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Abstract. In this work, a novel probability distribution is introduced
and studied. Some characterizations are presented. Several financial risk

indicators, such as the value-at-risk, tail-valueat-risk, tail variance, tail

Mean-Variance, and mean excess loss function are considered under the
maximum likelihood estimation, the ordinary least squares, the weighted

least squares, and the Anderson Darling estimation methods. These four
methods were applied for the actuarial evaluation under a simulation

study and under an application to insurance claims data. For distribu-

tional validation under the complete data, the well-known Nikulin-Rao-
Robson statistic is considered. The Nikulin-Rao-Robson test statistic is

assessed under a simulation study and under three complete real data

sets. For censored distributional validation, a new version of the Nikulin-
Rao-Robson statistic is considered. The new Nikulin-Rao-Robson test

statistic is assessed under a comprehensive simulation study and under

three censored real data sets.
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1. Introduction

In this paper we will present and study a new continuous probability distri-
bution, but we will study the new distribution via new aspects that differ from
those dealt with by most researchers. We will neglect many theoretical results
and algebraic derivations, not because they are not important, but to allow for
the opportunity to highlight more applied aspects in the field of risk assess-
ment and analysis and in the field of distributive verification and its related
practical applications on complete data and censored data. We will, however,
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cover some theoretical aspects of the new distribution by presenting and dis-
cussing some characterizations based on two truncated moments; in terms of
the hazard function; and based on the basis of the conditional expectation of
a function of the random variable (RV). However, as we have indicated, we
will focus on practical and applied aspects of the proposed distribution in the
following areas specifically:

(1) In the field of analyzing and evaluating the risks facing insurance com-
panies by evaluating and analyzing insurance claims data by studying
a set of commonly used financial indicators such as: the value-at-risk
(VAR), tail-value-at-risk (TVAR) (also known as conditional tail ex-
pectation, conditional-value-at-risk (CVAR), tail variance (TV), tail
Mean-Variance (TMV) and the mean excess loss (MEL) function. For
the purpose of computing the main key risk indicators (KRIs), the fol-
lowing estimation techniques are discussed: the maximum likelihood
estimation (MLE) method, the ordinary least squares (OLS) method,
the weighted least squares estimation (WLSE) method, and the An-
derson Darling estimation (ADE) method. These four aforementioned
methods were used and employed in two different directions of finan-
cial and actuarial assessment, namely simulation under three confidence
levels (CLs) and various sample sizes are considered for applications to
insurance claims data.

(2) To complete the requirements of the actuarial analysis of risks, we pro-
vide a simulation study to compare the performance of the estimators
of VaR based on insurance data

(3) In the framework of distributional validation and statistical hypothesis
tests for the complete data, the well-known Nikulin-Rao-Robson (NRR)
statistic (Y 2), which is based on the uncensored maximum likelihood
estimators (UMLEs) on initial non-grouped data, is considered under
a probability model called the Burr X exponentiated gamma (BXEG)
model. The Y 2 statistic is assessed via a simulation study under three
real data sets.

(4) In the framework of distributional validation and statistical hypothesis
tests for the censored data, a modified NRR statistic (M2), which is
based on the censored maximum likelihood estimators (CMLEs) on
initial non-grouped data, is considered under the BXEG model. The
M2 statistic is assessed via comprehensive simulation study under three
real data sets.

Following Yousof et al. [37], the cumulative distribution function (CDF) of
the BXEG model can be written as

(1) FV(x) = [1− % (x; θ)]
a |x≥0,



Distributional Nikulin-Rao-Robson validity under a novel... – JMMR Vol. 13, No. 3 (2024) 3

where V = (a, λ, θ), a, λ, θ > 0, ς (x) = 1 − (1 + λx) exp (−λx) , % (x; θ) =

exp

{
−
[
ς (x)

−θ − 1
]−2
}

and [ς (x)]
θ

refers to the CDF of the exponentiated

gamma model proposed by Gupta et al. [12]. The exponentiated gamma model
is flexible enough to accommodate both monotonic as well as nonmonotonic
failure rates. The probability density function (PDF) correspondint to (1) can
be expressed as

(2) fV(x) = 2aθλ2x
exp (−λx) ς (x)

2θ−1
[
1− ς (x)

θ
]−3

exp

{[
ς (x)

−θ − 1
]−2
}

[1− % (x; θ)]
−a+1

|x>0.

Generally, there are several criteria that may be applied to determine if a
statistical model is legitimate. For the uncensored data, the most popular
tests are those based on the empirical functions, such as the likelihood ratio
test, Akaike information criteria, Bayesian information criteria, or chi-square
tests. These tests include Kolmogorov-Smirnov, Anderson-Darling, and other
statistics. The NRR statistic (Y 2), based on the MLEs on initial non-grouped
data, is of particular importance among these goodness-of-fit evaluations. This
Nikulin ( [26], [27], [28]) and Rao and Robson [29] statistic restores information
lost during data grouping and has a chi-square distribution. However, the
existence of censorship renders all the conventional goodness-of-fit tests invalid
and leads to several practical issues. As a result, several researchers offered
various revisions of current goodness-of-fit tests. A modified NRR statistic
was created by Bagdonavicius and Nikulin [4] for statistical distributions with
unknown parameters and right censoring. This version of the NRR statistic
may be used to fit data from domains like survival analysis, dependability,
and others where data is often censored since it recovers all the information
lost during data regrouping. In this study, we will provide modified NRR chi-
square goodness-of-fit test statistics for fitting full and right-censored data to
the suggested model, following Nikulin ( [26], [27], [28] and Rao and Robson
[29].

The NRR statistic is a well-known variant of the traditional chi-squared tests
in the situation of full data. It is based on differences between two estimators of
the probability for falling into grouping intervals. One estimate is based on the
empirical distribution function, and the other on maximum likelihood estimates
of the tested model’s unobserved parameters using ungrouped initial data. (see
Nikulin ( [26], [27], [28]), and Rao and Robson [29] for more details and see
Goual and Yousof [9], Goual et al. [10], Goual et al. [11] for more relevant
applications under uncensored schemes). Generally, the statistical methods for
testing hypotheses and the censored validity of parametric distributions are in
increasing development, but the presence of censorship is considered as a big
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challenge. In the history of the statistical literature for verification tests in
the case of controlled data, there are many contributions that are clear and
cannot be ignored, and there are many who have contributed to the field of
application.

In the statistical literature, there are not many studies that dealt with the
test NRR, because of the scarcity of these studies, they can be counted, and
here we will mention the recent ones of them: Goual et al. [10] for the odd
Lindley exponentiated exponential validation by a modified NRR goodness of
fit test with some applications to censored and uncensored data. Abouelmagd
et al. [1] for distributional validity of the zero truncated Poisson-Burr-X G fam-
ily of distributions. Ibrahim et al. [20] for new modified validation test under
a new extension of Lindley distribution with characterizations and estimation
different methods. Goual et al. [11] for validation of the Burr type XII inverse
Rayleigh model via a modified NRR chi-squared goodness-of-fit test. Yadav
et al. [33] for the distributional validation of the Topp-Leone-Lomax distribu-
tion via a modified NRR goodness-of-fit test with different classical estimation
methods. Ibrahim et al. [18] for a modified NRR goodness-of-fit test for the
censored distributional validaty using a new Burr type XII model with different
classical methods of estimation and censored regression modeling. Yousof et
al. [36] for Aa new inverted Rayleigh model with copulas, properties, various
classical methods modified NRR right censored test for distributional valida-
tion. Finally, Yadav et al. [34] for distributional xgamma exponential validation
via the NRR goodness-of- fit statistic test under censored and uncensored sam-
ple with estimation under different methods. For other applications, see Yousof
et al. [38], Ibrahim et al. [17], Khalil et al. [22], Emam et al. [7], Emam et al. [8],
Aidi et al. [2] and Yousof et al. [35].

