A NOTE ON 2-PRIME IDEALS

V. sharifi¹⁰ and S. Hadjirezaei¹⁰

Article type: Research Article

(Received: 27 June 2023, Received in revised form 07 January 2024) (Accepted: 25 February 2024, Published Online: 26 February 2024)

ABSTRACT. Let R be a commutative ring with identity. In this paper, we study 2-prime ideals of a Dedekind domain and a Prüfer domain. We prove that a nonzero ideal I of a Dedekind domain R is 2-prime if and only if $I = P^{\alpha}$, for some maximal ideal P of R and positive integer α . We give some results of ring R in which every ideal I is 2-prime. Finally, we define almost 2-prime, almost 2-primary and weakly 2-primary ideals, and investigate some properties of these ideals.

Keywords: 2-prime ideal, almost 2-prime ideal, almost 2-primary ideal, weakly 2-primary ideal. 2020 MSC: 13C05, 13C13,13C15.

1. Introduction

In this paper, we focus on commutative rings with an identity $1 \neq 0$. Throughout the paper, R always denotes a ring, and I denotes an ideal. By a proper ideal I of R we mean an ideal with $I \neq R$. For any proper ideal I of R, the radical \sqrt{I} is defined as $\sqrt{I} := \{a \in R : a^n \in I \text{ for some } n \in \mathbb{N}\}.$

Prime ideals play a central role in commutative ring theory, and so this notion has been generalized and studied in several directions. A proper ideal P of R is said to be a prime ideal if whenever $xy \in P$ for some $x, y \in R$, then $x \in P$ or $y \in P$ [3]. The set of all prime ideals of a ring R is denoted by Spec(R) and for a ring R, set $N(R) = \{a \in R : a^n = 0 \text{ for some positive integer } n\} = \bigcap \{P : P \text{ is a prime ideal of } R\}$ [12]. The importance of some of these generalizations is as important as prime ideals. Let I be an ideal of a commutative ring R. We say that I is a primary ideal of R when I is a proper ideal of R and whenever $a, b \in R$ with $ab \in I$ but $a \notin I$, then there exists $n \in \mathbb{N}$ such that $b^n \in I$ [11]. An ideal I of a ring R will be called semiprimary if it's radical, \sqrt{I} , is prime [7]. It is clear that every primary ideal is semiprimary.

In 2003, Anderson and Smith [1] introduced the notion of a weakly prime ideal. That is, a proper ideal I of R with the property that for $a, b \in R$, $0 \neq ab \in I$ implies $a \in I$ or $b \in I$. In 2005, Bhatwadekar and sharma [6] introduced the notion of an almost prime ideal, which is also a generalization of a prime ideal. A proper ideal I of a ring R is said to be almost prime if for $a, b \in R$ with $ab \in I - I^2$, then either $a \in I$ or $b \in I$. It is clear that every prime

https://doi.org/10.22103/jmmr.2024.21796.1467

Publisher: Shahid Bahonar University of Kerman

How to cite: V. Sharifi, S. Hadjirezaei, A note On 2-prime ideals, J. Mahani Math. Res. 2024; 13(2): 263 - 273.

© the Author(s)

 $(\mathbf{0})$

 $[\]boxtimes$ s.hajireza
ei@vru.ac.ir, ORCID: 0000-0002-8994-5523

ideal is a weakly prime ideal and an almost prime ideal. In 2007, Badawi [4] introduced and investigated the notion of 2-absorbing ideals. A nonzero proper ideal I of R is called a 2-absorbing ideal if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. In 2016, Beddani and Messirdi [5] defined the concept of 2-prime ideals, and they characterized valuation domains in terms of this concept. A proper ideal I of R is said to be a 2-prime ideal if whenever $xy \in I$ for some $x, y \in R$, then $x^2 \in I$ or $y^2 \in I$. Note that every prime ideal is 2-prime, but the converse is not true. By [12] a domain R is called a valuation domain if, given two nonzero elements $a, b \in R$, either $(a) \subseteq (b)$ or $(b) \subseteq (a)$ and a domain R is called a Dedekind domain if and only if every nonzero proper ideal of R is a product of finitely many prime ideals.

