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Zusammenfassung. A semi-analytical solution is proposed for the biohe-

at equation, which includes the epidermis, dermis, and hypodermis layers

in the presence of a surface pulsed heat source. A switching time sur-
face heating/cooling source, which has therapeutic applications in hu-

man tissue burning, is used. The interface temperature is calculated by

matching the temperature and heat flux between two adjacent layers. A
high-performance computing algorithm is designed and implemented by

combining semigroups theory, Laplace transform, and convolution opera-

tors in each layer. It is proved that the proposed solution is consistent,
convergent and stable. The reliability, performance and efficiency of semi-

analytical solutions are compared using the bioheat transfer module of

COMSOL software based on standard finite element methods. Numerical
results for three different medical examples are given. Influences of blood

pressure on temperature along the layered skin for different switching and
final times are discussed.
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1. Introduction

Although for knowing the thermal bioheat transfer in biological skin tissue
the best method is to experiment, however because of the complexity in biome-
dical and physical processes mathematical modeling of the thermal mechanisms
becomes important. The thermal human skin properties vary between three dif-
ferent layers: epidermis, dermis and hypodermis. Heat transfer in human skin
tissue contains heat conduction (in the tissue and vascular system), convection
(between tissue and blood cause to blood flow), advection (blood pressure) and
diffusion (through micro-vascular beds) and metabolic heat generation [10]. In
1948, Pennes [29] established the parabolic bioheat equation (Pennes equati-
on), in which blood pressure, metabolic thermal production and spatial heating
source are imported into the classical heat equation.

There are significant amount of research on numerical solutions [2, 3, 12, 18]
and semi-analytical solutions [4, 11, 24, 26] of the bioheat transfer equation in
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a single layer tissue for different heat treatment models. In Refs. [15, 28] finite
volume and finite element formulations for the bioheat equation in a model of
human eye are solved. Mital and Tafreshi [27] introduced a numerical soluti-
on for the bioheat equation by finite element method to calculate an optimal
thermal damage in hyperthermia cancer treatment. Malek and Abbasi [24, 26]
in the years 2014 and 2016 solved several optimal boundary control problems
for skin surface burning analytically by strongly continuous semigroups (C0-
semigroups) theory. In the year 2015, they derived exact solutions for the hy-
perbolic bioheat equation using C0-semigroups theory along with variational
methods for skin surface burning and hyperthermia cancer therapy [25].

Although there are many works on single-layer tissues, there are few works
on multilayer composite live tissues. An application of the modified discreti-
zation technique and the Laplace transform to describe the thermal behavior
in a living tissue is investigated by Liu et al. [19–21]. Li et al. [16] solved the
governing equations in skin tissue with temperature dependent material pro-
perties by Kirchhoff and Laplace transformation. Singh et al. [32] suggested
a numerical solution of the bioheat transfer model in a three-layered skin tis-
sue freezing. The effect of blood vessels on the temperature distribution of a
three-layered skin using the bioheat equation investigated numerically by Kas-
hkooli et al. [13]. Lin and Li [17] presented a semi-analytical solution for the
bioheat conduction in a three-layered skin that is subjected to heating by la-
ser and cooling by fluid at the skin surface. The effect of air gap orientations
and heterogeneous air gap in thermal protective clothing on skin burn was in-
vestigated numerically by [35]. An analytic solution for Pennes equation in a
two-layer brain was derived using the Laplace transform by Ma et al. [23]. In
2019, the influence of nanoshell density on temperature using Green’s function
method for the bioheat equation in multilayer tissue was investigated [22]. In
their study, Abbasi et al. [1] proposed a semi-analytical solution for the bioheat
equation, utilizing semigroups theory and domain decomposition techniques for
hyperthermia cancer treatment in layered skin tissues.