In this study, the BXEG distribution is derived and used, the complete and
right censored scenarios are used to validate a modified chi-squared goodness-
of-fit test statistic based on the NRR test (Y 2) and the modified NRR test (M2)
respectively. First, the Y 2 statistic test is used for testing the null hypothesis
H0 according to which a certain complete sample belongs to a BXEG model.
The NRR statistic test is evaluated using a simulation study via the Barzilai-
Borwein (BB) algorithm (see Ravi and Gilbert [30]) in the case of complete data
and a simulation study in the case of censored data. In the simulation studies,
we have relied on the standard mean square error (MSEs) in the evaluation pro-
cess, taking into account different sample sizes to help us evaluate the behavior
of the test with an increase in the sample size. The Barzilai and Borwein gra-
dient methodology has received a lot of interest from a variety of optimization
areas. This is due to its practical usefulness, computer affordability, and sim-
plicity. Using spectral analysis techniques, this paper proves root-linear global
convergence for the Barzilai and Borwein method for strictly convex quadratic
problems presented in infinite-dimensional Hilbert spaces. The application of
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these discoveries to two optimization problems controlled by partial differential
equations is demonstrated.

Three uncensored real data sets are used to apply the NRR test (Y 2) for
distributional validation. The uncensored real data that have been considered
and included in the analysis are the times between failures for repairable items
data, the reliability data and the strengths of glass fibers data. Three right-
censored real data sets are used to apply the modified NRR test (M2) for
distributional validation. The censored real data that have been considered
and included in the analysis are times to infection of kidney dialysis patients
data, the bone marrow transplant data and the strength of a certain type of
braided cord data.

The new NRR statistical test demonstrated that the new model is an ef-
fective substitute for examining two right censored data sets. In this regard,
we will describe a few recent research results that extended the NRR in new
or modified ways. Given that the NRR goodness-of-fit test has specific re-
quirements, strict procedures, and demands censored data, it is important to
note that the browser for statistical literature on this topic (NRR goodness-
of-fit test) will not find many new NRR goodness-of-fit extensions but a few
research that applied this test. As is generally known, obtaining fresh censored
data to apply to and emphasise the significance of the new test is difficult. In
the next few paragraphs, we will discuss a few recent research results that use
this test on actual data that had been subject to right-wing censoring, along
with a description of the findings from each study independently.

2. Characterization results

The characterizations of the BXEG distribution in the following ways are
covered in this section: (i) on the basis of two truncated moments; (ii) in terms
of the hazard function and (iii) on the basis of the conditional expectation of
a function of the RV. It is not necessary for the CDF to have a closed form for
characterisation (i). The characterizations will be presented in the following
subsections.

2.1. Characterizations based on two truncated moments. The charac-
terizations of the BXEG distribution based on the connection between two
truncated moments are covered in this subsection. The first characterisation
makes use of the theorem of Glänzel [13]. It is obvious that the outcome is still
true if interval H is not closed. Please refer to Glänzel [14] to see how stable
this categorization is in terms of weak convergence.

Proposition 2.1.1. The RV X : Ω→ (0,∞) is continuous, and assume

h(x) =

{
1− ς (x)

θ
}3

% (x; θ)
[1− % (x; θ)]

1−a
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and g(x) = h(x) [ς (x)]
2θ

for x > 0. Then, the density of X is (2) if and only if
the function ζ(x) defined in the theorem of Glänzel [13] is

ζ(x) =
1

2

{
1 + ς (x)

2θ
}
|x>0.

Proof. If X has PDF (2), then

FV (x)E
[
h(X) | X≥x

]
= a

[
1− ς (x)

2θ
]
|x>0

and

FV (x)E
[
g(X) | X≥x

]
=
a

2

[
1 + ς (x)

4θ
]
|x>0,

where FV (x) = 1− FV (x) and finally

ζ(x)h(x) − g(x) =
1

2
h(x)

{
1− ς (x)

2θ
}
> 0|x>0.

Conversely, if ζ has the above form, then

s′ (x) =
h(x)ζ

′
(x)

ζ(x)h(x) − g(x)
= 2θλ2xe

−λς (x)
2θ−1

1− ς (x)
2θ

,

and hence s (x) = − log
{

1− [ς (x)]
2θ
}
|x>0. In view of theorem of Glanzel

(1987), X has PDF (2) .

Corollary 2.1.1. If X : Ω → (0,∞) is a continuous RV and h(x) is as
in Proposition 2.1.1., then, X has PDF (2) if and only if there exist functions
g and ζ defined in the theorem of Glänzel (1987) satisfying the following first
order differential equation

h(x)ζ
′
(x)

h(x)ζ(x) − g(x)
= 2θλ2x exp (−λ) ς (x)

2θ−1

1− ς (x)
2θ

.

Corollary 2.1.2. The general solution of the above differential equation is

ζ(x) = −ID (a, λ, θ)
[
1− ς (x)

2θ
]−1

,

where ID (a, λ, θ) =
∫

2θλ2x exp (−λ) ς (x)
2θ−1

g(x)

[
h(x)

]−1
+ D and D is a

constant. A set of functions satisfying this differential equation is presented in
Proposition 2.1.1 withD = 1

2 . Clearly, there are other triplets (h, g, ζ) satisfying
the conditions of the theorem of Glänzel [13].
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2.2. Characterization based on hazard function. The hazard function,
hF,V, of a twice differentiable distribution function, FV with density fV, sat-
isfies the first following trivial first differential equation f ′V(x)/f V(x) =

h′
F,V

(x)/hF,V(x)−hF,V(x). For many univariate continuous distributions, this

is the only hazard function-based characterization that is currently available.
The statement below gives a non-trivial characterization of the BXEG distri-
bution for a = 1.

Proposition 2.2.1. Suppose X : Ω → (0,∞) is a continuous RV. The
density of X is (2) if and only if the following differential equation holds

h′F,V (x) + λhF,V (x) = 2θλ2 exp (−λx)
d

dx

 xς (x)
2θ−1[

1− ς (x)
θ
]3
 |x>0,

with the initial condition limx→0 hF (x) = 0.
The proof. is straightforward and hence omitted.

2.3. Characterizations based on conditional expectation. Hamedani [15]
makes the following claim, thus we will use it to characterize the BXEG distri-
bution for a = 1.

Proposition 2.3.1. Suppose the RV X : Ω → (a, b) is continuous with
CDF FV . If Υ(x) is a differentiable function on (a, b) with limx→0+ Υ(x) = 1,

then for δ 6= 1 , E
[
Υ(X) | X≥x

]
= δΥ(X), x ∈ (a, b) if and only if Υ(x) =[

1− FV (x)
] 1
δ−1 |x∈(a,b).

Remark 2.3.1. Taking (a, b) = (0,∞) , Υ(x) = exp

{
− 1

2

[
ς (x)

−θ − 1
]−2
}

and δ = 2
3 , A characterization of the BXEG distribution is provided in propo-

sition 2.3.1. Obviously, there are further potential uses.

3. KRIs

The characterization of risk exposure that the probability-based distribu-
tions may offer is sufficient. One value, or at the very least a limited group of
numbers, is frequently used to indicate the amount of risk exposure. These risk
exposure statistics are obviously functions of a certain model and are frequently
referred to as important KRIs. Such KRIs provide actuaries and risk managers
with information on the degree to which a firm is exposed to specific types
of risk. Numerous KRIs, including the VAR, the TVAR which also known as
CVAR), the TV indicator, the TMV) and the MEL function, among others,
can be taken into account and examined. The VaR is a quantile of the distribu-
tion of aggregate losses in particular. Actuaries and risk managers frequently
focus on estimating the likelihood of a negative result, which may be conveyed
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using the VaR indicator at a certain probability/confidence level. This indica-
tor is frequently used to calculate the amount of capital needed to deal with
such probable negative situations. The VAR of the BXEG distribution at the
100q% level, say VAR(X) or π (q), is the 100q% quantile (or percentile). Then,
we can simply write

(3) VAR (X) = Pr (X > Q (U)) =


1%|q=99%

5%|q=95%

...