The purpose of this paper is to investigate 2-prime ideals in commutative rings. Among other results, we check some relations between 2-prime ideal and other classical ideals such as prime ideal, semiprimary ideal, and primary ideal. Also, we characterize 2-prime ideals in a Dedekind domain (see Theorem 3.7). In Proposition 3.11, we investigate the properties of a ring in which every proper ideal is 2-prime. Also, we define 2-N(R) to be the intersection of all 2-prime ideals of R and investigate 2-N(R) in different rings. In section 3, we define almost 2-prime and almost 2-prime if for all $x, y \in R$ such that $xy \in I - I^2$, then either x^2 or y^2 lies in I, and we say that I is almost 2-primary if for all $x, y \in R$ such that $xy \in I - I^2$, then $x^2 \in I$ or $y^n \in I$ for some $n \in \mathbb{N}$. Also, we define weakly 2-primary if for all $x, y \in R$ such that $xy \in I - I^2$, then $x^2 \in I$ or $y^n \in I$, then $x^2 \in I$ or $y^n \in I$, then $x^2 \in I$ or $y^n \in I$, for some $n \in \mathbb{N}$. In section 3, we give some basic properties of these ideals.

2. Preliminaries

Definition 2.1 ([5]). Let *I* be a proper ideal of a ring *R*. We say that *I* is 2-prime if for all $x, y \in R$ such that $xy \in I$, then either x^2 or y^2 lies in *I*.

Example 2.2. Let $R = \mathbb{Z}_{12}$ and let $I = (\overline{4}) = \{\overline{0}, \overline{4}, \overline{8}\}$. For every $a, b \in R$ such that $ab \in I$, we have $a^2 \in I$ or $b^2 \in R$. So I is a 2-prime ideal of R.

Definition 2.3 ([13]). *R* is a Boolean ring if $a^2 = a$ for all $a \in R$.

Definition 2.4 ([8]). A ring R is called a von Neumann regular ring if for every $a \in R$, there exists $x \in R$ such that $a = a^2 x$.

Definition 2.5 ([9]). If R denotes a commutative ring with unit in which the elements 0 and 1 are distinct and F denotes the total quotient ring of R, then for an ideal A of R, let A^{-1} denote the set $\{x \in F \mid xA \subset R\}$. An ideal A is called invertible if $AA^{-1} = R$.

Definition 2.6. An integral domain R is a Prüfer domain if each nonzero finitely generated ideal of R is invertible.

Proposition 2.7. If R is an integral domain, then the following statements are equivalent:

- (1) R is a Prüfer domain.
- (2) For every prime ideal P of R the ring of quotients R_P is a valuation domain.
- (3) For every maximal ideal P of R, the ring of quotients R_P is a valuation domain.

Proof. See [8, Theorem 6.6 and Corollary 6.7]. \Box

Proposition 2.8. Let I be an ideal of a ring R, then the following properties hold:

- (1) If I is 2-prime ideal, then it's radical \sqrt{I} is a prime ideal.
- (2) Let S be a multiplicatively closed subset of R. If I is a 2-prime ideal of R, then the ideal IR_S is also a 2-prime ideal of R_S.
- (3) If I is a p-primary ideal, then I is 2-prime if and only if IR_p is 2-prime.

Proof. See [5, Proposition 1.3].

Proposition 2.9. Let R be an integral domain. The following statements are equivalent:

- (1) R is a valuation domain.
- (2) Every principal ideal of R is 2-prime.
- (3) Every ideal of R is 2-prime.

Proof. See [5, Theorem 2.4].

3. 2-prime ideals

In this section, we investigate some properties of 2-prime ideals in different rings.

Proposition 3.1. Let I be an ideal of a ring R.

- (1) If I is a prime ideal of R and J is an ideal of R containing I, then IJ is a 2-prime ideal of R.
- (2) If I is a weakly prime and 2-prime ideal of R, then I^2 is a 2-prime ideal.
- (3) If I is an almost prime and 2-prime ideal, then I^2 is a 2-prime ideal.
- (4) If 0 is a 2-prime ideal of R, then N(R) is a prime ideal.

Proof.

1) Let $xy \in IJ \subseteq I$. Then $x \in I$ or $y \in I$. Since $I \subseteq J$, so $x \in J$ or $y \in J$. Therefore $x^2 \in IJ$ or $y^2 \in IJ$. As a result, IJ is a 2-prime ideal of R.

2) Let $xy \in I^2 \subseteq I$ for some $x, y \in R$. Since I is 2-prime, $x^2 \in I$ or $y^2 \in I$. Without loss of generality, let $x^2 \in I$. If $0 \neq x^2$, then since I is weakly prime, $x \in I$. Therefore $x^2 \in I^2$. If $0 = x^2$, then it is clear that $x^2 \in I^2$.