Varying blood perfusion rates in different individuals can have a significant
impact on heat transfer in the multilayer human body during thermal thera-
py [14]. During thermal therapy, heat is applied to the body to target and
destroy cancer cells or other abnormal tissue. However, the effectiveness of this
treatment can be influenced by the rate of blood perfusion in the affected area.
In individuals with higher blood perfusion rates, heat may be more quickly
carried away from the treatment site, potentially reducing the effectiveness of
the therapy. Conversely, in individuals with lower blood perfusion rates, heat
may be more readily absorbed and retained in the treatment area, potential-
ly increasing the risk of thermal damage to surrounding tissue. Moreover, the
multilayer structure of the human body can further complicate the effects of
varying blood perfusion rates on heat transfer [36]. Different layers of tissue
may have different perfusion rates, which can lead to complex temperature
gradients and heat distribution patterns throughout the body. Understanding
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these patterns is crucial for optimizing the effectiveness and safety of thermal
therapy. Numerous studies have explored the impact of blood perfusion on
temperature distribution in the layered skin tissues for tumor therapy, using
numerical methods [14,30,31,36].

This paper aims to propose a semi-analytic solution for the bioheat equa-
tion with surface pulsed heat source in the context of a three-layered skin.
The proposed solution simulates the effect of blood perfusion on thermal the-
rapy. Unlike Ref. [1] when a pulsed heat source is applied, the hybrid method
based on C0-semigroups theory and the corresponding variational boundary
value problem are used to derive the semi-analytical solution. The reason for
using this method is that the boundary condition is a discontinuous function
of time. The eigenvalue-eigenfunction formulation of infinitesimal generator for
the three layers bioheat equation differs from that in Ref. [1]. The discrepancy
error is addressed to quantify the difference between the exact solution and the
semi-analytical solution calculated using semigroups theory. The bioheat trans-
fer module of COMSOL Multiphysics simulation software [6] is used to validate
the reliability, performance, and efficiency of a semi-analytical solution when
discussing changes in blood pressure and their effect on the bioheat transfer.
By regulating the surface pulsed heat source with blood perfusion rate, the
therapeutic impact of tumor temperature can be optimized while minimizing
damage to normal tissue. The results can be apply in clinical settings for skin
burning /cooling.

The paper is organized as follows: In Section 2, the mathematical model
for the three layers bioheat equation is proposed to solve the surface hea-
ting/cooling problem under specific boundary conditions. In Section 3, the
C0-semigroup formulation and closed form analytical solution for the related
problem are proposed. In Section 4, the spatial state (Laplace transformation
and its inversion) for the bioheat problem is put forward to determine tempera-
tures distribution in the interface layers. In Section 5, we analyze the associated
errors in the context of time and geometric errors in the semi-analytical solu-
tion. Section 6 contains three different medical work examples. In Section 7,
numerical results for medical problems, including different blood flow rates and
switching times, are provided. Section 8 concludes the manuscript.

2. Mathematical formulation

Here, the mathematical formulation for temperature propagation in a three-
layered live skin will discuss. Figure 1 shows the schematic geometry for a
surface heat source, where z0 and z3 denote the values for surface and body
core boundaries, while z1 and z2 are the spatial depth values for interfaces.
The thickness of the jth layer is lj = zj − zj−1 for j = 1, 2, 3. The bioheat
equation in the jth layer is governed by the partial differential equation given
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Abbildung 1. Schematic of a three-layered skin for surface
burning using the step function f1(t).

by Pennes [29]:

(1)
ρjcj

∂Tj(z, t)

∂t
= kj

∂2Tj(z, t)

∂z2
+ ρbwb,jcb(Tb − Tj(z, t)) + qm,j + qr(z, t),

for (z, t) ∈ (zj−1, zj)× (0, tf ), j = 1, 2, 3,

where qr(z, t) is the external environmental heat source, t is the time, tf is the
final time, Tb and Tj(z, t) are the arterial and the jth layer temperature. At the
jth layer cj , kj and ρj are heat capacity, thermal conductivity and density of
the tissue. Here, cb and ρb are heat capacity and density of the blood. Within
the jth layer qm,j and wb,j are the metabolic heat source and blood pressure
rate. qm,j is a constant value within the j layer. In the beginning time, the
temperature in each layer is the same

(2) Tj(z, 0) = Tb, j = 1, 2, 3,

In this research, the aim is to investigate the effect of blood perfusion on thermal
therapy while there is a pulsed heat source on the skin surface. The body
core temperature was assumed to be constant, as the biological body naturally
strives to maintain stability in its core temperature. Therefore, the boundary
conditions for Eq. (1) are considered as follows:

