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Abstract. In this paper, we introduce the notion of multipliers in weak

Heyting algebras and investigate some related properties of them. We

obtain the relations between multipliers, closure operators, and homo-
morphisms in weak Heyting algebras. Relations among image sets and

fixed point sets of multipliers in weak Heyting algebras are investigated.

Also, we study algebraic structures of the set of all multipliers in weak
Heyting algebras. Using multipliers, the left and right m-stabilizers in

weak Heyting algebras are introduced, and some related properties are
given. Also, we obtain conditions such that the left and right m-stabilizers

form two weak Heyting algebras.
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1. Introduction

In 2005, Celani and Jansana introduced the notion of weak Heyting algebras,
or WH -algebras for short, in [5] under the name of weakly Heyting algebras.
As they mention, these algebras correspond to the strict implication fragment
of the normal modal logic K which is also known as the subintuitionistic local
consequence of the class of all Kripke models.

A WH-algebra is a bounded distributive lattice with a binary operation →
with the properties of the strict implication in the modal logic K. Also, a WH-
algebra is a generalization of Heyting algebras. Some examples of WH-algebras
appearing in this paper are the Basic algebras introduced by M. Ardeshir and
W. Ruitenburg in [1], and self distributive weak Heyting algebras in [13]. The
variety of WH-algebras is arithmetical, has equationally definable principal con-
gruences, has the amalgamation property, the congruence extension property
and is finitely approximable. Also see [2] and [14].

In 1974, Cornish introduced the concept of multiplier for distributive lat-
tices in [8]. In 1980, Schmid used multipliers in order to give a nonstandard
construction of the maximal lattice of quotients for a distributive lattice in [15].
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The notion of multipliers has been extended to commutative semigroup, BE-
algebras [11], d-algebras [6] and BL-algebras [16].
The notion of stabilizers is introduced from fixed point set theory. Since stabi-
lizer was successful in several distinct tasks in various branches of mathemat-
ics it has been extended to various logical algebras, for example see [3], [17]
and [18].
This paper is organized as follows: In Sect. 2, we recall some basic concepts and
properties of WH-algebras. In Sect. 3, we introduce the notion of multiplier in
WH-algebras and obtain some related results. The relations between multiplier,
closure operator and lattice homomorphism are obtained. We study the fixed
points of a multiplier and set of all multipliers in a WH-algebra. In Sect. 4,
using multipliers, we introduce the notion of left and right m-stabilizers in WH-
algebras. In particular, we obtain conditions that left and right m-stabilizers
have the same structure as WH-algebras.

2. Preliminaries

In this section, we recall the basic definitions and some properties of WH-
algebras that we need in the rest of the paper.

Definition 2.1. ( [5]) An algebra (H,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0) is called
a weak Heyting algebra (or WH-algebra) if (H,∨,∧, 0, 1) is a bounded distribu-
tive lattice and the following conditions hold for all x, y, z ∈ H:
(WH1) (x→ y) ∧ (x→ z) = x→ (y ∧ z),
(WH2) (x→ z) ∧ (y → z) = (x ∨ y)→ z,
(WH3) (x→ y) ∧ (y → z) ≤ x→ z,
(WH4) x→ x = 1.

Remark that every bounded distributive lattice can be seen as a WH-algebra
if we define x→ y = 1 for every x, y.
In the rest of this paper, we denote an algebra H = (H,∧,∨,→, 0, 1) by H.
Also, a homomorphism between two WH -algebras H1 and H2 is a bounded
lattice homomorphism h : H1 → H2 such that h(x→ y) = h(x)→ h(y), for all
x, y ∈ H1.

Proposition 2.2. ( [5]) Let H be a WH-algebra. Then the following hold for
all x, y, z ∈ H:
(W1) if x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y,
(W2) if x ≤ y, then x→ y = 1.

Remark that in a WH-algebra H, we have x→ 1 = 1 for all x ∈ H by (W2).

Definition 2.3. ( [13]) Let H be a WH-algebra.
(1) H is a Basic algebra iff satisfies the inequality x ≤ 1→ x,
(2) H is an RWH-algebra iff satisfies the inequality x ∧ (x→ y) ≤ y (R),
(3) H is an SDWH-algebra iff x→ (y → z) = (x→ y)→ (x→ z) (SD).
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A non-empty subset I of a WH-algebra H is called an ideal if a ∨ b ∈ I and
a ∧ x ∈ I whenever a, b ∈ I and x ∈ H. A proper ideal I is called prime if
a ∧ b ∈ I implies that a ∈ I or b ∈ I.