3) Let $xy \in I^2 \subseteq I$ for some $x, y \in R$. Since I is 2-prime, $x^2 \in I$ or $y^2 \in I$.

 \square

Without loss of generality, let $x^2 \in I$. If $x^2 \in I^2$, we are done. If $x^2 \in I \setminus I^2$, since I is almost prime, then $x \in I$. Thus $x^2 \in I^2$.

4) Let $a, b \in R$ with $ab \in N(R)$. Then there exists a positive integer n such that $a^n b^n = 0$. Since 0 is 2-prime hence $(a^n)^2 = 0$ or $(b^n)^2 = 0$. Therefore $a \in N(R)$ or $b \in N(R)$.

Example 3.2. Let R = K[x, y] be a polynomial ring in two variables x and y over a field K and let $I = (x^2, xy) = (x)(x, y)$. Then Proposition 3.1(1) shows that I is a 2-prime ideal of R.

This example shows that in a UFD, 2-prime ideals aren't necessarily principal.

Proposition 3.3. Let R be a unique factorization domain, and let p be an irreducible element of R. Then for every positive integer α , the ideal (p^{α}) is 2-prime.

Proof. Let $xy \in P = (p^{\alpha})$, where $x = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ and $y = p_1^{\gamma_1} \cdots p_k^{\gamma_k}$, where p_i 's are distinct irreducible elements of R. Then $xy = p_1^{\alpha_1 + \gamma_1} \cdots$

 $p_k^{\alpha_k+\gamma_k}$. Since $p^{\alpha}|xy$, there exists $i \in \{1, ..., k\}$ such that $p^{\alpha}|p_i^{\alpha_i+\gamma_i}$. Therefore $p_i = p$ and $\alpha \leq \alpha_i + \gamma_i$. Moreover, $\alpha_i \geq \frac{\alpha}{2}$ or $\gamma_i \geq \frac{\alpha}{2}$. If $\alpha_i \geq \frac{\alpha}{2}$, then $x^2 = p_1^{2\alpha_1} \cdots p_k^{2\alpha_k} \in (p^{\alpha})$, and if $\gamma_i \geq \frac{\alpha}{2}$, then $y^2 = p_1^{2\gamma_1} \cdots p_k^{2\gamma_k} \in (p^{\alpha})$. Finally, (p^{α}) is 2-prime.

Example 3.2 shows that every 2-prime ideal of a unique factorization domain is not, in general, a power of a prime ideal.

Theorem 3.4. Let R be a von Neumann regular ring. If 0 is a 2-prime ideal of R, then R is a field.

Proof. Let $0 \neq a \in R$. Since R is a von Neumann regular ring, there exists an element $x \in R$ such that $a = a^2x$. So a(1 - ax) = 0. Since 0 is a 2-prime ideal of R, hence $a^2 = 0$ or $(1 - ax)^2 = 0$. If $a^2 = 0$, then $a^2x = 0$. Therefore a = 0, a contradiction. Hence $(1 - ax)^2 = 0$, which implies $1 + a^2x^2 - 2ax = 0$. So $1 = 2ax - a^2x^2 = a(2x - ax^2)$. This implies that a is a unit element of R. Hence R is a field.

Proposition 3.5. If R is a Noetherian integral domain, then the following statements are equivalent:

1. R is a Dedekind domain.

2. R is integrally closed and every nonzero prime ideal of R is maximal.

3. For every maximal ideal P of R, the ring of quotients R_P is a valuation domain.

Proof. See [8, Theorem 6.20].

Lemma 3.6. Let I and J be some proper comaximal ideals of a ring R. Then IJ is not a 2-prime ideal of R.

Proof. Let IJ be a 2-prime ideal of R. Since I and J are comaximal ideals of R, there exist $x \in I$, $y \in J$ such that x + y = 1. We have $xy \in IJ$, so $x^2 \in IJ$ or $y^2 \in IJ$. If $x^2 \in IJ$, since x + y = 1 then $x^2 + xy = x \in IJ \subseteq J$. Hence $1 \in J$, a contradiction. Similarly if $y^2 \in IJ$, then I = R, a contradiction. So IJ is not 2-prime.

Theorem 3.7. Let R be a Dedekind domain and let I be a nonzero ideal of R. Then the following statements are equivalent:

- (1) $I = P^{\alpha}$, for some maximal ideal P of R and positive integer α .
- (2) I is a semiprimary ideal of R.
- (3) I is a 2-prime ideal of R.
- (4) I is a primary ideal of R.