(3) T1(z0, t) = f1(t), T3(z3, t) = Tb,

our model uses a step function f1(t) as a pulsed heat source in thermal therapy,
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where the heat is applied in pulses at specific times, as in the following

(4) f1(t) =

{
100◦C for 0 ≤ t ≤ ts
0◦C for ts < t ≤ tf ,

where ts is switching time. It means that the skin surface is initially exposed
to a constant-temperature heat source of 100◦C, such as boiling water, at the
beginning of the process (t = 0). After a duration of ts seconds, the heat source
is removed, and the skin is then cooled by a fluid at 0◦C for a period of (tf−ts)
seconds. From continuity of the temperature and heat flux within layers j = 2, 3
we have [21]

Tj−1(zj−1, t) = Tj(zj−1, t),(5a)

−kj−1
∂Tj−1(z, t)

∂z
= −kj

∂Tj(z, t)

∂z
, on z = zj−1.(5b)

The composite skin consists of three layers: epidermis, dermis and hypodermis
(subcutaneous tissue) as it is shown in Fig. 1. In the next section, we propound
the novel convolution operators in each layer via semigroups theory that is
useful for computing a hybrid solution for problem (1)-(5).

3. Semigroups analysis

Although the section focuses on a three-layered skin, it can easily extend for
any multilayer composites. Let for j = 1, 2, 3

(6) Uj(z, t) = Tj(z, t)− Tb,
by substituting (6) in (1)-(5) for (z, t) ∈ (zj−1, zj) × (0, tf ) and j = 1, 2, 3 we
have

ρjcj
∂Uj(z, t)

∂t
= kj

∂2Uj(z, t)

∂z2
− ρbwb,jcbUj(z, t) + qm,j + qr(z, t),(7a)

Uj(z, 0) = 0, for z ∈ (zj−1, zj),(7b)

U1(z0, t) = f1(t)− Tb, U3(z3, t) = 0.(7c)

Conditions in the adjacent layers yields

Uj−1(zj−1, t) = Uj(zj−1, t) j = 2, 3,(8a)

−kj−1
∂Uj−1(z, t)

∂z
= −kj

∂Uj(z, t)

∂z
, on z = zj−1, j = 2, 3(8b)

In order to solve (7) through C0-semigroup theory we consider

(9) Uj(z, t) = Wj(z, t) + Vj(z, t),

where Wj(z, t) is a function that deals with interior points in the jth layer
while vanishes at the boundaries and Vj(z, t) deals with boundary conditions
altogether with interface conditions. To do so let

(10) Vj(z, t) =
1

lj

(
(zj − z)Uj(zj−1, t) + (z − zj−1)Uj(zj , t)

)
.
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Thus, from Eqs. (7)-(10) one can write

∂Wj(z, t)

∂t
=

kj
ρjcj

∂2Wj(z, t)

∂z2
− ρbwb,jcb

ρjcj
Wj(z, t) +

1

ρjcj
qr(z, t)

+
1

ρjcj

(
qm,j − ρbwb,jcbVj(z, t)

)
− ∂Vj(z, t)

∂t
,(11a)

Wj(z, 0) = −Vj(z, 0), for z ∈ (zj−1, zj), j = 1, 2, 3,(11b)

W1(z0, t) = 0, W3(z3, t) = 0.(11c)

We describe problem (11) as an infinite dimensional inhomogeneous abstract
differential equation [25],

(12)
dW(t)

dt
= AW(t) + B qr(z, t) + F(t), t ≥ 0, W(0) = −V(0),

where F(t) =
(
f1(z, t) f2(z, t) f3(z, t)

)>
for fj(z, t) = 1

ρjcj

(
qm,j−ρbwb,jcbVj(z, t)

)
−

∂Vj(z,t)
∂t and V(0) =

(
V1(z, 0) V2(z, 0) V3(z, 0)

)>
, in which A is a diagonal ma-

trix

(13) A = diag
(
A1, A2, A3

)
such thatAj =

1

ρjcj

(
kj

d2

dz2
− ρbwb,jcb

)
.