Definition 2.4. ( [13]) A subset F of a WH algebra H is called a filter, if it
satisfies the following conditions, for all x, y ∈ H
(F1) If x, y ∈ F , then x ∧ y ∈ F ,
(F2) If x ∈ F and x ≤ y, then y ∈ F .
A filter F of H is called open, if it satisfies the following condition,
(OF) If x ∈ F , then �x ∈ F where �x := 1→ x.

A proper filter F on H is called prime if a ∨ b ∈ F implies that a ∈ F or
b ∈ F . The filter (ideal) generated by a set X ⊆ H will be denoted by [X)
((X]). We will write [x) ((x]) to refer to the filter (ideal) generated by {x}.

Definition 2.5. ( [13]) A subset D of an SDWH algebraH is called a deductive
system if it satisfies the following conditions, for all x, y ∈ H:
(D1) 1 ∈ D,
(D2) x, x→ y ∈ D imply y ∈ D.

3. Multipliers in WH-algebras

Definition 3.1. Let H be a WH-algebra. A self map m : H → H is called a
multiplier in H, if it satisfies the following conditions for all x, y ∈ H:
(M1) m(x→ y) = x→ m(y),
(M2) m(x ∨ y) = x ∨m(y).

The set of all multipliers in H is denoted by M(H).

Example 3.2. (1) The identity mapping idH and the unit mapping 1H : H →
H defined by 1H(x) = 1 for all x ∈ H are multipliers.
(2) Let H = {0, a, 1} such that 0 < a < 1. Consider the following binary
operation → on H

→ 0 a 1
0 1 1 1
a 1 1 1
1 a a 1

Then H = (H,∧,∨,→, 0, 1) is an SDWH-algebra ( [13]). Consider the maps
mi, 1 ≤ i ≤ 3, given the table below:

x 0 a 1
m1(x) 1 1 1
m2(x) 0 a 1
m3(x) a a 1

Then M(H) = {m1,m2,m3}.

Proposition 3.3. Let m be a multiplier in a WH-algebra H and x, y ∈ H.
Then
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(1) m(1) = 1,
(2) x ≤ m(x),
(3) m(m(x)) = m(x),
(4) m(x ∨ y) = m(x) ∨m(y),
(5) x ≤ y implies m(x) ≤ m(y),
(6) m(x ∧ y) = m(x) ∧m(y),
(7) m(�x) = �m(x),
(8) m(x)→ m(y) ≤ x→ m(y) = m(x→ y),
(9) if m(x) = 0, then x = 0,
(10) m(0) = 0 iff m = idH ,
(11) Ker(m) = {x ∈ H|m(x) = 1} is an open filter.

Proof. (1) We have m(1) = m(m(1)→ 1) = m(1)→ m(1) = 1 by (W2).
(2) Using (M1), we obtain m(x) = m(x ∨ x) = x ∨m(x). So x ≤ m(x).
(3) By (M2), m(m(x)) = m(m(x∨ x)) = m(x∨m(x)) = m(x)∨m(x) = m(x).
(4) Using part (3) and (M2), we obtain

m(x ∨ y) = m(m(x ∨ y)) = m(x ∨m(y)) = m(x) ∨m(y).

(5) Suppose that x ≤ y. Then y = x ∨ y. By (M2) and part (4), we have
m(y) = m(x ∨ y) = m(x) ∨m(y).
(6) Using distributive property, we get m(x∧ y)∨ 0 = m((x∧ y)∨ 0) = m(0)∨
(x ∧ y) = (m(0) ∨ x) ∧ (m(0) ∨ y) = m(0 ∨ x) ∧m(0 ∨ y) = m(x) ∧m(y).
(7) We have m(�x) = m(1→ x) = 1→ m(x) = �m(x).
(8) Applying part (2) and then (W1), we obtain
m(x)→ m(y) ≤ x→ m(y) = m(x→ y).
(9) It follows from part (2).
(10) By (M2), m(x) = m(x ∨ 0) = x ∨m(0) = x for all x ∈ H. Hence m is the
identity map. The converse is trivial.
(11) It follows from parts (5), (6) and (7). �

Corollary 3.4. Let m be a multiplier in a chain WH-algebra H and 1 6= a ∈ H
such that m(a) = 1. Then m is the unite mapping.