,

where Q (U) is from (3), for a one-year time when q = 99%, the interpretation
is that there is only a very small chance (1%) that the insurance company will
be bankrupted by an adverse outcome over the next year. Generally speaking,
if the distribution of gains (or losses) is limited to the normal distribution, it is
acknowledged that the number VAR(X) meets all coherence requirements. The
data sets for insurance such as the insurance claims and reinsurance revenues
are typically skewed whether to the right or to the left , though. Using the
normal distribution to describe the revenues from reinsurance and insurance
claims is not suitable. The TVAR of X at the 100q% confidence level is the
expected loss given that the loss exceeds the 100q% of the distribution of X,
then the TVAR of X can be expressed as

TVAR(X) = E (X|X > π (q)) =
1

1− FV (π (q))

∞∫
π(q)

x fV (x) dx,

then

(4) TVAR(X) =
1

1− q

∞∫
π(q)

x fV (x) dx.

The quantity TVAR(X), which gives further details about the tail of the BXEG
distribution, is therefore the average of all the VaR values mentioned above
at the confidence level q. Moreover, the TVAR(X) can also be expressed as
TVAR(X) = e (X) +VAR(X) , where e (X) is the mean excess loss (MEL) func-
tion evaluated at the 100q%th quantile (see Acerbi and Tasche 2002; Tasche,
2002; Wirch, 1990). When the e (X) value vanishes, then TVAR(X) =VAR(X)
and for the very small values of e (X), the value of TVAR(X) will be very close
to VAR(X) .The TV risk indicator, which Furman and Landsman (2006) de-
veloped, calculates the loss’s deviation from the average along a tail. Explicit
expressions for the TV risk indicator under the multivariate normal distribution
were also developed by Furman and Landsman (2006). The TV risk indicator
(TV(X)) can then be expressed as

(5) TV(X) = E
(
X2|X > π (q)

)
− [TVAR(X)]

2
.
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As a statistic for the best portfolio choice, Landsman (2010) developed the
TMV risk indicator, which is based on the TV risk indicator. Consequently,
the TMV risk indicator may be written as

(6) TMVq(X) = TVAR(X) + πTV(X)|0<π<1.

Then, for any RV, TMVq(X) >TV(X) and, for π = 1, TMVq(X) =TVAR(X).
In view of the theoretical complexities and the fact that the quantile function
is not known in a certain closed form, we will use the methods that provide nu-
merical solutions. We will use ready-made programs such as ”R” and ”MATH-
CAD” to facilitate numerical operations. The use of the numerical methods
has become popular recently for many reasons. The most important of which
is the availability of ready-made statistical programs and the presence of lots
of mathematically complex distributions and models. The fact that has be-
come recognized and cannot be ignored in the field of statistical analysis and
mathematical modeling is that the complexity of models is no longer the real
problem facing researchers, because statistical programs and packages have, in
fact, contributed a lot in simplifying these complexities by providing numerical
solutions. In this paper, we have used numerical methods in the process of risk
analysis and assessment (see Section 4), and numerical methods have also been
used in the problem of distributional validation under the NRR and its new
corresponding version (see Section 7).

4. Risk analysis using different estimation methods

4.1. Risk assessment under artificial data. For the purpose of computing
the above mentioned KRIs, the following estimation techniques are discussed
in this section: the MLE method, the OLS method, the WLSE method, and
the ADE method. Three CLs (q=70%, 90%, 99%) and N=1,000 with various
sample sizes (n = 50, 150, 300, 500) are considered. All results are reported
in Table 1 (n=50; a = 2, λ = 0.7, θ = 0.5), Table 2 (n=150; a = 2, λ =
0.7, θ = 0.5), Table 3 (n=300; a = 2, λ = 0.7, θ = 0.5), and Table 4 (n=500;
a = 2, λ = 0.7, θ = 0.5). We have deliberately determined the parameter
values in this simulation in a way that helps us in the risk analysis process using
artificial values. The simulation aims mainly to evaluate the performance of the
four methods of risk analysis in the hope of determining the most appropriate
and best methods. from Table 1, Table 2, Table 3 and Table 4, we can show
the following results:

(1) VAR(X), TVAR(X) and TMVq(X) increase when q increases for all
estimation methods.

(2) TV(X) and MEL(X) decrease when q increases for all estimation meth-
ods.

(3) VAR(X)WLS <VAR(X)ADE <VAR(X)MLE < VAR(X)OLSE for most
values of q.
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(4) TVAR(X)WLS <TVAR(X)ADE <TVAR(X)MLE <TVAR(X)OLSE for
most values of q.

(5) Through the results of the four tables, we can confirm that all methods
perform in an acceptable manner, and one method cannot be preferred
over another method decisively. Based on this basic result, we are
compelled to present an application on actual data, in the hope that
the application will help us in choosing one method over another and
identifying the most appropriate and best methods.

Table 1. KRIs under artificial data for n = 50.

Method↓ q ↓ KRIs→ VAR(X) TVAR(X) TV(X) TMVq(X) MEL(X)

MLE 70% 1.67944 1.91420 0.03389 1.93115 0.23476
90% 1.96297 2.12906 0.01955 2.13883 0.16608
99% 2.32604 2.43409 0.00971 2.43895 0.10805

OLSE 70% 1.68364 1.91838 0.03390 1.93533 0.23474
90% 1.96713 2.13326 0.01957 2.14304 0.16613
99% 2.33033 2.43840 0.00988 2.44334 0.10807

WLSE 70% 1.68348 1.91916 0.03415 1.93623 0.23568
90% 1.96812 2.13483 0.01970 2.14468 0.16671
99% 2.33255 2.44113 0.00946 2.44586 0.10858

ADE 70% 1.68423 1.91931 0.03399 1.93631 0.23509
90% 1.96813 2.13449 0.01962 2.14430 0.16636
99% 2.33181 2.44021 0.00942 2.44492 0.10840

4.2. Risk assessment under insurance claims data. The historical growth
of claims through time for each appropriate exposure (or origin) period is fre-
quently shown in the historical insurance actual data in the form of a triangle
presentation. The year the insurance policy was purchased or the time period
during which the loss occurred may be regarded as the exposure period. It is
obvious that the genesis period need not be annual. For instance, it may be
monthly or quarterly origin periods. The development time of an origin pe-
riod is known as the ”claim age” or ”claim lag.” Data from separate insurance
is frequently combined to represent uniform company lines, division levels, or
risks. We examine the insurance claims payment triangle from a U.K. Mo-
tor Non-Comprehensive account in this article as a practical illustration. We
choose a convenient origin period of 2007 to 2013. The insurance claims pay-
ment data frame displays the claims data in the manner in which a database
would normally keep it. The origin year, which ranges from 2007 to 2013, the
development year, and the incremental payments are all included in the first
column. It’s important to note that this data on insurance claims was initially
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Table 2. KRIs under artificial data for n = 150.

Method↓ q ↓ KRIs→ VAR(X) TVAR(X) TV(X) TMVq(X) MEL(X)

MLE 70% 1.68221 1.91820 0.03423 1.93531 0.23599
90% 1.96724 2.13415 0.01974 2.14402 0.16691
99% 2.33208 2.44076 0.00947 2.44550 0.10868

OLSE 70% 1.68196 1.91813 0.03428 1.93527 0.23617
90% 1.96722 2.13423 0.01976 2.14411 0.16701
99% 2.33228 2.44101 0.00948 2.44575 0.10873

WLSE 70% 1.68041 1.91657 0.03427 1.93370 0.23616
90% 1.96566 2.13263 0.01975 2.14251 0.16698
99% 2.33064 2.43933 0.00946 2.44406 0.10869

ADE 70% 1.68208 1.91838 0.03431 1.93553 0.23630
90% 1.96749 2.13458 0.01978 2.14447 0.16709
99% 2.33273 2.44150 0.00949 2.44625 0.10877

Table 3. KRIs under artificial data for n = 300.