Proof. $(1 \Rightarrow 2)$ It is obvious.

 $(3 \Rightarrow 1)$ Let *I* be a 2-prime ideal. Since *R* is a Dedekind domain, there exist some distinct prime ideals P_1, \ldots, P_n of *R* such that $I = P_1^{i_1} P_2^{i_2} \cdots$

 $P_n^{i_n}$, for some positive integers i_j , $1 \leq j \leq n$. Since $I \neq 0, P_j \neq 0$, for every $j = 1, \ldots, n$, and since R is a Dedekind domain, P_j is a maximal ideal for every $j = 1, \ldots, n$. Let $n \geq 2$. Since $P_1^{i_1} + P_2^{i_2} \cdots P_n^{i_n} = R$, there exist $x \in P_1^{i_1}$ and $y \in P_2^{i_2} \cdots P_n^{i_n}$ with x + y = 1. Since $xy \in I$ and I is a 2-prime ideal, $x^2 \in I$ or $y^2 \in I$. If $x^2 \in I$, since x + y = 1 then $x^2 + xy = x \in I \subseteq P_2^{i_2} \cdots P_n^{i_n}$. Hence $1 \in P_2^{i_2} \cdots P_n^{i_n}$. Therefore $P_j = R$, for $j = 2, \ldots, n$, a contradiction. Thus n = 1 and $I = P_1^{i_1}$.

 $(2 \Rightarrow 4)$ Let *I* be a semiprimary ideal of *R*. Then $\sqrt{I} = P$ and *P* is prime. If P = 0, then I = 0. So *I* is primary. If $P \neq 0$, then *P* is a maximal ideal, and so *I* is primary by [11, Proposition 4.9].

 $(4 \Rightarrow 3)$ Let Q be a P-primary ideal of R. By Proposition 3.5, R_P is a valuation domain. Then by Proposition 2.9, QR_P is a 2-prime ideal of R. Consequently, Q is a 2-prime ideal by Proposition 2.8.

Example 3.8. Let $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ be the factorization of positive integer n into powers of distinct primes. Then 2-prime ideals of $R = \mathbb{Z}_n$ are in the form $(\overline{p_i^{\beta}})$ for all $\beta = 1, ..., \alpha_i$ and i = 1, ..., t.

Because by [5, Proposition 1.3(8)] every 2-prime ideal of $\mathbb{Z}_n \cong \frac{\mathbb{Z}}{n\mathbb{Z}}$ is in the form of $\frac{I}{n\mathbb{Z}}$, where I is a 2-prime ideal of \mathbb{Z} containing $n\mathbb{Z}$. Since \mathbb{Z} is a Dedekind domain and $n\mathbb{Z} \subseteq I$, by Proposition 3.7, $I = (p_i^{\beta})$ for some $\beta = 1, ..., \alpha_i$ and i = 1, ..., t. So every 2-prime ideal of \mathbb{Z}_n is in the form $(\overline{p_i^{\beta}})$ for some $\beta = 1, ..., \alpha_i$ and i = 1, ..., t.

Proposition 3.9. Every ideal of R is semiprimary if and only if Spec(R) is totally ordered by inclusion.

Proof. \Leftarrow) Let Spec(R) be totally ordered by inclusion and let I be an ideal of R. Then $\sqrt{I} \in Spec(R)$. Therefore I is semiprimary.

 $\Rightarrow) \text{ let every ideal of } R \text{ is semiprimary and let } P, Q \in Spec(R). \text{ Then } P \cap Q \\ \text{ is a semiprimary ideal. Let } P \not\subseteq Q. \text{ Then there exists an element } x \in P \setminus Q. \\ \text{Assume that } q \in Q. \text{ Hence } xq \in P \cap Q. \text{ Since } P \cap Q \text{ is semiprimary, } x \in \\ \sqrt{P \cap Q} \text{ or } q \in \sqrt{P \cap Q}. \text{ If } x \in \sqrt{P \cap Q}, \text{ then } x \in Q, \text{ a contradiction. Thus } \\ q \in \sqrt{P \cap Q} \subseteq P. \text{ Therefore } Q \subseteq P. \qquad \Box$

Proposition 3.10. Let R be a Prüfer domain. Then every primary ideal is 2-prime.

Proof. Let Q be a P-primary ideal. Proposition 2.7 implies that R_P is a valuation domain. Now, it follows from Proposition 2.9 that QR_P is a 2-prime ideal. So Proposition 2.8 implies that Q is 2-prime.