Proof. By (M2), we have 1 = m(a) = m(a ∨ 0) = m(0) ∨ a. By assumption
H is a chain and a 6= 1, so m(0) = 1. By Proposition 3.3 part (5), we obtain
m(x) = 1, for all x ∈ H. �

Let P be a poset. Recall that a function C : P → P is called a closure
operator if (i) x ≤ C(x),(ii) x ≤ y implies C(x) ≤ C(y) and (iii) C(C(x)) =
C(x), hold for all x, y ∈ P .

Corollary 3.5. Let m be a multiplier in a WH-algebra H. Then m is a lattice
homomorphism and a closure operator.

Proof. It follows from Proposition 3.3 parts (2), (3) and (5) that m is a closure
operator. By Proposition 3.3 parts (4) and (6), we conclude that m is a lattice
homomorphism. �
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The converse of Corollary 3.5 may not be true in general. See the following
example.

Example 3.6. Let H = {0, a, 1} such that 0 < a < 1. Consider the following
binary operation →:

→ 0 a 1
0 1 1 1
a 1 1 1
1 0 0 1

Then H = (H,∧,∨,→, 0, 1) is a WH-algebra ( [13]). Define C(0) = 0 and
C(a) = C(1) = 1. It is easy to check that C is a lattice homomorphism and a
closure operator. But it is not a multiplier, because C(1 → a) = C(0) = 0 6=
1 = 1→ C(a).

Proposition 3.7. Let m be a multiplier in an RWH-algebra H. If H is an
SDWH-algebra, then m(x→ y) = m(x)→ m(y), for all x, y ∈ H

Proof. By Proposition 3.3 parts (6), (5) and (R), we get m(x) ∧m(x → y) =
m(x ∧ (x → y)) ≤ m(y). Thus m(x) → (m(x) ∧m(x → y)) ≤ m(x) → m(y)
by (W1). Applying (W1), (WH1) and (WH4), we get

1→ m(x→ y) ≤ m(x)→ m(x→ y)

= m(x)→ (m(x) ∧m(x→ y))

≤ m(x)→ m(y).

By (SD), (WH4) and (W2), we obtain m(x → y) → (1 → m(x → y)) = 1.
Using (R), we have

m(x→ y) ∧ (m(x→ y)→ (1→ m(x→ y))) ≤ 1→ m(x→ y).
Hence m(x → y) ≤ m(x) → m(y). Also, we have m(x) → m(y) ≤ m(x → y)
by Proposition 3.3 part (8). �

Proposition 3.8. Let m be a self map on a WH-algebra H such that satisfies
(M2) and m(x→ y) = m(x)→ m(y), for all x, y ∈ H. Then m is a multiplier
in H.

Proof. Suppose that x, y ∈ H are arbitrary. Using (M2), we have m(x) =
m(x∨x) = x∨m(x). Hence x ≤ m(x). Also, similar to the proof of Proposition
3.3 parts (3) and (5), we can prove that m(m(x)) = m(x) and x ≤ y implies
m(x) ≤ m(y). Using (W1), we obtain m(x) → m(y) ≤ x → m(y). Hence
m(x → y) ≤ x → m(y) by assumption. On the other hand, we have x →
m(y) ≤ m(x → m(y)) = m(x) → m(m(y)) = m(x) → m(y) = m(x → y).
Thus m satisfies (M1) and hence it is a multiplier in H. �

Proposition 3.9. Let m be a multiplier in a WH-algebra H and Fixm(H) =
{x ∈ H|m(x) = x}. Then
(1) Fixm(H) = Im(m),
(2) Fixm(H) is closed under ∧, ∨ and →.
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(3) Fixm(H) is an open filter,
(4) If m is onto, then m = idH .

Proof. (1) Suppose that y ∈ Im(m). Then there exists x ∈ H such that m(x) =
y. Using Proposition 3.3 part (3) , we have m(y) = m(m(x)) = m(x) = y. So
y ∈ Fixm(H). It is obvious that Fixm(H) ⊆ Im(m).
(2) Let x, y ∈ Fixm(H). Then m(x → y) = x → m(y) = x → y. Therefore
x → y ∈ Fixm(H). By Proposition 3.3 parts (4) and (6), Fixm(H) is closed
under ∧ and ∨.
(3) By Proposition 3.3 part (1) we have m(0), 1 ∈ Fixm(H). Suppose that
x ≤ y and x ∈ Fixm(H). Then m(y) = m(y ∨ x) = y ∨ m(x) = y ∨ x = y.
Hence y ∈ Fixm(H). By part (2) and Proposition 3.3 part (7), we get that
Fixm(H) is an open filter.
(4) Suppose that x ∈ H = Im(m). By part (1), we have x ∈ Fixm(H). Hence
m(x) = x, that is m = idH . �

Proposition 3.10. Let m1 and m2 be two multipliers in a WH-algebra H.
Then the following hold:
(1) m1 = m2 if and only if Fixm1

(H) = Fixm2
(H).