Method↓ q ↓ KRIs→ VAR(X) TVAR(X) TV(X) TMVq(X) MEL(X)

MLE 70% 1.68297 1.91915 0.03428 1.93629 0.23618
90% 1.96823 2.13526 0.01977 2.14515 0.16703
99% 2.33335 2.44211 0.00949 2.44685 0.10876

OLSE 70% 1.68179 1.91841 0.03440 1.93561 0.23663
90% 1.96761 2.13490 0.01982 2.14481 0.16729
99% 2.33327 2.44215 0.00951 2.44691 0.10888

WLSE 70% 1.68200 1.91814 0.03427 1.93527 0.23614
90% 1.96722 2.13421 0.01976 2.14409 0.16699
99% 2.33224 2.44096 0.00948 2.44570 0.10872

ADE 70% 1.68209 1.91939 0.03207 1.93543 0.23730
90% 1.96799 2.13533 0.01984 2.14525 0.16734
99% 2.33376 2.44267 0.00952 2.44743 0.10891

examined using a probability-based distribution. The capability of the insur-
ance firm to handle such occurrences is of importance to actuaries, regulators,
investors, and rating agencies. This work proposes certain KRI quantities for
the left-skewed insurance claims data under the BXEG distribution, including
VAR, TVAR, TV, and TMV. For more details, see et al. Artzner [3], Khedr et
al. [21], Hamed et al. [16], Mohamed et al [24] and Ibrahim et al [19].
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Table 4. KRIs under artificial data for n = 500.

Method↓ q ↓ KRIs→ VAR(X) TVAR(X) TV(X) TMVq(X) MEL(X)

MLE 70% 1.68164 1.91818 0.03438 1.93537 0.23654
90% 1.96736 2.13460 0.01981 2.14450 0.16724
99% 2.33291 2.44176 0.00951 2.44652 0.10885

OLSE 70% 1.68275 1.91921 0.03436 1.93639 0.23646
90% 1.96836 2.13557 0.01981 2.14547 0.16721
99% 2.33385 2.44269 0.00951 2.44745 0.10884

WLSE 70% 1.68217 1.91858 0.03434 1.93575 0.23640
90% 1.96771 2.13487 0.01980 2.14477 0.16716
99% 2.33310 2.44191 0.00950 2.44666 0.10881

ADE 70% 1.68289 1.91941 0.03438 1.93660 0.23652
90% 1.96857 2.13582 0.01982 2.14573 0.16725
99% 2.33415 2.44302 0.00952 2.44778 0.10887

Table 5 lists the KRIs under the insurance calims data and MLE method
for the BXEG model where V̂ = (0.1306, 0.00057, 3.26359) . Table 6 gives
the KRIs under the insurance calims data and OLSE method for the BXEG
model where V̂ = (0.16181, 0.000485, 2.166398) . Table 7 shows the KRIs
under the insurance calims data and WLSE method for the BXEG model
where V̂ = (0.14933, 0.00054, 2.62303) . Table 8 presents the KRIs under
the insurance calims data and WLSE method for the BXEG model where
V̂ = (0.15002, 0.00054, 2.65579) . Based on these tables, the following results
can be highlighted:

(1) For all risk assessment methods:

V aRq(X|1−q=30%) < V aRq(X|1−q=25%) < ...

< V aRq(X|1−q=10%) < V aRq(X|1−q=1%).

(2) For all risk assessment methods:

TV aRq(X|1−q=30%) < TV aRq(X|1−q=25%) < ...

< TV aRq(X|1−q=10%) < TV aRq(X|1−q=1%).

(3) For all risk assessment methods:

TV (X|1−q=30%) > TV (X|1−q=25%) > ...

> TV (X|1−q=10%) > TV (X|1−q=1%).

(4) For all risk assessment methods:

TMV q(X|1−q=30%) > TMV q(X|1−q=25%) > ...

> TMV q(X|1−q=10%) > TMV q(X|1−q=1%).
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(5) For all risk assessment methods:

MEL(X|1−q=30%) > MEL(X|1−q=25%) > ...

> MEL(X|1−q=10%) > MEL(X|1−q=1%).

(6) Under the MLE method: The VaRq(X) is monotonically increasing
starts with 3673.32932 and ends with 6143.57495, the TVaRq(X) in
monotonically incresing starts with 4715.02630 and ends with 6389.85619.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(7) Under the OLSE method: The VaRq(X) is monotonically increasing
starts with 3672.18421 and ends with 6248.33526, the TVaRq(X) in
monotonically incresing starts with 4743.90011 and ends with 6521.44231.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(8) Under the WLSE method: The VaRq(X) is monotonically increasing
starts with 3598.25509 and ends with 6025.45856, the TVaRq(X) in
monotonically incresing starts with 4614.29847 and ends with 6276.33491.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(9) Under the AE method: The VaRq(X) is monotonically increasing
starts with 3619.36506 and ends with 6035.20922, the TVaRq(X) in
monotonically incresing starts with 4630.7444 and ends with 6285.00127.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(10) Nearly for all q values, the OLSE method is recommended since it pro-
vides the most acceptable risk exposure analysis then the MLE method
is recommended as a second one. However the other two methods are
perform well.

Table 5. KRIs under the insurance calims data and MLE
method for the BXEG model.

Method VaRq(X) TVaRq(X) TVq(X) TMVq(X) MEL(X)

70% 3673.32932 4715.02630 500739.94226 255084.99743 1041.69698
75% 3968.42115 4894.08892 407070.53533 208429.35658 925.66777
80% 4280.10264 5086.96211 320774.76058 165474.34240 806.85947
85% 4616.32200 5300.73322 241765.88072 126183.67357 684.41122
90% 4995.10918 5550.62151 169527.7267 90314.48486 555.51234
95% 5470.41892 5881.34342 101407.57291 56585.129870 410.92450
99% 6143.57495 6389.85619 44408.50668 28594.109540 246.28124
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Table 6. KRIs under the insurance calims data and OLSE
method for the BXEG model.

Method VaRq(X) TVaRq(X) TVq(X) TMVq(X) MEL(X)

70% 3672.18421 4743.90011 542265.56787 275876.68404 1071.7159
75% 3973.12544 4928.38033 445012.24229 227434.50148 955.25489
80% 4290.91416 5127.89496 355132.7358 182694.26287 836.98081
85% 4634.9389 5350.47828 272054.79375 141377.87516 715.53938
90% 5025.74843 5613.21676 194647.38881 102936.91117 587.46833
95% 5523.69632 5965.94666 120049.30962 65990.60147 442.25034
99% 6248.33526 6521.44231 52358.98199 32700.93330 273.10705

Table 7. KRIs under the insurance calims data and WLSE
method for the BXEG model.

Method VaRq(X) TVaRq(X) TVq(X) TMVq(X) MEL(X)

70% 3598.25509 4614.29847 482016.66052 245622.62874 1016.04338
75% 3885.06857 4789.04706 393813.20198 201695.64805 903.97848
80% 4187.59439 4977.61656 312579.62484 161267.42897 790.02216
85% 4514.30487 5187.35421 237867.78965 124121.24903 673.04934
90% 4883.94723 5433.90991 168797.62315 89832.72148 549.96268
95% 5351.87114 5762.93731 103230.38935 57378.13199 411.06617
99% 6025.45856 6276.33491 45414.59121 28983.63052 250.87635

Table 8. KRIs under the insurance calims data and WLSE
method for the BXEG model.

Method VaRq(X) TVaRq(X) TVq(X) TMVq(X) MEL(X)

70% 3619.36506 4630.7444 477422.91071 243342.19975 1011.37934
75% 3904.97787 4804.67882 390009.68636 199809.522 899.70095
80% 4206.12922 4992.34126 309572.24357 159778.46304 786.21204
85% 4531.27267 5201.06366 235588.3116 122995.21946 669.79099
90% 4899.09826 5446.42114 167251.13583 89071.98906 547.32289
95% 5364.73456 5773.89288 102359.34452 56953.56515 409.15832
99% 6035.20922 6285.00127 45164.32392 28867.16323 249.79205
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5. Distributional validity

5.1. Distributional validity utilizing the UMLE method. Here, the UMLE
method is used to estimate the BXEG distribution’s parameters. Let x1, x2, ...xn
be the observed values of the random sample from the BXEG model, the un-
censored likelihood function is obtained by L (V) =n

i=1 fV(xi). Then, the un-
censored log-likelihood function is obtained as

l (V) = n ln(2aθ)+2n ln(λ)+

n∑
i=1

ln (xi)−λ
n∑
i=1

xi+(2θ − 1)

n∑
i=1

ln ςi−
n∑
i=1

s2
i+(a− 1)

n∑
i=1

ln (ϕi)

where ςi = ς (xi) = 1 − (1 + λxi) exp (−λxi) , si =
ςθi

1−ςθi
, ϕi = 1 − exp

(
−s2

i

)
.