Proposition 3.11. Let R be a ring such that every ideal of R is 2-prime. Then the following properties hold:

- (1) Spec(R) is totally ordered by inclusion.
- (2) $\frac{R}{N(R)}$ is a valuation domain.

Proof. (1) By Proposition 2.8(1), every 2-prime ideal is semiprimary. So by Proposition 3.9, we are done.

(2) N(R) is a prime ideal and $\frac{R}{N(R)}$ is an integral domain. On the other hand, every ideal of $\frac{R}{N(R)}$ is in the form of $\frac{I}{N(R)}$, where I is an ideal of R. By hypothesis I is a 2-prime ideal. So by [5, Proposition 1.3(8)], $\frac{I}{N(R)}$ is 2-prime. Now, by Proposition 2.8 and Proposition 2.9(1 \Leftrightarrow 3), $\frac{R}{N(R)}$ is a valuation domain.

Definition 3.12. Let R be a ring. We define 2-N(R) to be the intersection of all 2-prime ideals of R.

By Proposition 3.1(1), for every $P \in Spec(R)$, P^2 is a 2-prime ideal. So 2-N(R) $\subseteq \bigcap \{P^2 \mid P \text{ is prime}\}$. In the following, we investigate some cases in which equality holds.

Proposition 3.13. If R is a ring such that for every 2-prime ideal I of R, $(\sqrt{I})^2 \subseteq I$. Then 2-N(R)= $\bigcap \{P^2 \mid P \text{ is prime}\}.$

Proof. It is clear that 2-N(R) $\subseteq \bigcap \{P^2 \mid P \text{ is prime}\}$. Conversely, let I be a 2-prime ideal of R. Then \sqrt{I} is prime. So $\bigcap \{P^2 \mid P \text{ is prime}\} \subseteq (\sqrt{I})^2 \subseteq I$. Then $\bigcap \{P^2 \mid P \text{ is prime}\} \subseteq 2\text{-N}(R)$. \Box

Corollary 3.14. Let R be a ring such that every 2-prime ideal of R is prime. Then $2 - N(R) = \bigcap \{P^2 \mid P \text{ is prime}\}.$

Proof. Since every 2-prime ideal I is prime, $\sqrt{I} = I$. Therefore $(\sqrt{I})^2 = I^2 \subseteq I$. So by Proposition 3.13, 2-N(R)= $\bigcap \{P^2 \mid P \text{ is prime}\}$. \Box

268

Example 3.15. In a Boolean ring, 2-N(R)=N(R), because every 2-prime ideal is prime.

Example 3.16. Let $R = \mathbb{Z}_n$ and let $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ for some distinct prime integers p_i and $1 \leq i \leq t$. By Example 3.8, every 2-prime ideal of R is in the form of $(\overline{p_i^{\beta}})$ for all $\beta = 1, ..., \alpha_i$ and i = 1, ..., t. Thus $2 - N(R) = \bigcap \{P \mid P \text{ is } 2\text{-prime}\} = \bigcap_{i=1}^t (\overline{p_i^{\alpha_i}}) = \prod_{i=1}^t (\overline{p_i^{\alpha_i}}) = 0.$

4. Almost 2-prime and almost 2-primary ideals

In this section, we give the definitions of almost 2-prime, almost 2-primary, and weakly 2-primary ideals, and investigate their properties.

Definition 4.1. Let *I* be a proper ideal of a ring *R*. We say that *I* is almost 2-prime if for all $x, y \in R$ such that $xy \in I - I^2$, then either x^2 or y^2 lies in *I*.

Example 4.2. It is clear that every idempotent ideal is almost 2-prime. Also, every 2-prime ideal and every almost prime ideal is almost 2-prime ideal.

Example 4.3. Let $R = \mathbb{Z}_6$ and let $I = (\overline{0})$ be an ideal of R. Since I is idempotent, it is an almost 2-prime ideal of R. But I is not 2-prime.

Note that if I and J are prime ideals of R, then $I \cap J$ need not be almost 2-prime ideal of R; see the following example.

Example 4.4. Let R = K[x, y] be the polynomial ring in two variables x and y over a field K, and set I = (x) and J = (y). Then I and J are prime ideals of R and $I \cap J = (xy)$. It is clear that $xy \in (I \cap J) - (I \cap J)^2$, but $x^2 \notin I \cap J$ and $y^2 \notin I \cap J$.

