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Abstract. The Index Generalized Minimal RESidual (IGMRES) algo-
rithm is designed to compute the Drazin-inverse solution of a linear sys-

tem of equations Ax = b, where A is an arbitrary square matrix with

index γ. If γ = 0, then the this method method coincide with Gener-
alized Minimal RESidual (GMRES) method. Also, the kth ideal index

generalized minimal residual polynomial of A is introduced and the roots

of these polynomials are studied. Moreover, by numerical results the con-
vergence rate of these methods are compared by two examples.
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1. Introduction

Let A be an n×n complex matrix. The smallest nonnegative integer γ such
that rankAγ+1 = rankAγ is the index of A, and denoted by γ = ind(A). The
Drazin-inverse of A is the unique matrix called, AD, satisfying the following
relations

Aγ+1AD = Aγ , ADAAD = AD, AAD = ADA.

If A is nonsingular, then AD = A−1. Let b ∈ Cn. We consider the following
linear system of equations

(1) Ax = b.

This system is called singular if γ > 0. In [15] the author introduced the
DGMRES method for singular system of equations (1). The Drazin-invese has
many applications in the singular differential equations [2], theory of Markov
chains [2], cryptographic system [10], dynamical systems [16] and iterative
methods in numerical analysis [3, 4]. The DGMRES method is an iterative
method to approximate the Drazin-inverse solution of the singular systems (1)
by choosing an arbitrary initial guess x0. For more details see [6,9,14,15]. The
kth approximation solution xk of the Drazin-inverse solution is derived by the
Krylov subspace method. In the process of the DGMRES algorithm, the vec-

tors xk = x0 +
∑k−1
i=γ eiA

ir0 are generated, where the integer k ≥ γ + 1, and
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r0 = b−Ax0. The kth Krylov subspace is introduced in the following. For more
details see [12].

(2) Kk(A, Aγr0) := Span{Aγr0, Aγ+1r0, . . . , A
k−1r0}, k > γ.

Let rk = b − Axk be the the kth residual. Then rk = r0 −
∑k
i=γ+1 eiA

ir0,
and Aγrk satisfies

Aγrk = (I −
k∑

i=γ+1

eiA
i)Aγr0.

The coefficients eγ+1, eγ+2, . . . , ek are choosen to minimize the norm of Aγrk.
That is,

‖Aγrk‖ = min
eγ+1,eγ+2,...,ek

‖(I −
k∑

i=γ+1

eiA
i)Aγr0‖.

If γ = 0 the DGMRES method coincide to the GMRES method [13].
We know that the Drazin-inverse could be written as a polynomial of A,

so the exact Drazin-inverse solution of Ax = b is derived in at most n − γ
iterations [15].

By using the Jordan decomposition of an n by n matrix A with index γ > 0,
we obtain the following decomposition.

(3) A = P

[
E 0
0 N

]
P−1,

where P ∈ Mn is a nonsingular matrix, E ∈ Mm is a nonsingular matrix,
0 ≤ m ≤ n, and N ∈Mn−m is a nilpotent of index γ [7, p. 185]. Then

(4) AD = P

[
E−1 0

0 0

]
P−1.

We know that AD can be written as a polynomial in A [7, p. 186]. Then

Aγ+1 = P

[
Eγ+1 0

0 Nγ+1

]
P−1 = P

[
Eγ+1 0

0 0

]
P−1.

The matrix Eγ+1 is invertible and hence by using characteristic polynomial
of Eγ+1, there exists a polynomial q(x) with degree r ≤ m − 1 such that
(Eγ+1)−1 = q(Eγ+1). Then

q(Aγ+1) = P

[
E−(γ+1) 0

0 ∗

]
P−1, and Aγ = P

[
Eγ 0
0 0

]
P−1.

Then for any n×n matrix A with index γ, there exists a polynomial q(x) with
degree r ≤ m− 1

(5) q(Aγ+1)Aγ = P

[
E−1 0

0 0

]
P−1 = AD.