The MLEs â, λ̂ and θ̂ of the unknown parameters a, λ and θ are derived from
the following nonlinear score equations:

∂l (V)

∂a
=
n

a
+

n∑
i=1

ln(ϕi)

∂l (V)

∂λ
=

2n

λ
−

n∑
i=1

xi + λ (2θ − 1)

n∑
i=1

x2
i exp (−λxi)

ςi

−2λθ

n∑
i=1

x2
i exp (−λxi) s2

i

ςi
(
1− ςθi

)
+2λθ(a− 1)

n∑
i=1

x2
i exp (−λxi) s2

i exp
(
−s2

i

)
ςi(1− ςθi )ϕi

,

and

∂l (V)

∂θ
=

n

θ
+ 2

n∑
i=1

ln (ϕi)− 2

n∑
i=1

s2
i ln ςi (1 + si)

+2(a− 1)

n∑
i=1

s2
i ln ςi (1 + si) exp

(
−s2

i

)
ϕ−1
i .

To solve these equations simultaneously, we use ready-made statistical pack-
ages that are specially designed to solve this kind of equations. Hence, we em-
ploy numerical techniques like the Newton-Raphson method, the Monte Carlo
method, or the BB-solve package to obyain the numerical solution.

5.2. Distributional validity utilizing the right CMLE method. Let us
consider X = (X1, X2, ..., Xn)T a sample from the BXEG with the parameter
vector which can contain right censored data with fixed censoring time τ. Each
Xi can be written as Xi = (xi,∆i) where
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∆i = {.0 if xi is a censoring time 1 if xi is a failure time

The right censored likelihood function can be given by

ln(V) =n
i=1 f

∆i

V (xi)S
1−∆i

V (xi).

where SV(xi) = 1 − FV(xi) is the survival function of the BXEG model and
then the right censored log-likelihood function Ln(V) is equivalent to

Ln,∆i
(V) =

n∑
i=1

∆i ln fV(xi) +

n∑
i=1

(1−∆i) lnSV(xi)

or

Ln,∆i
(V) =

n∑
i=1

∆i

[
ln(2aθ) + 2 ln(λ) + ln (xi)− λxi

+ (2θ − 1) ln ςi − s2
i + (a− 1) ln (ϕi)

]

+

n∑
i=1

(1−∆i) ln (ϕai ) .

The following nonlinear scoring equations must be solved in order to produce
the right CMLEs:

∂Ln,∆i
(V)

∂a
=

n∑
i=1

∆i

[
1

a
+ ln(ϕi)

]
−

n∑
i=1

(1−∆i)
ϕai ln(ϕi)

1− ϕai

∂Ln,∆i
(V)

∂λ
=

n∑
i=1

∆i

 2
λ − xi +

λ(2θ−1)x2
i exp(−λxi)
ςi

− 2λθx2
i exp(−λxi)s2i
ςi(1−ςθi )

+
2λθ(a−1)x2

i exp(−λxi)s2i exp(−s2i )
ςi(1−ςθi )ϕi


−

n∑
i=1

(1−∆i)
2λθax2

i exp (−λxi) s2
i exp

(
−s2

i

)
ϕa−1
i

ςi(1− ςθi )(1− ϕai )

∂Ln,∆i
(V)

∂θ
=

n∑
i=1

∆i

[
1
θ + 2 ln (ϕi)− 2s2

i ln ςi (1 + si)
+2(a− 1)s2

i ln ςi (1 + si) exp
(
−s2

i

)
ϕ−1
i

]

−
n∑
i=1

(1−∆i)
2as2

i ln ςi (1 + si) exp
(
−s2

i

)
ϕa−1
i

1− ϕai
.

Similar, to the complete data scenario, we employ numerical techniques like the
Newton-Raphson method, the Monte Carlo method, or the BB-solve package
to compute the MLEs. Many authors does not prefer solving nonlinear systems
of equations resulting from the setting the derivative of the likelihood function
or its log to zero when the search space is of higher dimension than two. This is
because of the existence of local maxima. Since the CDF of the GXED exists in
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closed form, you may wish to consider using the Elemental Percentile method
presented in Castillo and Hadi [6].

6. Testing procedures

6.1. Testing procedures for the Y 2 statistic. For testing the null hypoth-
esis H0 according to which a sample X1, X2, .....Xn belongs to (1), where

H0 = Pr(Xi ≤ x) = FV(x)||||x≥0,

Consider r equiprobable grouping intervals I1, I2,···, Ir where Ij = ]bj−1, bj ] ;

Ii ∩ Ij = φ i 6= j and
r
∪
j=1

Ij = R1 such as

pj =

∫ bj

bj−1

fV(x)dx =
1

r
| j=1,2,..,r,

and bj = F−1 (j/r) , j = 1, 2, .., r. If υ = (υ1, υ2, ..., υr)
T

represents the
number of observed Xi grouping into these intervals Ij , and the vector Tn (V)
is

Tn (V) =

(
υ1 − np1,(V)
√
np1,(V)

,
υ2 − np2,(V)
√
np2,(V)

, ...,
υr − n√
npr,(V)

)T
.

The NRR statistic Y 2 proposed by Nikulin [26], [27], [28] and Rao and Robson
[29] is defined by

Y 2
n

(
V̂
)

= T 2
n

(
V̂
)

+
1

n
lT
(
V̂
)(

I
(
V̂
)
− J

(
V̂
))−1

l
(
V̂
)
,

where I
(
V̂
)

and J
(
V̂
)

are the estimated information matrices on non-grouped

and grouped data respectively, and V̂ is the vector of the MLEs on initial data.

The elements of the vector l
(
V̂
)

=
(
lk

(
V̂
))T

1×s
are

lk

(
V̂
)

=

r∑
i=1

νj
pj

∂

∂V̂k

pj

(
V̂
)

and J
(
V̂
)

= B(V̂)TB(V̂),

where

B(V̂) =

(
1
√
pi

∂

∂Vi

pi

)
r×s
|k=1,2,...,s, i=1,2,...,r,

where s is the number of the model parameters. The distribution of Y 2
(
V̂
)

is a chi-square with r − 1 degrees of freedom. To construct the test statistic
Y 2 corresponding to the BXEG with a parameter vector V = (a, λ, θ)T , first
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we calculate the MLEs V̂ = (â, λ̂, θ̂)T and the limit intervals bj . Secondly, the

derivatives ∂

∂V̂k

pj

(
V̂
)

are deduced as follow

∂

∂â
pj

(
V̂
)

= ϕa(bj) ln [ϕ(bj)]− ϕa(bj−1) ln [ϕ(bj−1)] ,

∂

∂λ̂
pj

(
V̂
)

= 2λθa

 b2j exp(−λbj)s2(bj) exp[−s2(bj)]ϕa−1(bj)

ς(bj)(1−ςθ(bj))

− b
2
j−1e

−λbj−1s2(bj−1) exp[−s2(bj−1)]ϕa−1(bj−1)

ς(bj−1)(1−ςθ(bj−1))

 ,
and

∂

∂θ̂
pj

(
V̂
)

= 2a

[
s2(bj) ln ς(bj) [1 + s(bj)] exp

[
−s2(bj)

]
ϕa−1(bj)

−s2(bj−1) ln ς(bj−1) (1 + s(bj−1)) exp
[
−s2(bj−1)

]
ϕa−1(bj−1)

]
.

Finally we obtain the statistic Y 2
(
V̂
)

which allows to verify if data belong

to the BXEG distribution.