Here, W(t) =
(
W1(z, t) W2(z, t) W3(z, t)

)>
is state, the function qr(z, t) is

input function and B =
(

1
ρ1c1

1
ρ2c2

1
ρ3c3

)>
is an input operator. We choose the

Hilbert space H = L2([z0, z1]) × L2([z1, z2]) × L2([z2, z3]) as the state space
equipped with inner product

(14) 〈U,W〉H =

3∑
j=1

〈Uj ,Wj〉L2([zj−1,zj ]), for U,W ∈ H,

where U(t) =
(
U1(z, t) U2(z, t) U3(z, t)

)>
and we assume that W(0) ∈ H.

The symbol 〈., .〉L2([zj−1,zj ]) shows inner product for the space L2([zj−1, zj ]) of
square-integrable functions defined on the interval [zj−1, zj ], which defined as

〈Uj ,Wj〉L2([zj−1,zj ]) =

∫ zj

zj−1

Uj(z, t)×Wj(z, t) dz for Uj ,Wj ∈ L2([zj−1, zj ])

In the remainder of this section, the infinite dimensional linear system theo-
ries introduced in Ref. [7] are applied to the multilayer bioheat equation (11). In
the next theorem, it is shown that there exists a strongly continuous semigroup
with infinitesimal generator A as it is defined in (13).
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Theorem 3.1. If domain of Aj for j = 1, 2, 3 given by (13) has the following
properties:

D(Aj) =
{
Wj(., t) ∈ L2[zj−1, zj ]

∣∣∣Wj and
dWj

dz
are absolutely continuous,

d2Wj

dz2
∈ L2[zj−1, zj ] and Wj vanishes at jth layer interface and boundary

}
,

(15)

then problem (12) forms an inhomogeneous abstract differential equation.

Beweis. The proof is based on the extension for Theorem 2.2.2 in Ref. [7] using
domain decomposition techniques. �

Theorem 3.2. For j = 1, 2, 3 and n belonging to the set of natural numbers on
the interval [zj−1, zj ], the eigenvalues for the operator Aj with the properties
in Theorem 3.1 are

(16) λn,j = −
ρbwb,jcb + kjp

2
n,j

ρjcj
,

where in each layer pn,j is

(17) pn,j =
nπ

zj − zj−1
·

Moreover, corresponding eigenfunctions are

(18) φn,j(z) =

√
2

zj − zj−1
sin(pn,j(z − zj−1)), z ∈ [zj−1, zj ], n = 1, 2, . . . .

Beweis. According to (13) the eigenvalue-eignfunction problemAjφn,j = λn,jφn,j
is equivalent to

(19)
1

ρjcj

(
kj

d2φn,j
dz2

− ρbwb,jcbφn,j
)

= λn,jφn,j .

The sequence {φn,j(z)}∞n=1 in (18), form an orthonormal basis on L2([zj−1, zj ]).
Substituting basis (18) in Eq. (19) proves the theorem. �

In the next theorem, we show the relation of each layer’s semigroup with the
overall semigroup for the entire geometry.

Theorem 3.3. If each Aj for j = 1, 2, 3 is the infinitesimal generator of a C0-
semigroup (Sj(t))t≥0, then the operator A in (13) is the infinitesimal generator
of a C0-semigroup (S(t))t≥0 on H defined as

(20) S(t) = diag
(
S1(t), S2(t), S3(t)

)
.
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Beweis. For j = 1, 2, 3 and n = 1, 2, · · · , from the Hille–Yosida Theorem [7]
since λn,j < 0 (see Eq. (16)), then the operator Aj is the infinitesimal generator
for a C0-semigroup (Sj(t))t≥0 on L2([zj−1, zj ]) defined as

(21) Sj(t)Wj =

∞∑
n=1

eλn,jt〈Wj , φn,j〉φn,j(z).

i.e., the operator Aj generates the unique C0-semigroup (Sj(t))t≥0. This proves
the theorem. �

Conditions for problem (11) under which closed form analytical solution
Wj(z, t) exists are given in the following theorem.

