ is an almost 2-primary ideal of $\frac{R}{I}$.
(2) If $I$ is an almost 2-primary ideal of $R$ and $\frac{P}{I}$ is a weakly 2-primary ideal of $\frac{R}{I}$, then $P$ is an almost 2-primary ideal of $R$.

Proof. (1) Let $(a+I)(b+I) \in \frac{P}{I}-\left(\frac{P}{I}\right)^{2}$ and let $\left(a^{2}+I\right) \notin \frac{P}{I}$. Then $a b \in P \backslash P^{2}$, so $a^{2} \in P$ or $b^{n} \in P$. Since $\left(a^{2}+I\right) \notin \frac{P}{I}$, hence $a^{2} \notin P$. Then $b^{n}+I=(b+I)^{n} \in \frac{P}{I}$ and $\frac{P}{I}$ is almost 2-primary
(2) Let $a, b \in R$ be such that $a b \in P-P^{2}$. We have the following two cases:
Case (1) If $a b \in I$, then we get either $a^{2} \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$. Since $I \subseteq P$, we have either $a^{2} \in P$ or $b^{n} \in P$.
Case (2) If $a b \notin I$, then $0 \neq(a+I)(b+I) \in \frac{P}{I}$. Since $\frac{P}{I}$ is a weakly 2-primary ideal of $\frac{R}{I}$, we get either $\left(a^{2}+I\right) \in \frac{P}{I}$ or $\left(b^{n}+I\right) \in \frac{P}{I}$, for some $n \in \mathbb{N}$, which gives $a^{2} \in P$ or $b^{n} \in P$. Hence $P$ is almost 2-primary.

Proposition 4.12. A proper ideal $I$ of $R$ is almost 2-primary if and only if $\frac{I}{I^{2}}$ is a weakly 2-primary ideal of $\frac{R}{I^{2}}$.

Proof. $(\Rightarrow)$ Let $I$ be almost 2-primary and let $I^{2} \neq\left(a+I^{2}\right)\left(b+I^{2}\right) \in \frac{I}{I^{2}}$, where $a, b \in R$. Then $a b \in I$ and $a b \notin I^{2}$. Since $I$ is almost 2-primary, so either $a^{2} \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$. If $a^{2} \in I$, then $a^{2}+I^{2} \in \frac{I}{I^{2}}$, and if $b^{n} \in I$, then $\left(b^{n}+I^{2}\right)=\left(b+I^{2}\right)^{n} \in \frac{I}{I^{2}}$.
$(\Leftarrow)$ Let $\frac{I}{I^{2}}$ be a weakly 2 -primary ideal of $\frac{R}{I^{2}}$ and let $a b \in I-I^{2}$, where $a, b \in R$. Then $a b+I^{2} \in \frac{I}{I^{2}}$ and $a b+I^{2} \neq I^{2}$. From this, we get $I^{2} \neq\left(a+I^{2}\right)\left(b+I^{2}\right) \in \frac{I}{I^{2}}$, so either $\left(a^{2}+I^{2}\right) \in \frac{I}{I^{2}}$ or $\left(b^{n}+I^{2}\right) \in \frac{I}{I^{2}}$, for some $n \in \mathbb{N}$, which gives either $a^{2} \in I$ or $b^{n} \in I$.

We conclude our discussion with the following, which are slight modifications of some results in [2].

Proposition 4.13. Let $R$ be a ring, and let $P$ be a weakly 2-primary ideal of $R$ that is not semiprimary. Then $P^{2}=0$. In particular, $\sqrt{P}=\sqrt{0}$.

Proof. See [2, Theorem 2.2]
Proposition 4.14. Let $R$ be a ring, and let $\left\{P_{i}\right\}_{i \in I}$ be a family of weakly 2primary ideal of $R$ that are not semiprimary. Then $P=\bigcap_{i \in I} P_{i}$ is a weakly 2-primary ideal of $R$.

Proof. See [2, Theorem 2.3]

Proposition 4.15. Let $I \subseteq P$ be proper ideals of a ring $R$. Then the following assertions hold:
(1) If $P$ is weakly 2-primary, then $\frac{P}{I}$ is weakly 2-primary.
(2) If $I$ and $\frac{P}{I}$ are weakly 2-primary, then $P$ is weakly 2-primary.

Proof. See [2, Proposition 2.10]
Proposition 4.16. Let $P$ and $Q$ be weakly 2-primary ideals of a ring $R$ that are not semiprimary. Then $P+Q$ is a weakly 2-primary ideal of $R$. In particular, $\sqrt{P+Q}=\sqrt{P}$.

Proof. See [2, Theorem 2.11].

## References

[1] Anderson, D. D., \& Smith, E. (2003). Weakly prime ideals. Houston Journal of Mathematics, 29(4), 831-840. Record Identifier: 9984230419402771
[2] Atani, S. E., \& Farzalipour, F. (2005). On weakly primary ideals. https://doi.org/10.1515/GMJ.2005.423
[3] Atiyah, M. F., \& Macdonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley, Reading, Massachusetts.
[4] Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75(3), pp.417-429.
https://doi.org/10.1017/S0004972700039344
[5] Beddani, C., \& Messirdi, W. (2016). 2-prime ideals and their applications. Journal of Algebra and Its Applications, 15(03), 1650051. https://doi.org/10.1142/S0219498816500511
[6] Bhatwadekar, S. M., \& Sharma, P.K. (2005). Unique factorization and birth of almost primes. Communications in Algebra $®$, 33(1), pp.43-49. DOI:10.1081/AGB-200034161
[7] Gilmer, R.W. (1962). Rings in which semi-primary ideals are primary. Pacific Journal of Mathematics, 12(4), pp.1273-1276. DOI:10.2140/pjm.1962.12.1273
[8] Larsen, M. D., \& McCarthy, P. J. (1971). Multiplicative theory of ideals. AcademicPress, New York.
[9] Mott, J. L. (1963). On Invertible Ideals in a Commutative Ring. Louisiana State University and Agricultural \& Mechanical College. https://doi.org/10.31390/gradschool-disstheses. 850
[10] Nikandish, R., Nikmehr, M. J., \& Yassine, A. (2020). More on the 2-prime ideals of commutative rings. Bulletin of the Korean Mathematical Society, 57(1), 117-126. https://doi.org/10.4134/BKMS.b190094
[11] Sharp, R. Y. (2000). Steps in commutative algebra (No. 51). Cambridge university press. https://doi.org/10.1017/CBO9780511623684
[12] Wang, F., \& Kim, H. (2016). Foundations of commutative ring and their modules(Vol. 22). Singapore:Springer.
[13] Wisbauer, R. (2018). Foundations of module and ring theory. Routledge. https://doi.org/10.1201/9780203755532

## VAJIHE SHARIFI

Orcid number: 0009-0005-7254-3842
Department of Mathematics
Vali-e-Asr University
Rafsanjan, Iran
Email address: vajihe.sharifi@stu.vru.ac.ir
Somayeh Hadjirezaei
Orcid number: 0000-0002-8994-5523
Department of Mathematics
Vali-e-Asr University
Rafsanjan, Iran
Email address: s.hajirezaei@vru.ac.ir