6.2. Testing procedures for the M2 test statistic with right censorship.
To verify if a right censored sample X = (X1, X2, ..., Xn)T with fixed censored
time τ, follows a parametric model F0,V(x), Pr(Xi ≤ x | H0) = F0,V(x),
x ≥ 0. The NRR statistic described above was adjustment by Bagdonavicius
and Nikulin [4]. Generally, the NRR statistic is established based on the vector
Λj = 1√

n
(Oj,X −ej,X)|j=1,2,...,r and r�s , where Oj,X and ej,X are the observed

numbers of failures to fall and expected numbers of failures to fall into the
grouping intervals Ij , the statistic M2 is defined by

M2 = ΛT Σ̂−Λ

where Σ̂− refers to the generalized inverse of the well-known covariance matrix

Σ̂. For facilitating the calculation process, this novel NRR statistical test can
be expressed as follows

M2 =

r∑
j=1

1

Oj,X
(Oj,X − ej,X)2 + Ω

with the quadratic form Ω obtained as
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Ω = WT Ĝ−W, Âj = Oj,X/n,Oj,X =
∑

i:Xi∈Ij

∆i, Ĝ = [ĝll′ ]sxs ,

ĝll′ = îll′ −
r∑
j=1

ĈljĈl′jÂ
−1
j , Ĉlj =

1

n

∑
i:xi∈Ij

∆i
∂

∂V̂
ln τV̂(xi),

îll′ =
1

n

n∑
i=1

∆i
1

∂V̂l

∂ ln τV̂(xi)
1

∂V̂l′

∂ ln τV̂(xi),

Ŵl =

r∑
j=1

ĈljÂ
−1
j Λj | l,l′=1,...,s,

where τV̂(xi) = fV̂(xi)/SV̂(xi) is the hazard rate function of the BXEG model.

Under the null hypothesis H0, the limit distribution of the statistic M2 is a
chi-square with r = rank(Σ) degrees of freedom. For more details on modified
chi-squatre tests, one can see the book by Voinov et al. [32]. For testing the null
hypothesis that a right censored sample is described by the BXEG distribution,
we develope M2 corresponding to this distribution. At that end, we have to

compute the MLEs V̂ = (â, λ̂, θ̂)T on initial data (see section 3), the estimated

information matrix îll′ which can be deduced from the score functions and the
estimated limit intervals b̂j . To apply this test statistic, the expected failure
times ej,X to fall into the grouping intervals Ij must be the same for any j, so

the estimated interval limits b̂j are equal to

b̂j = H−1

[
1

n− i+ 1

(
Ej,X −

i−1∑
l=1

HV̂ (xl)

)
, V̂

]
,

where b̂r = max
(
X(n),τ

)
, Er =

∑n
i=1HV̂ (xi), Ej,X = −j

r−1

∑n
i=1 ln (1− ϕai ) | j=1,..r−1,

and HV̂ (xi) = − ln
[
SV̂(xi)

]
is the cumulative rate function of the BXEG

model. So, the numbers ej,X and Oj,X can be obtained. Then, we can derive

(and then calculate) the components of the estimated matrix K̂ as follows:

K̂1j,V =
1

n

n∑
i:xi∈Ij

∆i

[
1

a
+

ln(ϕi)

1− ϕai

]

K̂2j,V =
1

n

n∑
i:xi∈Ij

∆i



2
λ − xi +

λ(2θ−1)x2
i exp(−λxi)
ςi

− 2λθx2
i exp(−λxi)s2i
ςi(1−ςθi )

+
2λθ(a−1)x2

i exp(−λxi)s2i exp(−s2i )
ςi(1−ςθi )ϕi

+
2λθax2

i exp(−λxi)s2i exp(−s2i )ϕ
a−1
i

ςi(1−ςθi )(1−ϕai )
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K̂3j,V =
1

n

n∑
i:xi∈Ij

∆i

[
1
θ + 2 ln (ϕi) + 2(a− 1)s2

i ln ςi (1 + si) exp
(
−s2

i

)
ϕ−1
i

−2s2
i ln ςi (1 + si) +

2as2i ln ςi(1+si) exp(−s2i )ϕ
a−1
i

1−ϕai

]

and the estimated matrix Ŵ is derived from the matrix K̂ . Therefore the test
statistic can be obtained easily:

M2
n

(
V̂
)

=

r∑
j=1

(Oj,X − ej,X)
2

Oj,X
+ ŴT

ı̂ll′ − r∑
j=1

K̂ljK̂l′jÂ
−1
j

−1

Ŵ

7. Assessing the Y 2and M2 via some applications

We performed a significant investigation using numerical simulations in this
section to demonstrate the flexibility and effectiveness of the tests suggested in
this work. We then used actual data from reliability and survival analysis to
run these tests.

7.1. Simulating the Y 2 under the UMLE method. For simulating the
M2 under the UMLE, the data were simulated N = 10, 000 times under the
sample sizes n1 = 25, n2 = 50, n3 = 130, n4 = 350, n5 = 500, n6 = 1000. Using
the BB algorithm and the R software, the MLEs and their mean square errors
(MSEs) are calculated and presented in Table 9. For testing the null hypothesis
H0 according to which the data follows the BXEG distribution, we calculate
the Y 2 statistical test, then it is compared with the different empirical levels of
rejection of the null hypothesis H0 when Y 2 > χ2

α(r−1) where empirical levels
of rejection of the null hypothesis are α1 = 0.01 , α2 = 0.05 and α3 = 0.10.
Table 10 gives the theoretical risk and empirical risk for complete case. The
levels simulated for the statistic Y 2 agree with those corresponding to the
theoretical levels of the chi-square distribution with (r−1) degrees of freedom,
it is noticed, after accounting for simulation errors. In light of this, we can
state that the test suggested in this study can appropriately adapt the data
obtained from a BXEG model. For example:

(1) For α1, it is observed that:
Y 2

0.01 = (0.0048, 0.0053, 0.0061, 0.0076, 0.0083, 0.0091) < χ2
0.01(r−

1). So, we can accept the null hypothesis that the data follows the
BXEG distribution.

(2) For α2, it is seen that:
Y 2

0.05 = (0.0274, 0.0286, 0.0312, 0.0346, 0.0389, 0.0409) < χ2
0.05(r−

1). Therefore, we can accept the null hypothesis that the data follows
the BXEG distribution.

(3) For α3, it is noted that:
Y 2

0.10 = (0.0867, 0.0894, 0.0923, 0.0963, 0.0997, 0.1013) < χ2
0.10(r−

1). Hence, we can accept the null hypothesis that the data follows the
BXEG distribution.
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Table 9. MLEs and their MSEs for the complete case.

MLEs & MSEs↓ n→ 25 50 130 350 500 1000
â|(a0 = 2) 1.9623 1.9698 1.9743 1.9876 1.9952 1.9994

MSE 0.0078 0.0064 0.0052 0.0039 0.0024 0.0016

λ̂|(λ0 = 0.7) 0.7312 0.7282 0.7221 0.7164 0.7094 0.7010
MSE 0.0067 0.0058 0.0048 0.0034 0.0019 0.0012

θ̂|(θ0 = 1.5) 1.4731 1.4764 1.4816 1.4865 1.4921 1.4998
MSE 0.0075 0.0061 0.0042 0.0029 0.0015 0.0008

Table 10. Theoretical risk and empirical risk for complete
case.

αi,1=1,2,3 ↓ n→ 25 50 130 350 500 1000
α1 = 0.01 0.0048 0.0053 0.0061 0.0076 0.0083 0.0091
α2 = 0.05 0.0274 0.0286 0.0312 0.0346 0.0389 0.0409
α3 = 0.10 0.0867 0.0894 0.0923 0.0963 0.0997 0.1013

7.2. Simulating the M2 under the CMLE method. For simulating the
M2 under the uncensored maximum likelihood method, the data were sim-
ulated N = 10, 000 times under the sample sizes n1 = 25, n2 = 50, n3 =
130, n4 = 350, n5 = 500, n6 = 1000. Using the BB algorithm and the R soft-
ware, the MLEs and their mean square errors (MSEs) are calculated and pre-
sented in Table 11. For testing the null hypothesis H0 according to which the
data follows the BXEG distribution, we calculate the Y 2 statistical test, then it
is compared with the different empirical levels of rejection of the null hypothesis
H0 when M2 > χ2

α(r) where empirical levels of rejection of the null hypothesis
are α1 = 0.01 , α2 = 0.05 and α3 = 0.10. Table 12 gives the theoretical risk
and empirical risk for complete case. The levels simulated for the statistic Y 2

agree with those corresponding to the theoretical levels of the chi-square distri-
bution with (r) degrees of freedom, it is noticed, after accounting for simulation
errors. In light of this, we can state that the test suggested in this study can
appropriately adapt the data obtained from a BXEG model. For example:

(1) For α1, it is noted that:
M2

0.01(r) = (0.0062, 0.0068, 0.0076, 0.0087, 0.0098, 0.0106) < χ2
0.01(r).