Theorem 3.4. If qr(z, t) ∈ L2([0, tf ],R), then W(t) =
(
W1(z, t) W2(z, t) W3(z, t)

)>
is a unique mild solution for inhomogeneous abstract differential equation (12)
where for j = 1, 2, 3, we have

Wj(z, t) =

∞∑
n=1

eλn,jt
〈
−Vj(ξ, 0), φn,j(ξ)

〉
φn,j(z)

+
1

ρjcj

∞∑
n=1

∫ t

0

eλn,j(t−s)
〈
qm,j + qr(ξ, s), φn,j(ξ)

〉
ds φn,j(z)

− ρbwb,jcb
ρjcj

∞∑
n=1

∫ t

0

eλn,j(t−s)
〈
Vj(ξ, s), φn,j(ξ)

〉
ds φn,j(z)

−
∞∑
n=1

∫ t

0

eλn,j(t−s)
〈∂Vj(ξ, s)

∂s
, φn,j(ξ)

〉
ds φn,j(z).

(22)

Beweis. Theorem 4 in Ref. [25] yields

(23) W(t) = S(t){−V(0)}+

∫ t

0

S(t− s){Bqr(z, s) + F(s)} ds.

Thus, from (12), and by substituting (20) into (23), the theorem can be proved.
�

Up to now, the interface functions U1(z1, t), U2(z1, t), U2(z2, t), and U3(z2, t)
in (10) are four unknown functions. From continuity conditions (8a), we have
two unknown interface functions, i.e., U1(z1, t) = U2(z1, t) and U2(z2, t) =

U3(z2, t). The corresponding steady unknown interface functions are Ũ1(z1, s)

and Ũ2(z2, s), which can be determined by Laplace transformation on Wj(z, t)
for j = 1, 2, 3, and by matching the first derivative conditions (8b) at the two

interfaces. Now, the numerical Laplace inversion on W̃j(z, s) for j = 1, 2, 3 gives
an approximate solution uj(z, t) for Uj(z, t) = Wj(z, t) + Vj(z, t).
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4. Semi-analytical solution

Here, the solution (22) is mapped to steady function W̃j(z, s) by the La-
place transform where s is the Laplace transformation parameter. Using the
convolution integral theorem [5] and applying the Laplace transform to Eq.
(22) yields

W̃j(z, s) =
1

ρjcj

∞∑
n=1

1

s− λn,j

〈qm,j
s

+ q̃r(ξ, s), φn,j(ξ)
〉
φn,j(z)

−
(
s+

ρbwb,jcb
ρjcj

) ∞∑
n=1

1

s− λn,j
〈
Ṽj(ξ, s), φn,j(ξ)

〉
φn,j(z).

(24)

Thus, we have

(25) Ũj(z, t) = W̃j(z, t) + Ṽj(z, t).

Now, the Laplace transformation in conjunction with Eqs. (8a) and (8b) for
boundary conditions at the interfaces of two adjacent layers yields

Ũj−1(zj−1, s) = Ũj(zj−1, s), j = 2, 3,(26a)

−kj−1
∂Ũj−1(z, s)

∂z
= −kj

∂Ũj(z, s)

∂z
, on z = zj−1, j = 2, 3.(26b)

Substituting Eqs. (25) and (26a) into Eq. (26b) can produce a system of two

linear equations in two unknowns steady functions Ũj(zj , s). In conjunction
with Eq. (6) one can write the steady temperature

(27) T̃j(z, s) = Ũj(z, s) + Tb/s.

However, at the interfaces, taking analytical inverse Laplace transform from Eq.

(27) is complicated [21]. For this reason, authors compute Ũj(z, s) and hence

T̃j(z, s) for j = 1, 2, 3 by a numerical Laplace inversion based on Dubner and
Abate’s method [8]. It is obvious that at this stage, we have a semi-analytical
solution that needs to be validated.

5. Error bound and stability analysis

Theoretical validation is done by error analysis of geometric, time, and dis-
cretization errors as discrepancy error.