(2) m1 ◦m2 ∈M(H).
(3) m1 ◦m2 = m2 ◦m1.
(4) (M(H), ◦, idH) is an ablian monoid.

Proof. (1) Suppose that Fixm1
(H) = Fixm2

(H) and let x ∈ H. Thusm2(m1(x)) =
m1(x). Using Proposition 3.3 parts (2) and (5), we get m2(x) ≤ m2(m1(x)) =
m1(x). Similarly, we can prove that m1(x) ≤ m2(x). Hence m1 = m2. The
converse is trivial.
(2) The proof is straightforward.
(3) Let x ∈ H be arbitrary. By Proposition 3.3 parts (2) and (5), we have
m1(x) ≤ m1(m2(x)). Using Proposition 3.3 parts (5), (2) and then part (3),
we obtain

m2(m1(x)) ≤ m2(m1(m2(x))) ≤ m1(m2(m1(m2(x)))) = m1(m2(x))

Similarly, we can show that m1(m2(x)) ≤ m2(m1(x)).
(4) It follows from parts (2) and (3). �

Proposition 3.11. Let H be a WH-algebra and m1,m2 ∈ M(H). Define
m1 ≤ m2 if and only if m1(x) ≤ m2(x) for all x ∈ H. Then m1 ≤ m2 if and
only if m2 ◦m1 = m2.

Proof. Suppose that m1 ≤ m2 and x ∈ H. We have x ≤ m1(x) = m1(m1(x)) ≤
m2(m1(x)). Using Proposition 3.3 part (5), we obtain m2(x) ≤ m2(m1(x)). On
the other hand, m2(m1(x)) ≤ m2(m2(x)) = m2(x). Therefore m2 ◦m1 = m2.
Conversely, let m2 ◦ m1 = m2. Then m1(x) ≤ m2(m1(x)) = m2(x). Hence
m1 ≤ m2. �
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Proposition 3.12. Let H be a WH-algebra. Then (M(H),u,t, idH , 1H) is a
bounded distributive lattice, where (m1 um2)(x) = m1(x) ∧m2(x) and (m1 t
m2)(x) = m1(m2(x)).

Proof. Let m1,m2 ∈M(H) be arbitrary. By (WH1) and distributive property,

(m1 um2)(x→ y) =m1(x→ y) ∧m2(x→ y) = (x→ m1(y)) ∧ (x→ m2(y))

=x→ (m1(y) ∧m2(y)) = x→ (m1 um2)(y),

(m1 um2)(x ∨ y) =m1(x ∨ y) ∧m2(x ∨ y) = (x ∨m1(y)) ∧ (x ∨m2(y))

=x ∨ (m1(y) ∧m2(y)) = x ∨ (m1 um2)(y).

Hence m1 um2 ∈M(H). Also, we have

m1((m1 um2)(x)) = m1((m1(x) ∧m2(x)) = m1(m1(x)) ∧m1(m2(x))

= m1(x) ∧m1(m2(x)) = m1(x).

Thus m1 um2 ≤ m1 by Proposition 3.11. Similarly, we can show that m1 u
m2 ≤ m2. So m1 u m2 is a lower bound of m1 and m2. Now, suppose that
m ∈ M({H}) is such that m ≤ m1 and m ≤ m2. Thus m1 ◦ m = m1 and
m2 ◦m = m2. Then

((m1 um2) ◦m)(x) = (m1 um2)(m(x)) = m1(m(x)) ∧m2(m(x))

= m1(x) ∧m2(x) = (m1 um2)(x)

Hence m ≤ m1 um2 and so m1 um2 is the g.l.b. of {m1,m2}.
By Proposition 3.10, we have m1 tm2 ∈ M(H). Using Proposition 3.11, we
can show that m1 tm2 is the u.l.b. of {m1,m2}.
It is easily obtain that idH ≤ m ≤ 1H for all m ∈M(H). Hence idH is the the
smallest element and 1H is the greatest element of M(H). Since

(m3 t (m1 um2))(x) = m3(m1(x) ∧m2(x)) = m3(m1(x)) ∧m3(m2(x))

= (m3 tm1)(x) ∧ (m3 tm2)(x)

= ((m3 tm1) u (m3 tm2))(x),

then (M(H),u,t, idH , 1H) is a bounded distributive lattice. �

We recall that a lattice L is called complete if every subset S of L has the
least upper bound (supremum) and the greatest lower bound (infimum) in L.