Note that m is the size of the nonsingular part of A and AD could be written
as a multiplication of a polynomial of degree at most m− 1 of Aγ+1 by Aγ .
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In Section 2, we introduce Index-GMRES (IGMRES) for solving singular
linear systems and in Section 3, we study the kth ideal IGMRES polynomial
of A and In Section 4, we compare the residual errors in the DGMRES and
IDGMRES methods by random matrices.

2. IGMRES

Let A be an arbitrary n by n matrix and b ∈ Cn. In this section we introduce
Index GMRES (IGMRES)method based on GMRES and DGMRES methods.
The notion of index numerical range is also investigated in [14]. Note that the
difference between DGMRES and IGMRES are the Krylov subspaces corre-
sponding to them.

Proposition 2.1. [8, Theorem 2] Let A be an arbitrary n by n matrix and
b ∈ Cn. A linear system of equations Ax = b has a Krylov solution if and only
if b ∈ R(Aγ), the range of Aγ .

Note that we can write the above Krylov solution as the Drazin solution
x = ADb. In the following remark, we show that although the linear system
Ax = b may have no solution, but the linear system

(6) Aγ+1x = Aγb.

has a solution, where γ is the index of A.

Remark 2.2. Let A be an arbitrary n by n matrix with index γ and b ∈ Cn.
Since Aγ+1AD = Aγ , the equation Aγ+1x = Aγb has a solution x = AD(Aγb).

Therefore, to compute the Drazin solution of an arbitrary linear systems
of equations Ax = b, it is enough to compute the solution of the (consistent)
linear system Aγ+1x = Aγb. Let x0 be an arbitrary initial guess. Then r0 =
Aγb − (Aγ+1x0) = Aγ(b − Ax0) = Aγ(r0). By (5), we know that the Drazin-
inverse solution ADb = q(Aγ+1)Aγb, for some polynomial q(·) of degree at most
m− 1. Then we consider the following Krylov subspace:

Kk(Aγ+1, r0) = span{r0, Aγ+1r0, A
2(γ+1)r0, . . . , A

(k−1)(γ+1)r0}.

Note that when γ = 0, the above Krylov subspace is the same as the Krylov
subspace in GMRES method. The IGMRES process works as follows: Let
x0 be an initial guess, the initial residual r0 := b − Ax0, If Aγr0 = 0, then
x0 is a solution of Aγ+1x = Aγb. Now, assume β = ‖Aγr0‖ 6= 0. Define
v1 := (Aγr0)/β. Note that ‖ · ‖ denotes the Euclidean norm for vectors and the
induced operator norm for matrices. The approximate solutions xk = x0 + η,
where η ∈ Kk(Aγ+1, v1) is chosen to minimize ‖b − Axk‖. Arnoldi algorithm
constructs an orthonormal basis {v1, . . . , vk} for the Krylov space Kk(Aγ+1, v1).
Define Vk := [v1| · · · |vk]. Then

(7) Aγ+1Vk = Vk+1Hk+1,k,
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where Hk+1,k ∈ Mk+1,k(C) is an upper Hessenburg matrix. Therefore, the
approximate solution xk is of the form xk = x0 + Vkξ, where ξ ∈ Ck. Then the
residual

rk := b−Axk = b−A(x0 + Vkξ) = r0 −AVkξ.
Note that the linear system Ax = b may be inconsistent, so rk may not goes to
zero. But, we know that Aγ+1x = Aγb has x = ADb as a solution. Therefore,
we should consider Aγrk instead of rk. By using (7), Aγrk can be written as

Aγrk = Aγr0 −Aγ+1Vkξ = Aγr0 − Vk+1Hk+1,kξ.

Since Aγr0 = Vk+1(βe1), where e1 = (1, 0, . . . , 0)T ∈ Rk, we can write

(8) Aγrk = Vk+1(βe1 −Hk+1,kξ).