5.1. Geometric error. Geometric error results from the error associated with
the truncation of series solution (22) by first Ms terms. In order to compute
the approximate solution uj(z, t) for j = 1, 2, 3 one must truncate (22) at some
order, say n = Ms to obtain an approximate solution uj(z, t). Thus, we have a
geometric error Es(z, t;Ms) = Uj(z, t)− uj(z, t) as

(28) |Es(z, t;Ms)| ≤ |Es(z, 0;Ms)| =
∞∑

n=Ms+1

〈−Vj(ξ, 0), φn,j(ξ)〉φn,j .
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From (10) and (28), one can calculate that for Ms = 25, the geometric error
vanishes using the best approximation theorem (See page 197 of Ref. [34]).

5.2. Time error. Here, for Nt as a finite integer number, the numerical La-
place inversion method in Eq. (24) is based on the Fourier series expansion
developed by Durbin [8] as

WNt
j (z, t) =

eυt

P

[−1

2
Re(W̃j(z, υ)) +

Nt∑
k=0

Re
(
W̃j(z, υ + i

kπ

P
)
)

cos(
kπ

P
t)

− Im
(
W̃j(z, υ + i

kπ

P
)
)

sin(
kπ

P
t)
]
,

(29)

Here, υ ∈ R and t ∈ [0, 2P ], where 2P represents the nonzero constant period

of the function W̃j . Thus, one will encounter the time error

Et(Nt, υ, t, P ) =
eυt

P

[ ∞∑
k=Nt+1

Re
(
W̃j(z, υ + i

kπ

P
)
)

cos(
kπ

P
t)

− Im
(
W̃j(z, υ + i

kπ

P
)
)

sin(
kπ

P
t)
]
,

(30)

while the discretization error is

(31) Ed(υ, t, P ) =

∞∑
k=1

e−2υkPWj(z, 2kP + t).

The integer Nt can be determined from (30) and (31) using the series conver-

gence criterion: |Re(W̃j(z, υ + iNt
2π
P ))| and | Im(W̃j(z, υ + iNt

2π
P ))| ≤ εP

exp(υP )

for ε = 10−6 to 10−10. Durbin found that υP in the range 5 to 10 yielded sa-
tisfactory results for Nt ranging from 50 to 5000 [8]. In this manuscript, results
are presented for Nt = 2000, implying that both time and discretization errors
diminish as Nt → 2000.

5.3. Discrepancy error. In the following, we use the discrepancy error to
prove the consistency, convergence, and stability of the semi-analytical solution.
Let L(U) = 0 represent the system of partial differential equations (7) in the
independent variable z and t, with an exact solution U = (U1 U2 U3)> where
Uj(z, t) = Wj(z, t) + Vj(z, t) for j = 1, 2, 3 (see Eqs. (10) and (22)).

We assume that FMsNt(u) = 0 represents the approximating system based
on semigroup and Laplace transform techniques, with a semi-analytical solution
u = (u1 u2 u3)> where uj is the approximate solution for Uj ; j = 1, 2, 3. Then

(32) e =
(
e1 e2 e3

)>
= U− u.

Note that the difference between Uj(z, t) and uj(z, t) in our mathematical mo-
del can arise from the geometric error, time error, and discretization error. The
geometric error occurs when calculating the summation in the first Ms terms of
(22), while the time and discretization errors occur when we apply numerical
Laplace inversion.
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Tabelle 1. Available properties for three-layered live skin
tissue used in numerical computations [21].

Parameters Blood Epidermis Dermis Hypodermis

cj (J/kg ◦C) 3770.0 3600.0 3300.0 2700.0

ρj (kg/m
3
) 1060.0 1190.0 1116.0 971.0

kj (W/m ◦C) - 0.235 0.445 0.185
qm,j (Wm−3) - 368.1 368.1 368.3
lj (m) - 0.0001 0.0015 0.0044

Let ν be a continuous function of z and t with a sufficient number of con-
tinuous derivatives to enable the evaluation of L(ν) in [0, l]× [0, 2P ]. Now, by
proposing the discrepancy error

(33) D(ν) = FMsNt
(ν)− L(ν),

we discuss the consistency. Since most authors may put ν = U , because L(U) =
0, it then follows that D(U) = FMsNt

(U). Thus, from Subsections 5.1 and
5.2 for Ms ≥ 25 and 2000 ≤ Nt ≤ 5000, we have the approximate solution
u → U. Hence, from Eq. (32) we have e → 0, thus D(U) → 0. This idea
proposes a conditional compatibility or consistency between the model used
in computation and the model used to simulate the system. From Eq. (21),
the model is stable for λn,j < 0 (see Eq. (16)). Thus, from Lax theorem [33],
semi-analytical solution uj converges to exact solution Uj .