Proposition 3.13. Let H be a complete WH-algebra. Then (M(H),u,t, 
, idH , 1H) is a complete Heyting algebra, where m1  m2 :=

⊔
{m ∈M(H)|mu

m1 ≤ m2}.

Proof. By Proposition 3.12, (M(H),u,t, idH , 1H) is a bounded distributive
lattice. Since H is a complete lattice, then (M(H),u,t, idH , 1H) is complete.
So

⊔
{m ∈ M(H)|m um1 ≤ m2} exists in M(H). Put P := {m ∈ M(H)|m u

m1 ≤ m2}. If m3 ∈ M(H) such that m3 u m1 ≤ m2, then m3 ∈ P . So
m3 ≤

⊔
P = m1  m2. Conversely, if m3 ≤ m1  m2, then m3 ≤ m for all



40 S. Ghorbani

m ∈ P . Hence m3 um1 ≤ m um1 ≤ m2. Therefore (M(H),u,t, , idH , 1H)
is a Heyting algebra. �

Definition 3.14. LetH be a WH-algebra. A congruence relation θ on (H,∧,∨)
is called a weak congruence on H if (x, y) ∈ θ implies that (a→ x, a→ y) ∈ θ
for any a ∈ H.

Proposition 3.15. Let m be a multiplier in a WH-algebra H. Define a binary
relation θm on H as follows for all x, y ∈ H:

(x, y) ∈ θm if and only if m(x) = m(y).

Then θm is a weak congruence on H.

Proof. It is clear that θm is an equivalence relation on H. By Proposition 3.3
part (4) and (6), θm is a congruence relation on the lattice reduct (H,∧,∨).
Using (M1), one can see that θm is a weak congruence on H. �

Proposition 3.16. Let m be a multiplier in a WH-algebra H. Then Fixm(H)∩
[x]m is a singleton set for all x ∈ H, where [x]m is the congruence class of x
with respect to θm.

Proof. Suppose that m is a multiplier in H. Let x be an arbitrary element of
H. We have m(x) = m(m(x)), so (x,m(x)) ∈ θm. Thus m(x) ∈ Fixm(H).
Thus m(x) ∈ Fixm(H) ∩ [x]m. Hence Fixm(H) ∩ [x]m is non-empty. Now
suppose that a, b ∈ Fixm(H)∩ [x]m. Then (a, x), (b, x) ∈ θm. So m(a) = m(b).
Hence a = b. �

Definition 3.17. Let H be a WH-algebra. A non-empty subset F of H is
called a quasi-filter if it satisfies the following conditions for all x, y ∈ H:
(qf1) x ∈ F implies y → x ∈ F ,
(qf2) if x ≤ y and x ∈ F , then y ∈ F .

Example 3.18. (1) It is clear that {1} is a quasi-filter of a WH-algebra H.
(2) Let H = {0, a, b, 1} with 0 < a, b < 1, such that a, b are not comparable.
Consider the following binary operation:

→ 0 a b 1
0 1 1 1 1
a 1 1 1 1
b b b 1 1
1 b b 1 1

Then H = (H,∨,∧,→, 0, 1) is aWH-algebra ( [11]). Then filter F = {b, 1} is
a quasi-filter. Also, F1 = {a, 1} is a filter but it is not a quasi filter because
a ∈ F1 but b→ a = b 6∈ F1.

Proposition 3.19. (1) Every filter of a basic algebra is a quasi filter.
(2) Every deductive system of an SDWH-algebra is a quasi filter.
(3) If m is a multiplier in a WH-algebra H, then Fixm(H) is a quasi filter.
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Proof. (1) Suppose that F is a filter of a basic algebra H and x ∈ F . Then
x ≤ 1→ x ≤ y → x. Hence y → x ∈ F .
(2) Let D be a deductive system of SDWH-algebra H and x ∈ D. Then
x→ (y → x) = (x→ y)→ (x→ x) = (x→ y)→ 1 = 1 ∈ D. So y → x ∈ D.
(3) Let m is a multiplier in a WH-algebra H and x ∈ Fixm(H). Then m(y →
x) = y → m(x) = y → x. Thus y → x ∈ Fixm(H). �

Proposition 3.20. Let D be a quasi-filter of a WH-algebra H and θ be a weak
congruence on H such that D∩ [x]θ is a singleton set for all x ∈ H. Then there
exists a multiplier m in H such that Fixm(H) = D.