So, we can accept the null hypothesis that the data follows the BXEG
distribution.

(2) For α2, it is seen that:
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M2
0.05(r) = (0.0384, 0.0397, 0.0422, 0.0461, 0.0479, 0.0483) < χ2

0.05(r).
Therefore, we can accept the null hypothesis that the data follows the
BXEG distribution.

(3) For α3, it is observed that:
M2

0.10(r) = (0.0949, 0.0953, 0.0966, 0.0972, 0.0986, 0.0994) < χ2
0.10(r).

Hence, we can accept the null hypothesis that the data follows the
BXEG distribution.

Table 11. MLEs and their MSEs for the censored case.

MLEs & MSEs↓ n→ 25 50 130 350 500 1000
â|(a0 = 1.5) 1.5224 1.5189 1.5143 1.5102 1.5078 1.5029

MSE 0.0088 0.0079 0.0058 0.0046 0.0034 0.0023

λ̂|(λ0 = 1.2) 1.2233 1.2191 1.2111 1.2094 0.5067 0.5012
MSE 0.0079 0.0067 0.0049 0.0037 0.0028 0.0018

θ̂|(θ0 = 2.5) 2.4719 2.4778 2.4836 2.4897 2.4921 2.4978
MSE 0.0081 0.0059 0.0043 0.0033 0.0023 0.0013

Table 12. Theoretical risk and empirical risk for censored
case.

αi,1=1,2,3 ↓ n→ n1 = 25 n2 = 50 n3 = 130 n4 = 350 n5 = 500 n6 = 1000
α1 = 0.01 0.0062 0.0068 0.0076 0.0087 0.0098 0.0106
α2 = 0.05 0.0384 0.0397 0.0422 0.0461 0.0479 0.0483
α3 = 0.10 0.0949 0.0953 0.0966 0.0972 0.0986 0.0994

8. Data analysis

Three examples from various fields are used to demonstrate the applicability
of the proposed paradigm. We utilize M2 to fit the first one’s censored data
from a survival analysis to predicted distributions. For the whole data scenario,
Y 2 is built to see if the suggested model can accurately represent the two more
occurrences.

8.1. Real applications for uncensored data.
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8.1.1. Times between failures for repairable items data. The first data set is
given by Murthy et al. [25]. These data have had a great deal of analysis and
study, as many researchers and scholars have modeled and analyzed them and
drawn many conclusions about them. The data refers to the time between
failures for repairable items. The data are: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49,
3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06,
1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. Using R software and

BB algorithms, we have â = 2.4196, λ̂ = 0.8956 and θ̂ = 3.7482 . Then, taking
for example 6 intervals, then r = 6, and calculate the Fisher information matrix
(FIMx) on the initial data, we have

I(V) =

 8.6352 5.0254 6.6235
9.8455 7.6235

10.4632


Then, by calculating the NRR test statistic Y 2

0.05(5) test statistics we have
Y 2

0.05(5) = 8.6247. Since

Y 2
0.05(5) = 8.6247 < χ2

0.05(5) = 11.0705,

therefore, we can accept the null hypothesis that the times between failures for
repairable items data follows the BXEG distribution.

8.1.2. Reliability data. The second data set is the reliability data which given
by Cabarbaye and Faure [5]. These data have undergone extensive examination
and investigation, as several researchers and academics have modelled, exam-
ined, and concluded on them. The data are: 0,313, 360, 231, 286, 340, 212,
287, 243, 170, 141, 150, 593, 328, 234, 206, 108, 134, 231, 218, 281, 192, 457,
269, 201, 181, 277, 479, 272, 223, 272, 163, 370, 217, 182, 202, 451, 303. Using

R software and BB algorithms, we have â = 3.1526, λ̂ = 0.9432 and θ̂ = 2.1635
. Then, taking for example 6 intervals, then r = 6, and calculate the FIMx on
the initial data, we have

I(V) =

 15.6325 23.5162 27.9523
38.6243 31.2652

42.6153


Then, by calculating the NRR test statistic Y 2

0.05(5) test statistics we have
Y 2

0.05(6) = 10.6781. Since

Y 2
0.05(6) = 10.6781 < χ2

0.05(6) = 12.59159,

therefore, we can accept the null hypothesis that the reliability data follows
the BXEG distribution.

8.1.3. Strengths of glass fibers data. The third data set is the strengths of glass
fibers data which given by Smith and Naylor [31]. Additionally, as many re-
searchers and academics have modelled, examined, and drawn several inferences
from the strengths of fiber glass data, they have received considerable attention
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in statistical modelling. The data are: 1.014, 1.081, 1.082, 1.185, 1.223, 1.248,
1.267, 1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355,
1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.46, 1.476, 1.481, 1.484, 1.501, 1.506,
1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 1.602, 1.666, 1.67,
1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876,
1.878, 1.91, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, 4.121. Using R software and

BB algorithms, we have â = 2.0631, λ̂ = 0.5326 and θ̂ = 1.6352. Then, taking
for example 6 intervals, then r = 7, and calculate the FIMx on the initial data,
we have

I(V) =

 45.6325 23.6132 15.6236
35.6214 16.5236

13.5264


Then, by calculating the NRR test statistic Y 2

0.05(5) test statistics we have
Y 2

0.05(6) = 9.6325. Since

Y 2
0.05(6) = 9.6325 < χ2

0.05(6) = 12.59159,

therefore, we can accept the null hypothesis that the glass fibers data follows
the BXEG distribution.

8.2. Real applications for censored data.

8.2.1. Times to infection of kidney dialysis patients. Consider data of times to
infection of kidney dialysis patients (see Klein and Moeschberger [23]). Infec-
tion times: 1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5
26.5. Censored observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5,
7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5,

27.5. Using R software and BB algorithms, we have â = 2.634, λ̂ = 0.7487 and

θ̂ = 1.415. Table 5 gives the values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V and K̂3j,V

under r = 5. Table 13 gives the values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for
data of times to infection of kidney dialysis patients.

Table 13. Values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for
data of times to infection of kidney dialysis patients.

âj 5.2 8.1 12.3 17.5 27.5
Oj,X 10 8 9 7 9

K̂1j,V 1.1284 0.9317 1.2746 1.3742 0.9764

K̂2j,V 0.8463 0.9468 0.4869 0.3748 0.7417

K̂3j,V 0.7486 0.8974 0.4637 0.9713 0.8264
ej,X 5.5134 5.5134 5.5134 5.5134 5.5134
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Then, by calculating the modified NRR test statistic M2
0.05(5) test statistics

we have M2
0.05 (5) = 4.9845 = 7. 940 7. Since

M2
0.05(5) = 7. 940 7 < χ2

0.05(6) = 11.0705,

therefore, we can accept the null hypothesis that the data of times to infection
of kidney dialysis patients follows the BXEG distribution.

8.2.2. The bone marrow transplant data. Consider data of times to infection
of kidney dialysis patients for 38 patients (see Klein and Moeschberger [23]).
Time to death: 1, 86, 107, 110, 122, 156, 162, 172, 243, 262, 262, 269, 276, 371,
417, 418, 466, 487, 526, 716, 781, 1111, 1182, 1199, 1279, 1377, 1433, 1496.
Censored observations: 350, 1330, 194,226, 1167, 1462, 1602, 2081, 530, 996,

1330. Using R software and BB algorithms, we have â = 2.1635, λ̂ = 0.9635 and

θ̂ = 1.4362. Table 6 gives the values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V and K̂3j,V

under r = 4. Table 14 gives the values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for
the bone marrow transplant data.