In the next section, three different cases are solved to show the efficiency of
proposed hybrid method given in Sections 3 and 4. Semi-analytical solutions
for the problem of surface burning in Section 2 are calculated and the corre-
sponding graphs are depicted to show the practicality and efficiency of this
technique in medical thermal therapy in the presence of a surface pulsed heat
source.

6. Work examples

Applications of this study can be found in bio-engineering science in skin
tissue, the temperature effect on human blood perfusion, skin burning due to a
flash fire, hot plate, liquid and gas and atomic explosion, respectively [21]. Blood
perfusion is one of the important factors affecting the thermal response in living
tissues. Therefore, we solve the problem of bioheat transfer given by (1)-(5) for
three layers of epidermis, dermis and hypodermis (see Fig. 1), to investigate
effect of blood perfusion on thermal therapy in human skin. Blood perfusion is
exclusively taken into account within the dermis layer, whereas metabolic heat
source is considered in all three layers. We present the following three different
cases using thermophysical properties of live skin listed in Table 1.
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Abbildung 2. For switching time ts = 15s and final time
tf = 45s when blood perfusion rates are wb,2 = 0 m3/m3s and
wb,2 = 0.05 m3/m3s in the dermis layer (a) Temperature re-
sponse versus time at two different layer interfaces: Epidermis-
Dermis and Dermis-Hypodermis. (b) Effect of blood perfusi-
on on the temperature response along layered skin depth for
t =5s, 10s, 20s and 40s.

Case i. (No blood perfusion) Lets wb,1 = wb,2 = wb,3 = 0 m3/m3s, this might
happen when one faces no blood perfusion in the live skin.

Case ii. (Moderate blood perfusion) Lets wb,1 = wb,3 = 0 m3/m3s and wb,2 =
0.025 m3/m3s. Here, it is assumed that the blood perfusion that is only
considered in dermis layer [21].

Case iii. (High blood perfusion) Lets wb,1 = wb,3 = 0 m3/m3s and wb,2 = 0.05
m3/m3s. In this case, the temperature profile in tissue depth for higher
blood perfusion in dermis layer is investigated.

For Cases i and iii, the temperature response in the three-layered skin with
respect to changes in blood perfusion is considered, while surface step function
(4) is applied for the heating period of time 0 ≤ t ≤ ts and the cooling period
of time ts ≤ t ≤ tf respectively. In Case ii, the effect of surface step function
(4) on the temperature response is investigated for moderate perfusion as time
passes.

The steady temperature T̃j(z, s) in (27) is computed using the first 25 terms
of Eq. (24), i.e., Ms = 25. Moreover, we assume that the arterial blood tempe-
rature is uniform throughout the tissue and is taken as body temperature, with
a value of Tb = 37◦C. Without loss of generality, we also assume that there is
no external environmental heat source in our model, i.e., qr(z, t) = 0. In the
next section, we will present the results and discussions related to the imple-
mentation of numerical and semi-analytical methods on the work examples.
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Abbildung 3. For switching time ts = 25s and final time
tf = 100s, when the blood perfusion rates are wb,2 = 0
m3/m3s and wb,2 = 0.05 m3/m3s in the dermis layer (a) Tem-
perature response versus time at two different layer interfa-
ces: Epidermis-Dermis and Dermis-Hypodermis. (b) Effect of
blood perfusion on the temperature response along layered skin
depth for t = 5s, 25s, 50s and 100s.

7. Results and discussions

In clinical settings, we often want to predict the thermal response for diffe-
rent switching times ts and final time tf . Thus, we investigate the temperature
response for ts = 15s and tf = 45s, as well as for ts = 25s and tf = 100s.
In both cases, we examine medical case examples from Section 6 based on the
proposed hybrid method in Sections 3 and 4, as well as the mathematical model
in Section 2 for surface burning.