Proof. Let x0 be the single element of D ∩ [x]θ. Define a self-mapping m :
H → H by m(x) = x0 for all x ∈ H. We have m(x) = x0 ∈ D ∩ [x]θ. Thus
(m(x), x) ∈ θ, y → m(x) ∈ D by (qf1) and m(x) ∨ y ∈ D by (qf2). So (y →
m(x), y → x) ∈ θ and (y ∨m(x), y ∨ x) ∈ θ . Hence y → m(x) ∈ [y → x]θ and
y∨m(x) ∈ [y∨x]θ. Thus y → m(x) ∈ D∩ [y → x]θ and y∨m(x) ∈ D∩ [y∨x]θ.
Since m(y → x) ∈ D ∩ [y → x]θ and D ∩ [y → x]θ is a singleton set, we obtain
m(y → x) = y → m(x). Similarly, m(y ∨ x) = y ∨ m(x). Therefore, m is a
multiplier in H. It is easy to prove that Fixm(H) = D. �

4. m-Stabilizer in WH-algebras

In this section, we apply the concept of multiplier in WH-algebras to define
m-stabilizers and study them.

Definition 4.1. Let m be a multiplier in a WH-algebra H and X be a non-
empty subset of H. Then the sets

Lm(X) = {a ∈ H|m(a) ∨ x = x, ∀x ∈ X}
and

Rm(X) = {a ∈ H|x ∨m(a) = m(a),∀x ∈ X}
are called the left and right m-stabilizers of X, respectively.

Remark that Lm(X) = {a ∈ H|m(a) ≤ x, ∀x ∈ X} and Rm(X) = {a ∈
H|x ≤ m(a),∀x ∈ X}.

Example 4.2. (1) Let m = idH be identity map on an arbitrary WH-algebra
H. Then Lm({x}) = (x] and Rm({x}) = [x) for all x ∈ H.
(2) Let m be a unit mapping on a WH-algebra H. If X = {1}, then Lm(X) =
H, otherwise Lm(X) = ∅. Also, Rm(X) = H for all ∅ 6= X ⊆ H.
(3) Consider multiplier m3 in Example 3.2. Let X = {a}, then Lm3(X) =
{0, a} and Rm3

(X) = H.

Proposition 4.3. Let m be a multiplier in a WH-algebra H, x ∈ H and X,Y
be two non-empty subsets of H. Then
(1) x, 1 ∈ Rm({x}),
(2) Rm({0}) = H and Rm({1}) = Rm(H) = Ker(m),
(3) if X ⊆ Y , then Rm(Y ) ⊆ Rm(X) and Lm(Y ) ⊆ Lm(X),
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(4) if x ∈ Fixm(H), then 0, x ∈ Lm({x}),
(5) Lm({1}) = H,
(6) Lm(H) 6= ∅ if and only if m = idH if and only if Lm({0}) 6= ∅.

Proof. (1) It follows from Proposition 3.3 parts (1) and (2).
(4) By assumption x ∈ Fixm(H). Thus m(0)∨x = m(0)∨m(x) = m(0∨x) =
m(x) = x. Hence 0 ∈ Lm({x}). Also m(x)∨x = x∨x = x. Thus x ∈ Lm({x}).
(6) Suppose that Lm(H) 6= ∅. Then there exists a ∈ H such that m(a)∨x = x,
for all x ∈ H. Since 0 ∈ H, then m(a) = 0. By Proposition 3.3 part (9), we
get a = 0. Then m = idH by 3.3 part (10). Conversely, if m = idH , then
m(0) = 0. Hence 0 ∈ Lm(H), that is Lm(H) 6= ∅. Similarly, we can prove that
Lm({0}) 6= ∅ if and only if m = idH .
The proofs of the other parts are easy by Proposition 3.3. Hence the details
are omitted. �

Proposition 4.4. Let m be a multiplier in a WH-algebra H. Then
(1) Rm({x}) is a filter,
(2) if H is a chain, then Rm({x}) is a prime filter,
(3) if m is one to one and Rm({x}) is a prime filter for all x ∈ H, then H is
a chain.

Proof. (1) Let a, b ∈ Rm({x}). Then

x ∨m(a ∧ b) = x ∨ (m(a) ∧m(b)) = (x ∨m(a)) ∧ (x ∨m(b))

= m(a) ∧m(b) = m(a ∧ b).