Definition 4.5. Let *I* be a proper ideal of a ring *R*. We say that *I* is almost 2-primary if for all $x, y \in R$ such that $xy \in I - I^2$, it holds that $x^2 \in I$ or $y^n \in I$ for some $n \in \mathbb{N}$.

Example 4.6. It is obvious that every primary ideal, every almost prime ideal, every almost 2-prime ideal, and every idempotent ideal of R are almost 2primary. Also, proper ideals of fully idempotent rings and of Boolean rings are almost 2-primary. Recall that R is said to be a fully idempotent ring if every ideal of R is idempotent [13].

Proposition 4.7. Let I be an ideal of R. I is almost 2-primary if and only if $(I:x) \subseteq (I^2:x) \cup \sqrt{I}$ for all $x \in R$ such that $x^2 \notin I$.

Proof. ⇒) Let *I* be an almost 2-primary ideal of *R* and $y \in (I : x)$. Then $xy \in I$. If $xy \in I^2$, then $y \in (I^2 : x)$. If $xy \notin I^2$, then $xy \in I - I^2$, and so $x^2 \in I$ or $y^n \in I$, for some $n \in \mathbb{N}$. Since $x^2 \notin I$, hence $y^n \in I$ and $y \in \sqrt{I}$. Finally, $(I : x) \subseteq (I^2 : x) \bigcup \sqrt{I}$.

⇐) Let $xy \in I - I^2$. Then $y \in (I : x)$. Since $(I : x) \subseteq (I^2 : x) \cup \sqrt{I}$, hence $y \in (I^2 : x)$ or $y \in \sqrt{I}$. Thus $xy \in I^2$ or $y^n \in I$. Since $xy \notin I^2$ hence $y^n \in I$ for some $n \in \mathbb{N}$. Therefore I is almost 2-primary. \Box

Proposition 4.8. Let I be an ideal of R such that $I = \sqrt{I}$. Then I is almost 2-primary if and only if I is almost prime.

Proof. Suppose that I is almost 2-primary and that $a, b \in R$ with $ab \in I - I^2$. Assume that $a \notin I$. If $a^2 \in I$, then $a \in \sqrt{I} = I$. So $a^2 \notin I$ implies that $b^n \in I$ for some $n \in \mathbb{N}$, and hence $b \in \sqrt{I} = I$. Thus I is an almost prime ideal. The converse is trivial.

Weakly primary ideals have been introduced and studied in [2]. In the following, we define the concept of weakly 2-primary ideal which is a mild generalization of the notion of weakly primary ideal.

Definition 4.9. Let *I* be a proper ideal of a ring *R*. We say that *I* is weakly 2-primary if for all $x, y \in R$ such that $0 \neq xy \in I$, then $x^2 \in I$ or $y^n \in I$, for some $n \in \mathbb{N}$.

Example 4.10. Let $R = \frac{\mathbb{Z}_2[X, Y, Z, T]}{(X^2, Z^3, ZT, XYZ, XYT)}$ and let x, y, z, and t be the cosets of the ideal (X^2, Z^3, ZT, XYZ, XYT) with representatives X, Y, Z, and T, respectively. So we have $R = \mathbb{Z}_2[x, y, z, t]$ where $x^2 = z^3 = zt = xyz = xyt = 0$. Let I = (xy) be an ideal of R. As $zt = 0 \in I$ but $z^2 \notin I$ and $t \notin \sqrt{I}$, I is not a 2-primary ideal, and since $0 \neq xy \in I$ but $x \notin I$ and $y \notin \sqrt{I}$, I is not a weakly primary ideal of R. Now we show that I is a weakly 2-primary ideal of R. Suppose that $f, g \in R$ are such that $0 \neq fg \in I$. By the relations $x^2 = z^3 = 0$ we have

 $\begin{aligned} f &= a_0 + a_1 x + a_2 z + a_3 x z + a_4 z^2 + a_5 x z^2 \\ and \\ g &= b_0 + b_1 x + b_2 z + b_3 x z + b_4 z^2 + b_5 x z^2 \\ where \ a_0, a_1, b_0, b_1 \in \mathbb{Z}_2[y, t], \ and \ a_i, b_i \in \mathbb{Z}_2[y] \ for \ i = 2, 3, 4, 5. \ Then \end{aligned}$