Figure 2 presents the results for the perfuse rates for Cases i: wb,1 = wb,2 =
wb,3 = 0 m3/m3s and Case iii: wb,1 = wb,3 = 0 m3/m3s and wb,2 = 0.05
m3/m3s when switching time ts = 15s and final time tf = 45s. Figure 3 shows
the effect of blood perfusion on the temperature response when a surface step
function (4) is applied for the switching time ts = 25s and final time tf = 100s.
As expected, when the penetration depth of the thermal signal increases, the
temperature response curves will be smoother. Figures 2(a) and 3(a) show that
the highest temperature increase appears at the end of heating (time ts). Figure
2(b) presents temperature response in the skin depth during the heating period
(for fixed times t =5s and 10s) or the cooling period (for fixed times t =20s
and t =40s). The results from Figs. 2 and 3 are important for selecting an
appropriate heating plan when estimating the blood perfusion, switching time
or some other thermal parameters.

In Eq. (1), the perfusion term ρbwb,jcb(Tb − Tj(z, t)) represents the tempe-
rature exchanged between the blood and the skin. When Tj < Tb, the arterial



288 Gh. Abbasi, S. Khishtandar

Semigroup

Comsol

End of heating

Interface between 

Dermis to Hypodermis

Interface between 

Epidermis to Dermis

Start of cooling 

0 10 20 30 40

0

20

40

60

80

100

Time, t(s)

T
em
pe
ra
tu
re
,
T
(o
C
)

Abbildung 4. Temperatures at two interfaces compared,
using the COMSOL software and proposed semi-analytical so-
lution for switching time ts = 15s, final time tf = 45s and
blood perfusion rate wb,2 = 0.025 m3/m3s in the dermis.

blood acts as a heat source, while when Tj > Tb, it acts as a heat sink. In our
example, during the heating period, heat loss is facilitated via the blood perfu-
sion when t=5s and 10s, while the arterial blood functions as a heat source at
t = 40s (see Fig. 2(b)). At t =20s the situation is different from times t = 5s,
10s and 40s, as dissipating the accumulated heat in the skin requires some time
when there is no blood perfusion. When wb,1 = wb,2 = wb,3 = 0 m3/m3s the
skin temperature is higher than when we have wb,1 = wb,3 = 0 m3/m3s and
wb,2 = 0.05 m3/m3s. A similar procedure can be observed for the temperature
response in Figure 3(b).

In Figure 4 numerical simulations based on the finite element method [9]
using COMSOL Multiphysics software [6] are conducted to compare the semi-
analytical solutions for switching time ts = 15s, final time tf = 45s and blood
perfusion rate wb,2 = 0.025 m3/m3s in the dermis layer. The implemented mo-
del uses the bioheat transfer module for the Fourier model in COMSOL software
and the boundary conditions were selected according to what was mentioned
in the semi-analytical method (see Section 2). All of the simulations have be-
en conducted using a 2.8 GHz Intel Core i7 CPU 11th Generation with 16 GB
RAM. We have a computational time of less than 40 s for each simulation.

8. Conclusions

The transfer of heat in living tissue is significantly influenced by blood perfu-
sion and has numerous applications in medical treatments. Therefore, accurate
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temperature predictions in human skin are useful for improving the effect of
blood perfusion on thermal response. The conclusions here are threefold. First,
the current semi-analytical solution for investigating the behavior of bioheat
transfer in three-layered skin tissue with the bioheat governing equation works
well. Second, conditions for consistency and stability are determined, and con-
vergent results are provided for those conditions. Third, the blood perfusion
effect on thermal therapy is simulated via the semi-analytic solution, demons-
trating its efficiency. The semi-analytic solution, based on strongly continuous
semigroups theory and domain decomposition technique, is then compared with
the finite element scheme using COMSOL Multiphysics software. The results
coincide with the published literature concerning the surface heating approach.
Although part of the idea in this paper is followed for the thermal propagation
of bioheat transfer in a three-layered skin, it is possible, based on the authors’
knowledge, to apply this idea for computation heat distribution in various types
of multilayer composites under surface heating.
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