By solving the least squares problem Hk+1,kξ = βe1, the vector ξ can be chosen
to minimize ‖Aγrk‖. Now we state the IGMRES algorithm

Algorithm 1 IGMRES algorithm

Compute comput r0 = b−Ax0 ; v1 = Aγr0;β := ‖v1‖
v1 := v1/β
for j = 1 to k do
wj = Aγ+1vj
for i = 1 to j do
hij = (wj , vi)
wj = wj − hijvi

end for
hj+1,j = ‖wj‖
if hj+1,j = 0 then
k = j break

else
set vj+1 = wj/hj+1,j

end if
end for
Form the matrix Ĥk ∈ R(k+1)×(k−γ)

Compute the QR factorization of Ĥk: Ĥk = QkRk;Qk ∈ R(k+1)×(k−γ) and
Rk ∈ R(k−γ)×(k−γ) (Rk is upper triangular).
Solve the (upper triangular) system Rkzk = β(Q∗

ke1),
where e1 = [1, 0, . . . , 0]t.
Compute ‖Aγrk‖ = ‖βe1 −QkRkzk‖ and xk = x0 + Vkzk.

This GMRES-like implementation is stable numerically, because the errors
are tapered off and do not increase at least for several iterations. In the fol-
lowing, we show that the errors in the IGMRES method are decreasing and
the mth error is zero. Then the IGMRES method terminates at most after m
iteration, where m is the order of nonsingular part of A as in (3).
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Theorem 2.3. Let A be as in (3) with index γ and let m be the order of E as
in (3) and b ∈ Cn. Then the residual error in the IGMRES method, Aγrm = 0.
Therefore, the IGMRES method terminates at most after m iterations.

Proof. In IGMRES method, we are looking to find the Drazin-inverse solution
ADb of the linear system Ax = b or the exact solution of Aγ+1x = Aγb.
By (5), there exists a polynomial q(x) of degree at most m − 1 such that
AD = q(Aγ+1)Aγ .

‖Aγrm‖ = ‖Aγ(b−Axm)‖ = mine1,...,em−1‖Aγ(b−A(x0 +

m−1∑
i=0

eiA
i(γ+1)Aγr0)‖

= mine1,...,em−1
‖Aγr0 −Aγ+1

(
m−1∑
i=0

eiA
i(γ+1)

)
Aγr0‖

≤ ‖Aγr0 −Aγ+1q(Aγ+1)Aγr0‖ ≤ ‖(Aγ −Aγ+1AD)‖‖r0‖ = 0. �

Remark 2.4. Note that the order of convergence for the constructed sequence
xk in the IGMRES method is O(kγn2), where n is the size of matrix A, γ is
the index of A and k is the number of iterations. This order is the same as
DGMRES method.

3. kth ideal IGMRES polynomial

Let A and P be as in (3) and let P = QR be the QR decomposition of P .
Then by using this QR decomposition, we obtain

(9) A = QR

[
E 0
0 N

]
R−1Q∗ = Q

[
E ∗
0 N

]
Q∗,

where E and N are m×m nonsingular and n−m×n−m nilpotent matrices,
respectively.

Let A be as in (9) with index γ. The IGMRES algorithm described in Section

2 generates vectors xk, k = 1, 2, . . . ,m, of the form xk = x0+
∑k
i=1 eiA

i(γ+1)r0.

The kth residual rk := b−Axk = r0 −
∑k
i=1 eiA

i(γ+1)r0. Then

Aγrk =

(
In −

k∑
i=1

eiA
i(γ+1)

)
Aγr0.

.
The coefficients e1, . . . , ek are chosen to minimize ‖Aγrk‖.

(10) ‖Aγrk‖ = min
e1,...,ek

‖(In −
k∑
i=1

eiA
i(γ+1))Aγr0‖.

From (9) and (10),

(11) ‖Aγrk‖ = min
e1,...,ek

∥∥∥∥Q [ Im −
∑k
i=1 eiE

i(γ+1) ∗
0 In−m

]
Q∗Aγr0

∥∥∥∥ .
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Note that the first m columns of Q form an orthonormal basis for the range
of Aγ and the remaining n −m columns of Q form an orthonormal basis for
the orthogonal complement of the range of Aγ . Then the last n−m entries of
Q∗Aγr0 are zeros and the first m entries of the vector Q∗Aγr0 is denoted by
r̂0 ∈ Rm, i.e. Q∗Aγr0 = (r̂0, 0n−m)T (see [6]).