 $fg = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_2b_0)z + (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0)xz + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_2b_0)z + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_2b_0)z + (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0)xz + (a_0b_3 + a_1b_2 + a_2b_0)xz + (a_0b_3 + a_1b_0)xz + (a_0b_3 + a_1b_0)xz + (a_0b_3 + a_1b_0)xz + (a_0b_3 + a_2b_0)xz + (a_0b_3 + a_1b_0)xz + (a_0$ $(a_0b_4 + a_2b_2 + a_4b_0)z^2 + (a_0b_5 + a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1 + a_5b_0)xz^2.$ Now, $fg \in I$ implies that $a_0 b_0 = 0$ (1) $a_0b_1 + a_1b_0 = yc_0$ (2) $a_0b_2 + a_2b_0 = tc_1$ (3)for some $c_0, c_1 \in \mathbb{Z}_2[y, t]$. Note that $fg = a_0b_0 + (a_0b_1 + a_1b_0)x$ because zt =xyz = xyt = 0. Since $fg \neq 0$, (1) implies that just one of the a_0 or b_0 is 0. Let $a_0 = 0$ and $b_0 \neq 0$. We show that $a_2 = 0$. If $a_2 \neq 0$, as $a_2 \in \mathbb{Z}_2[y]$ then by (3), $b_0 = tc_2 \text{ for some } c_2 \in \mathbb{Z}_2[y, t].$ So by (2), $a_1tc_2 = yc_0 \in \mathbb{Z}_2[y, t].$ Since $\mathbb{Z}_2[y, t]$ is a UFD, $c_0 = tc_3$ for some $c_3 \in \mathbb{Z}_2[y,t]$. Thus $fg = a_1b_0x = yc_0x = ytc_3x = b_0x$ 0, a contradiction. It follows that $a_2 = 0$ and then $f^2 = a_0^2 + a_2^2 z^2 = 0 \in I$. By symmetry, if $a_0 \neq 0$ and $b_0 = 0$, then $g^2 = 0 \in I$. Therefore, I is a weakly 2-primary ideal of R.

Proposition 4.11. Let I and P be ideals of R with $I \subseteq P$.

- If P is an almost 2-primary ideal of R, then ^P/_I is an almost 2-primary ideal of ^R/_T.
- (2) If I is an almost 2-primary ideal of R and $\frac{P}{I}$ is a weakly 2-primary ideal of $\frac{R}{T}$, then P is an almost 2-primary ideal of R.

Proof. (1) Let
$$(a + I)(b + I) \in \frac{P}{I} - (\frac{P}{I})^2$$
 and let $(a^2 + I) \notin \frac{P}{I}$. Then
 $ab \in P \setminus P^2$, so $a^2 \in P$ or $b^n \in P$. Since $(a^2 + I) \notin \frac{P}{I}$, hence $a^2 \notin P$.
Then $b^n + I = (b + I)^n \in \frac{P}{I}$ and $\frac{P}{I}$ is almost 2-primary

Then $b^n + I = (b+I)^n \in \overline{I}$ and \overline{I} is almost 2-primary (2) Let $a, b \in R$ be such that $ab \in P - P^2$. We have the following two cases:

Case (1) If $ab \in I$, then we get either $a^2 \in I$ or $b^n \in I$ for some $n \in \mathbb{N}$. Since $I \subseteq P$, we have either $a^2 \in P$ or $b^n \in P$.

Case (2) If $ab \notin I$, then $0 \neq (a+I)(b+I) \in \frac{P}{I}$. Since $\frac{P}{I}$ is a weakly 2-primary ideal of $\frac{R}{I}$, we get either $(a^2 + I) \in \frac{P}{I}$ or $(b^n + I) \in \frac{P}{I}$, for some $n \in \mathbb{N}$, which gives $a^2 \in P$ or $b^n \in P$. Hence P is almost 2-primary.

Proposition 4.12. A proper ideal I of R is almost 2-primary if and only if $\frac{I}{I^2}$ is a weakly 2-primary ideal of $\frac{R}{I^2}$.

Proof. (\Rightarrow) Let I be almost 2-primary and let $I^2 \neq (a + I^2)(b + I^2) \in \frac{I}{I^2}$, where $a, b \in R$. Then $ab \in I$ and $ab \notin I^2$. Since I is almost 2-primary, so either $a^2 \in I$ or $b^n \in I$ for some $n \in \mathbb{N}$. If $a^2 \in I$, then $a^2 + I^2 \in \frac{I}{I^2}$, and if $b^n \in I$, then $(b^n + I^2) = (b + I^2)^n \in \frac{I}{I^2}$.