Hence a ∧ b ∈ Rm({x}). Now, suppose that a ≤ b and a ∈ Rm({x}). Then
x ∨m(b) = x ∨m(a ∨ b) = x ∨ a ∨m(b) = x ∨m(b) by (M2) and Proposition
3.3 part (2). Thus b ∈ Rm({x}). Hence Rm({x}) is a filter.
(2) The proof is trivial.
(3) We have a ∨ b ∈ Rm({a ∨ b}) by Proposition 4.3 part (1). By assumption
a ∈ Rm({a ∨ b}) or b ∈ Rm({a ∨ b}). Suppose that a ∈ Rm({a ∨ b}). Then
(a∨ b)∨m(a) = m(a). So b∨m(a) = m(a). We get m(a∨ b) = m(a) by (M2).
Since m is one to one, then a ∨ b = a. Hence b ≤ a. �

Corollary 4.5. Let m be a multiplier in a complete WH-algebra H and x ≤
m(0). Then Rm({x}) = H.

Proof. Since x ≤ m(0), then m(x) ≤ m(0). Hence m(x) = m(0). We have
x ∨m(0) = m(x ∨ 0) = m(x) = m(0). Therefor 0 ∈ Rm({x}). Since Rm({x})
is a filter, then Rm({x}) = H. �

Recall that a completely distributive lattice is a complete lattice in which
arbitrary joins distribute over arbitrary meets.

Proposition 4.6. Let m be a multiplier in a completely distributive WH-
algebra H and x0 =

∧
Rm({x}). Then (Rm({x}),∧,∨, , x0, 1) is a WH-

algebra where a b := (a→ m(b)) ∨ x for all a, b ∈ Rm({x}).
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Proof. Since H is complete, then x0 =
∧
Rm({x}) exists in H. We have

m(x0) =m(
∧
{a|a ∈ Rm({x})}) ∨ 0 = m(

∧
{a|a ∈ Rm({x})} ∨ 0)

=m(0) ∨
∧
{a|a ∈ Rm({x})} =

∧
{m(0) ∨ a|a ∈ Rm({x})}

=
∧
{m(0 ∨ a)|a ∈ Rm({x})} =

∧
{m(a)|a ∈ Rm({x})}.

Thus

x ∨m(x0) =x ∨
∧
{m(a)|a ∈ Rm({x})} =

∧
{x ∨m(a)|a ∈ Rm({x})}

=
∧
{m(a)|a ∈ Rm({x})} = m(x0).

Therefore x0 ∈ Rm({x}). Using Proposition 3.3 parts (4) and (6), we obtain
(Rm{x},∧,∨, x0, 1) is a bounded distributive lattice.
Suppose that a, b, c ∈ Rm({x}) be arbitrary. By Proposition 3.3 part (2)

x ∨m(a b) =x ∨ (m(x ∨ (a→ m(b)))) = x ∨m(x) ∨ (a→ m(b))

=m(x) ∨ (a→ m(b)) = m(x ∨ (a→ m(b))) = m(a b).

Thus a b ∈ Rm({x}).
(WH1) Using distributivity and Proposition 3.3 part (6), we obtain

(a b) ∧ (a c) =((a→ m(b)) ∨ x) ∧ ((a→ m(c)) ∨ x)

=(a→ (m(b) ∧m(c))) ∨ x
=(a→ m(b ∧ c)) ∨ x = a (b ∧ c).

(WH2) We have

(a c) ∧ (b c) = ((a→ m(c)) ∨ x) ∧ ((b→ m(c)) ∨ x)

= ((a ∨ b)→ m(c)) ∨ x = (a ∨ b) c.

(WH3) Applying (M1) and Proposition 3.3 part (6)

(a b) ∧ (b c) = ((a→ m(b)) ∨ x) ∧ ((b→ m(c)) ∨ x)

= (m(a→ b) ∧m(b→ c)) ∨ x
= m((a→ b) ∧ (b→ c)) ∨ x
≤ (m(a→ c) ∨ x)

= (a→ m(c)) ∨ x = a c.

(WH4) By Proposition 3.3 part (2) and the (W2), we get a  a = (a →
m(a)) ∨ x = 1 ∨ x = 1. �

Corollary 4.7. Let m be a multiplier in a finite WH-algebra H, x ∈ H and
x0 =

∧
Rm({x}). Then (Rm{x},∧,∨, , x0, 1) is a WH-algebra where a  

b := (a→ m(b)) ∨ x for all a, b ∈ Rm({x}).