‖Aγrk‖ = min
e1,...,ek

‖(Im −
k∑
i=1

eiE
i(γ+1))r̂0‖

≤ min
e1,...,ek

‖(Im −
k∑
i=1

eiE
i(γ+1))‖‖r̂0‖.

Since ‖ · ‖ is unitary invariant norm, ‖r̂0‖ = ‖Q∗Aγr0‖ = ‖Aγr0‖. Therefore,

(12) ‖Aγrk‖/‖Aγr0‖ ≤ min
e1,...,ek

‖Im −
k∑
i=1

eiE
i(γ+1)‖.

Since Eγ+1 is nonsingular, we obtain that the minimum in (12) is obtained.
The bound in (12) is called the kth ideal residual norm bound for IGM-

RES. Note that this bound is the same as the kth ideal residual norm bounds
for GMRES, when the algorithm is applied to a problem with the nonsin-
gular coefficient matrix E(γ+1) and initial residual r̂0. If mine1,...,ek ‖Im −∑k
i=1 eiE

i(γ+1)‖ > 0, then the coefficients e1, . . . , ek are uniquely determined
[11]. Therefore, there exist ẽ1, . . . , ẽk such that

min
e1,...,ek

‖I −
k∑
i=1

eiE
i(γ+1)‖ = ‖I −

k∑
i=1

ẽiE
i(γ+1)‖.

Therefore, the following upper bound for the relative error in the kth iteration
of the IGMRES method is obtained.

(13)
‖Aγrk‖
‖Aγr0‖

≤ ‖I −
k∑
i=1

ẽiE
i(γ+1)‖.

Now, we define the following polynomial as the kth− ideal IGMRES poly-
nomial of A.

(14) p(x) := 1 + ẽ1x
γ+1 + ẽ2x

2(γ+1) + · · ·+ ẽkx
k(γ+1).

Note that the kth− ideal GMRES polynomial of E(γ+1) is as follows:

(15) q(x) := 1 + ẽ1x+ ẽ2x
2 + · · ·+ ẽkx

k.

3.1. The roots of the kth ideal IGMRES polynomial. In this subsection,
we compute the roots of kth ideal IGMRES polynomial of A. First, we define
the Ritz and harmonic Ritz values of square matrix A.
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Definition 3.1. Let A be an n × n matrix and let V be a k-dimensional
subspace of Cn, and let the columns of V ∈ Cn×k form an orthonormal basis
for V. The eigenvalues of V ∗AV are called the Ritz values of A with respect
to V. These values are independent of the orthonormal basis V for V. Also,
if A is an invertible, then the harmonic Ritz values are the reciprocals of the
(ordinary) Ritz values of A−1 computed from V.

Now, for singular matrix A, we define the harmonic Ritz values as follws:

Definition 3.2. Let A be an n × n matrix with ind(A) = γ and let V be a
linear subspace of range of Aγ . Then µ is a harmonic Ritz value of A with
respect to V if µ−1 is a Ritz value of AD with respect to V if (ADv− µ−1v) ⊥
V, for some 0 6= v ∈ V.

Note that if A is a nonsingular matrix, then γ = 0 and AD = A−1. Then
the above definition coincide with the definition of harmonic Ritz values for
nonsingular matrices. For more details see [1, 5]

Let A be a nonsingular n×n matrix. Kim-Chuan Toh in his Ph.D. thesis [17,
Theorem 5. 11] shows that the roots of the ideal GMRES polynomials of A are
the harmonic Ritz values of A. In the following, we extend this theorem for
any n× n matrix A.

Theorem 3.3. Let A be an n × n matrix with ind(A) = γ. Then the roots
of the kth ideal IGMRES polynomial of A are in the set of all (γ + 1)th

roots of the harmonic Ritz values of A corresponding to the Krylov subspace
{Aγr0, Aγ+1(Aγr0), . . . , A(k−1)(γ+1)(Aγr0)}, where r0 = b−Ax0 and x0 is the
initial guess.