Table 14. Values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for
the bone marrow transplant data.

âj 260 480 1180 2081
Oj,X 11 9 8 10

K̂1j,V 2.3162 1.2356 0.9856 1.8564

K̂2j,V 1.5236 0.8456 0.7452 1.4266

K̂3j,V 3.1526 2.2513 1.7456 2.6351
ej,X 4.6523 4.6523 4.6523 4.6523

Then, by calculating the modified NRR test statistic M2
0.05(4) test statistics

we have M2
0.05 (4) = 8.3265. Since

M2
0.05(4) = 8.3265 < χ2

0.05(4) = 9.4877,

therefore, we can accept the null hypothesis that the bone marrow transplant
data follows the BXEG distribution.

8.2.3. Strength of a certain type of braided cord data. We apply the findings
from this analysis to real data derived from reliable sources for the third data
set. The forces of 48 pieces of cord that had withstood for a certain amount of
time were examined as part of an experiment to learn more about the strength
of a specific type of braided cord after the weather. Strength: 41.7, 43.9,
49.9, 50.1, 50.8,51.9, 52.1, 52.3, 52.3, 52.4, 52.6, 52.7, 53.1, 53.6, 53.6, 53.9,
53.9, 54.1, 54.6, 54.8, 54.8,55.1, 55.4, 55.9, 56, 56.1, 56.5, 56.9, 57.1, 57.1,
57.3, 57.7, 57.8, 58.1, 58.9, 59, 59.1, 59.6, 60.4, 60.7. Censored observations:
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26.8, 29.6, 33.4, 35, 36.3, 40, 41.9, 42.5. Using R software and BB algorithms,

we have â = 2.9365, λ̂ = 0.9635 and θ̂ = 1.4362. Table 7 gives the values

of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V and K̂3j,V under r = 4. Table 15 list the val-

ues of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for strength of certain type of braided
cord data.

Table 15. Values of âj , ej,X , Oj,X , K̂1j,V, K̂2j,V, K̂3j,V for
strength of certain type of braided cord data.

âj 43 53 57 60.7
Oj,X 9 11 16 12

K̂1j,V 0.9356 1.5236 1.9642 1.4263

K̂2j,V 0.7152 2.0135 1.8236 0.9563

K̂3j,V 0.8623 1.9632 1.4326 2.2365
ej,X 4.2153 4.2153 4.2153 4.2153

Then, by calculating the modified NRR test statistic M2
0.05(4) test statistics

we have M2
0.05 (4) = 6.9536. Since

M2
0.05(4) = 6.9536 < χ2

0.05(4) = 9.4877,

therefore, we can accept the null hypothesis that the strength of certain type of
braided cord data follows the BXEG distribution.

9. Concluding remarks

A novel continuous probability distribution called the Burr X exponentiated
gamma (BXEG) distribtion is introduced and studied in this work, but we will
approach it from fresh angles that depart from those often covered in the liter-
ature. The BXEG model is basically derived based on the the Burr X family
of Yousof elt al. (2017). In order to highlight more practical aspects in the
areas of risk assessment and analysis, distributive verification, and its related
practical applications on complete data and censored data, we chose to ignore
many theoretical results and algebraic derivations, this is not to say that they
are not important. However, by presenting and discussing some novel charac-
terizations based on some related theories, such as characterizations based on
the two truncated moments, characterizations in terms of the hazard function,
and characterizations based on the conditional expectation of a function of the
random variable, we were able to cover some theoretical aspects of the BXEG
distribution. By analyzing a collection of commonly used financial indicators,
such as the value-at-risk (VAR), tail-value-at-risk (TVAR), tail variance (TV),
tail Mean-Variance (TMV), and mean excess loss (MEL) function, it is possible
to analyse and evaluate the risks that insurance firms face. The maximum like-
lihood estimation approach, the ordinary least squares method, the weighted
least squares estimation method, and the Anderson Darling estimation method
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are all described as estimate strategies for the major important risk indicators.
These four methods were used and applied for the actuarial evaluation and a
comparison is presented for determining the best method under a simulation
study (for artificial assessment) and under an application to insurance claims
data. The simulation is performed under three degrees of confidence, consid-
eration of various sample sizes. With regard to the application to insurance
claims data, the following results can be highlighted:

(1) For all risk assessment methods:

V aRq(X|1−q=30%) < ... < V aRq(X|1−q=1%), TV aRq(X|1−q=30%) < ... < TV aRq(X|1−q=1%),

TV (X|1−q=30%) > ... > TV (X|1−q=1%), TMV q(X|1−q=30%) > ... > TMV q(X|1−q=1%),

and

MEL(X|1−q=30%) > ... > MEL(X|1−q=1%).

(2) The VaRq(X) under the MLE method is monotonically increasing
starts with 3673.32932 and ends with 6143.57495, the TVaRq(X) in
monotonically incresing starts with 4715.02630 and ends with 6389.85619.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(3) The VaRq(X) under the OLSE method is monotonically increasing
starts with 3672.18421 and ends with 6248.33526, the TVaRq(X) in
monotonically incresing starts with 4743.90011 and ends with 6521.44231.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(4) The VaRq(X) under the WLSE method is monotonically increasing
starts with 3598.25509 and ends with 6025.45856, the TVaRq(X) in
monotonically incresing starts with 4614.29847 and ends with 6276.33491.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(5) The VaRq(X) under the AE method is monotonically increasing starts
with 3619.36506 and ends with 6035.20922, the TVaRq(X) in mono-
tonically incresing starts with 4630.7444 and ends with 6285.00127.
However the TVq(X), the TMVq(X) and the MEL(X) are monotoni-
cally decreasing.

(6) Nearly for all q values, the OLSE method is recommended since it pro-
vides the most acceptable risk exposure analysis then the MLE method
is recommended as a second one. However the other two methods are
perform well.

In the framework of distributional validation and statistical hypothesis tests
for the complete data, the well-known Nikulin-Rao-Robson statistic (Y 2), which
is based on the uncensored maximum likelihood estimators on initial non-
grouped data, is of considered under the BXEG model. The Y 2 statistic is
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assessed under a simulation study and under three real data sets as well and
the following results can be highlighted:

• For the times between failures for repairable items data: Y 2
0.05(5) =

8.6247 < χ2
0.05(5) = 11.0705, therefore, we can accept the null hypoth-

esis that the times between failures for repairable items data follows
the BXEG distribution.

• For the reliability data: Y 2
0.05(6) = 10.6781 < χ2

0.05(6) = 12.59159,
therefore, we can accept the null hypothesis that the reliability data
follows the BXEG distribution.

• For the strengths data: Y 2
0.05(6) = 10.6781 < χ2

0.05(6) = 12.59159,
therefore, we can accept the null hypothesis that the strengths data
follows the BXEG distribution.

In the framework of distributional validation and statistical hypothesis tests
for the censored data, a modified NRR statistic (M2), which is based on the
censored maximum likelihood estimators on initial non-grouped data, is of con-
sidered under the BXEG model. The M2 statistic is assessed under comprehen-
sive simulation study and under three real data sets and the following results
can be highlighted:

• For the times to infection of kidney dialysis patients data, M2
0.05(5) =

7. 940 7 < χ2
0.05(6) = 11.0705, therefore, we can accept the null hy-

pothesis that the data of times to infection of kidney dialysis patients
follows the BXEG distribution.

• For the bone marrow transplant data, M2
0.05(4) = 8.3265 < χ2

0.05(4) =
9.4877, therefore, we can accept the null hypothesis that the bone mar-
row transplant data follows the BXEG distribution.

• For the strength of certain type of braided cord data, M2
0.05(4) =

6.9536 < χ2
0.05(4) = 9.4877, therefore, we can accept the null hypoth-

esis that thestrength of certain type of braided cord data follows the
BXEG distribution.
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