 $(\Leftarrow) \text{ Let } \frac{I}{I^2} \text{ be a weakly 2-primary ideal of } \frac{R}{I^2} \text{ and let } ab \in I - I^2, \text{ where } a, b \in R.$ Then $ab+I^2 \in \frac{I}{I^2} \text{ and } ab+I^2 \neq I^2.$ From this, we get $I^2 \neq (a+I^2)(b+I^2) \in \frac{I}{I^2},$ so either $(a^2+I^2) \in \frac{I}{I^2}$ or $(b^n+I^2) \in \frac{I}{I^2},$ for some $n \in \mathbb{N},$ which gives either $a^2 \in I \text{ or } b^n \in I.$

We conclude our discussion with the following, which are slight modifications of some results in [2].

Proposition 4.13. Let R be a ring, and let P be a weakly 2-primary ideal of R that is not semiprimary. Then $P^2 = 0$. In particular, $\sqrt{P} = \sqrt{0}$.

Proof. See [2, Theorem 2.2]

Proposition 4.14. Let R be a ring, and let $\{P_i\}_{i \in I}$ be a family of weakly 2-primary ideal of R that are not semiprimary. Then $P = \bigcap_{i \in I} P_i$ is a weakly 2-primary ideal of R.

Proof. See [2, Theorem 2.3]

Proposition 4.15. Let $I \subseteq P$ be proper ideals of a ring R. Then the following assertions hold:

- (1) If P is weakly 2-primary, then $\frac{P}{T}$ is weakly 2-primary.
- (2) If I and $\frac{P}{T}$ are weakly 2-primary, then P is weakly 2-primary.

Proof. See [2, Proposition 2.10]

Proposition 4.16. Let P and Q be weakly 2-primary ideals of a ring R that are not semiprimary. Then P + Q is a weakly 2-primary ideal of R. In particular, $\sqrt{P+Q} = \sqrt{P}$.

Proof. See [2, Theorem 2.11].

References

- Anderson, D. D., & Smith, E. (2003). Weakly prime ideals. Houston Journal of Mathematics, 29(4), 831-840. Record Identifier: 9984230419402771
- [2] Atani, S. E., & Farzalipour, F. (2005). On weakly primary ideals.
- https://doi.org/10.1515/GMJ.2005.423
- [3] Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley, Reading, Massachusetts.
- Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75(3), pp.417–429. https://doi.org/10.1017/S0004972700039344
- Beddani, C., & Messirdi, W. (2016). 2-prime ideals and their applications. Journal of Algebra and Its Applications, 15(03), 1650051. https://doi.org/10.1142/S0219498816500511
- [6] Bhatwadekar, S. M., & Sharma, P.K. (2005). Unique factorization and birth of almost primes. Communications in Algebra[®], 33(1), pp.43-49. DOI:10.1081/AGB-200034161
- Gilmer, R.W. (1962). Rings in which semi-primary ideals are primary. Pacific Journal of Mathematics, 12(4), pp.1273-1276. DOI:10.2140/pjm.1962.12.1273
- [8] Larsen, M. D., & McCarthy, P. J. (1971). Multiplicative theory of ideals. AcademicPress, New York.
- [9] Mott, J. L. (1963). On Invertible Ideals in a Commutative Ring. Louisiana State University and Agricultural & Mechanical College. https://doi.org/10.31390/gradschool-disstheses.850
- [10] Nikandish, R., Nikmehr, M. J., & Yassine, A. (2020). More on the 2-prime ideals of commutative rings. Bulletin of the Korean Mathematical Society, 57(1), 117-126. https://doi.org/10.4134/BKMS.b190094
- [11] Sharp, R. Y. (2000). Steps in commutative algebra (No. 51). Cambridge university press. https://doi.org/10.1017/CBO9780511623684
- [12] Wang, F., & Kim, H. (2016). Foundations of commutative ring and their modules(Vol. 22). Singapore:Springer.
- [13] Wisbauer, R. (2018). Foundations of module and ring theory. Routledge. https://doi.org/10.1201/9780203755532

272

VAJIHE SHARIFI ORCID NUMBER: 0009-0005-7254-3842 DEPARTMENT OF MATHEMATICS VALI-E-ASR UNIVERSITY RAFSANJAN, IRAN *Email address*: vajihe.sharifi@stu.vru.ac.ir

Somayeh Hadjirezaei Orcid number: 0000-0002-8994-5523 Department of Mathematics Vali-e-Asr University Rafsanjan, Iran Email address: s.hajirezaei@vru.ac.ir