Proof. Let p(x) := 1 + ẽ1x
γ+1 + ẽ2x

2(γ+1) + · · · + ẽkx
k(γ+1) be the kth−

ideal IGMRES polynomial of A. By (15), q(x) = 1 + ẽ1x + ẽ2x
2 + · · · + ẽkx

k

is the kth-ideal GMRES polynomial of Eγ+1. Toh in [17, Theorem 5. 11]
shows that the roots of q(x) are the harmonic Ritz values of Eγ+1 corre-
sponding to the kth−Krylov subspace Span{v0, Eγ+1v0, . . . , E

(γ+1)(k−1)v0},
where v0 ∈ R(Aγ). Therefore, the roots of p(x) are the (γ + 1)th roots of
the harmonic Ritz values of Eγ+1 corresponding to the kth Krylov subspace
{r̂0, Eγ+1r̂0, . . . , E

(γ+1)(k−1)r̂0}. �

4. Numerical Results

In the following two examples the residual errors and CPU times in the
DGMRES and IGMRES methods are compared.

Example 4.1. Let A =

[
E 0
0 N

]
, where E ∈ Cm×m be a random matrix,

N ∈ Cn−m×n−m be the Jordan block with index n − m and b ∈ Cn. In the
following figures, we depict the residual errors of DGMRES and IGMRES for
different values of n and m. In Figure 1-(a) we consider n = 100 and m = 97.
The CPU times of the IGMRES method is 0.0872 sec. and the CPU times of
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the DGMRES method is 0.0811 sec. In Figure 1-(b) we consider n = 20 and
m = 18. The CPU times of the IGMRES method is 0.0131 sec. and the CPU
times of the DGMRES method is 0.0116 sec.

Figure 1. (a) (b)

Example 4.2. Let A =

[
E 0
0 N

]
, where E=gallery(’smoke’,m) from Matlab

gallery, N ∈ Cn−m×n−m be the Jordan block with index n−m and b ∈ Cn. In
the following figures, we depict the residual errors of DGMRES and IGMRES
for different values of n and m. In Figure 2-(a) we consider n = 50 and m = 47.
The CPU times of the IGMRES method is 0.0342 sec. and the CPU times of
the DGMRES method is 0.0311 sec. In Figure 2-(b) we consider n = 30 and
m = 27. The CPU times of the IGMRES method is 0.0244 sec. and the CPU
times of the DGMRES method is 0.0170 sec.

Figure 2. (a) (b)

In the following example by using the IGMRES method, the Drazin invese
solution of Ax = b is obtained, where A is 4 × 4 matrix and b is an arbitrary
vector in R4.
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Example 4.3. Let A =

[
E 0
0 N

]
, where E=gallery(’smoke’,2)=

[
−1 1
1 1

]
from Matlab gallery, N =

[
0 1
0 0

]
be the Jordan block with index 2 and b be an

arbitrary vector in R4. Then by choosing the initial guess x0 = 0, the residual
r0 = b − Ax0 = b and r0 = A2(b). So, the Krylov subspace corresponding to
IGMRES method is

K2(A3, r0) = span{r0, A3(r0)}.

Note that A3 =

[
E3 0
0 0

]
. By using (5), E−3 = q(E3), where q(x) = 1

8x and

hence

AD = q(A3)A2 =

[
E−1 0

0 0

]
,where E−1 =

1

2

[
−1 1
1 1

]
.

Therefore, the Drazin solution ADb ∈ K2(A3, r0), which means that the IGM-
RES method find the solution after two iteration.

5. Conclusion

A new iterative method IGMRES is introduced to obtain the Drazin inverse
solution of the singular system of equations Ax = b. In this method we are
using a new Krylov subspace. The convergence and the bounds for the relative
errors of IGMRES are investigated. The kth ideal IGMRES polynomial as
the upper bound for the relative error of the IGMRES and the harmonic Ritz
value for singular matrices are introduced and the roots of these polynomials
are studied. Although the CPU time in DGMRES method is a little bit less the
CPU time in IGMRES method, but the convergence rate of IGMRES method
is faster than DGMRES method, see Example 4.2.
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