Proof. Since H is finite, then it is complete. The result follows from the above
proposition. �
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Proposition 4.8. Let m be a multiplier in a WH-algebra H and x ∈ Fixm(H).
Then
(1) Lm({x}) is an ideal,
(2) Lm({x}) = (x] where (x] = {a ∈ H|a ≤ x},
(3) if H is a chain, then Lm({x}) is a prime ideal,
(4) if Lm({x}) is a prime ideal for all x ∈ Fixm(H), then Fixm(H) is a chain.

Proof. (1)Since x ∈ Fixm(H), then Lm({x}) 6= ∅ by Proposition 4.3 part
(4). Suppose that a ≤ b and b ∈ Lm({x}). Thus x ∨ m(b) = x. Using
Proposition 3.3 part (6), we obtain x∨m(a) = x∨m(a∧b) = x∨(m(a)∧m(b) =
(x ∨ m(a)) ∧ (x ∨ m(b)) = (x ∨ m(a)) ∧ x = x. Hence a ∈ Lm({x}). If
a, b ∈ Lm({x}), then x∨m(a∨ b) = x∨m(a)∨m(b) = x∨m(b) = x. Therefore
Lm({x}) is an ideal.
(2) Since x ∈ Fixm(H), then x ∈ Lm({x}). Let a ∈ (x] be arbitrary. Then
a ≤ x. Thus m(a) ≤ m(x) = x. We get x ∨ m(a) = x. Hence x ∈ Lm{x}.
So (x] ⊆ Lm({x}). Conversely, let a ∈ Lm({x}). Then x ∨ m(a) = x. So
m(a) ≤ x. By Proposition 3.3 part (2), we get a ≤ x. Hence a ∈ (x]. Thus
Lm({x}) ⊆ (a].
(3) Suppose that a ∧ b ∈ Lm({x}). Since H is a chain, then a ≤ b or b ≤ a. So
a ∈ Lm({x}) or b ∈ Lm({x}).
(4) Let a, b ∈ Fixm(H) be arbitrary. Then a ∧ b ∈ Fixm(H) by Proposition
3.3 part (6). So Lm({a ∧ b}) is a prime ideal by assumption. Since a ∧ b ∈
Lm({a ∧ b}) by Proposition 4.3 part (4), then a ∈ Lm({a ∧ b}) = (a ∧ b] or
b ∈ Lm({a ∧ b}) = (a ∧ b]. Hence a ≤ b or b ≤ a. �

Proposition 4.9. Let m be a multiplier in a WH-algebra H and x ∈ Fixm(H).
Then (Lm({x}),∧,∨, , 0, x) is a WH-algebra where a b := (a→ b) ∧ x for
all a, b ∈ Lm({x}).

Proof. By Proposition 3.3 parts (4) and (6) , it is easy to show that Lm{x}
is closed under ∧ and ∨. Let a ∈ Lm({x}) be arbitrary. Then m(a) ∨ x = x.
Thus m(a) ≤ x. By Proposition 3.3 part (2), we get a ≤ x. Also, 0 ∈ Lm({x})
by Proposition 4.3 part (4). Therefore (Lm({x}),∧,∨, 0, x) is a bounded dis-
tributive lattice.
Let a, b ∈ Lm({x}). We will prove that a b ∈ Lm({x}). We have
x ∨m(a b) = x ∨ (m(a→ b) ∧m(x)) = x ∨ (m(a→ b) ∧ x) = x.
It is easy to see that it satisfies (WH1)-(WH3). Also, we have a  a = (a →
a) ∧ x = x. Hence (Lm({x}),∧,∨, , 0, x) is a WH-algebra. �

5. Conclusion and future research

We have studied multipliers in WH-algebras and proved the set of all multi-
pliers in a WH-algebra is a bounded distributive lattice. Also, if a WH-algebra
is complete, then the set of all its multipliers is a Heyting algebra and so is
a WH-algebra. By a multiplier, we have introduced m-stabilizers and investi-
gated their properties.
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The notion of F-multipliers has been investigated and studied in Heyting alge-
bras [9] and some other algebraic structures such as Bl-algebras [4] and hoop-
algebras [10]. In the future, we will define the notion of F-multipliers in WH-
algebras and will obtain the relationship between F-multipliers in WH-algebras
and multipliers are defined in this paper. Also, since any Heyting algebra
is a WH-algebra, we will study the relationship between the F-multipliers in
WH-algebras and F-multipliers in Heyting algebras. We will develop the lo-
calization theory for WH-algebras by F-multipliers. Then using the notions of
F-multipliers and the prime spectrum of a WH-algebra, we will define a sheaf on
the prime spectrum of WH-algebras and we will try to obtain a Grothendieck-
like sheaf duality for WH-algebras.
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