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Abstract. In this paper, we define the concept of J-hyperideals which

is a generalization of n-hyperideals. A proper hyperideal I of a multi-

plicative hyperring R is said to be a J-hyperideal if x, y ∈ R such that
x ◦ y ⊆ I, then either x ∈ J(R) or y ∈ I. We study and investigate the

behavior of the J-hyperideals to introduce several results. Moreover, we
extend the notion of J-hyperideals to quasi J-hyperideals and 2-absorbing

J-hyperideals. Various characterizations of them are provided.
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1. Introduction

The importance of the prime ideal in commutative rings has encouraged
several authors to expand this notion. In [22] Tekir et al. defined the concept
of n-ideals and they investigated many properties of the new class of ideals with
similar prime ideals. Afterward, Hani et al. presented the notion of J-ideals
as an extension of n-ideals in [15]. A proper ideal I in a ring R is said to be
a J-ideal if xy ∈ I for x, y ∈ R such that x is not in the intersection of all
maximal ideals of R, then y ∈ I.

In 1934, at the 8th Congress of Scandinavian Mathematicians, a new theory
was introduced about algebraic systems by Marty [16]. He defined the hyper-
groups and began to investigate their properties with applications to groups,
algebraic functions and rational fractions. Later on, many researchers have
worked on this new field of modern algebra and developed it. The multiplica-
tive hyperring, as an important class of hyperrings, was introduced by Rota in
1982 [20]. In this hyperring, the multiplication is a hyperoperation, while the
addition is an operation. In 1990, the strongly distributive multiplicative hy-
perrings were characterized by Rota [19]. The polynomials over multiplicative
hyperrings were studied by Procesi and Rota in [17]. Ameri and Kordi intro-
duced the notions of clean multiplicative hyperring and regular multiplicative
hyperring, as two generalizations of classical rings, in [3] and [4]. The concept of
derivation on multiplicative hyperrings was introduced by Ardekani and Davvaz

� m.anbarloei@sci.ikiu.ac.ir, ORCID: 0000-0003-3260-2316

https://doi.org/10.22103/jmmr.2024.22687.1554 © the Author(s)
Publisher: Shahid Bahonar University of Kerman

How to cite: M. Anbarloei, A. Behtoei, J-hyperideals and related generalizations in

multiplicative hyperrings, J. Mahani Math. Res. 2024; 13(2): 365 - 382.

365

https://orcid.org/0000-0003-3260-2316
mailto: m.anbarloei@sci.ikiu.ac.ir
https://orcid.org/0000-0003-2113-0210
https://doi.org/10.22103/jmmr.2024.22687.1554


366 M. Anbarloei, A. Behtoei

in [14]. Ameri et al. [5] have studied the notion of hyperring of fractions gen-
erated by a multiplicative hyperring. Soltani et al. introduced zero-divisor
graphs of a commutative multiplicative hyperring, as a generalization of com-
mutative rings [21]. The codes over multiplicative hyperrings were studied by
Akbiyik [1]. The notion of primeness of hyperideal in a multiplicative hyperring
was conceptualized by Procesi and Rota in [18]. The notions of prime and pri-
mary hyperideals in multiplicative hyperrings were fully studied by Dasgupta
in [9]. The concept of S-prime hyperideals in multiplicative hyperrings as a
generalization of prime hyperideals was studied in [13]. Ghiasvand introduced
the concept of 2-absorbing hyperideals in a multiplicative hyperring which is
a generalisation of prime hyperideals [12]. In [23], Ulucak defined the notion
of δ-primary hyperideals in multiplicative hyperrings, which unifies the prime
and primary hyperideals under one frame. Recently, we introduced the notions
of n-hyperideals and r-hyperideals in a multiplicative hyperring [8]. Let R be
a multiplicative hyperring with identity 1. A hyperideal I of R refers to an
n-hyperideal if x, y ∈ R and x ◦ y ⊆ I imply either x is in the intersection of all
prime hyperideals of R or y is in I. The intersection of all maximal hyperideals
of R is denoted by J(R). By Proposition 2.18 in [9], all maximal hyperideals are
prime. Thus the intersection of all prime hyperideals of R is contained in J(R).
Our aim in this paper is to introduce and study the concept of J-hyperideals
which is a generalization of n-hyperideals. This generalization offers a broader
perspective on hyperideal structures within multiplicative hyperrings, provid-
ing a new context for investigating hyperideal properties beyond n-hyperideals.
Furthermore, we define two generalizations of J-hyperideals in a multiplicative
hyperring. The paper is organized as follows. In Section 2, we give some basic
definitions and results of multiplicative hyperrings which we need to develop
our paper. In Section 3, we introduce the concept of J-hyperideals and discuss
their relations with some other types of hyperideals. Moreover, we investigate
the behavior of J-hyperideals under a good homomorphism. In Section 4, we
study a generalization of the J-hyperideals which is called quasi J-hyperideals.
We present a characterization of local multiplicative hyperrings in terms of
quasi J-hyperideals. In Section 5, we extend the notion of J-hyperideals to
2-absorbing J-hyperideals and give some properties of them.

2. Preliminaries

We first recall the basic terms and definitions from the hyperring theory [11].
A hyperoperation on a non-empty set G is a map ◦ : G×G −→ P ∗(G), where
P ∗(G) is the set of all the non-empty subsets of G. An algebraic system (G, ◦)
is called a hypergroupoid. A hypergroupoid (G, ◦) is called a hypergroup if it
satisfies the following:

(1) a ◦ (b ◦ c) = (a ◦ b) ◦ c, for all a, b, c ∈ G.
(2) a ◦G = G ◦ a = G, for all a ∈ G.
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A hypergroupoid with the associative hyperoperation is called a semihyper-
group [11]. A non-empty set R with an operation + and a hyperoperation ◦ is
called a multiplicative hyperring if it satisfies the following:

(1)(R,+) is an abelian group;
(2)(R, ◦) is a semihypergroup;
(3) for all a, b, c ∈ R, we have a◦(b+c) ⊆ a◦b+a◦c and (b+c)◦a ⊆ b◦a+c◦a;
(4) for all a, b ∈ R, we have a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

Let (R,+, ◦) be a multiplicative hyperring. If a ◦ b = b ◦ a for all a, b ∈ R,
then R is said to be commutative [9]. An element 1 of R is called identity if
a ∈ a ◦ 1 for all a ∈ R [5]. Throughout this paper all multiplicative hyperings
are commutative with identity 1. Let A and B be non-empty subsets of R and
r ∈ R. Then we define

A ◦B =
⋃

x∈A, y∈B
x ◦ y, A ◦ r = A ◦ {r}

[9] A non-empty subset I of a hyperring R is a hyperideal if
(i) If a, b ∈ I, then a− b ∈ I;

(iii) If x ∈ I and r ∈ R, then r ◦ x ⊆ I and x ◦ r ⊆ I.

Definition 2.1. [11] Let (R1,+1, ◦1) and (R2,+2, ◦2) be two hyperrings. A
mapping from R1 into R2 is said to be a good homomorphism if for all x, y ∈ R1,
φ(x+1 y) = φ(x) +2 φ(y) and φ(x ◦1 y) = φ(x) ◦2 φ(y).

Definition 2.2. [9] A proper hyperideal P of R is called prime if x◦y ⊆ P for
x, y ∈ R implies that x ∈ P or y ∈ P . The intersection of all prime hyperideals
of R containing I is called the prime radical of I, being denoted by

√
I. If

the hyperring R does not have any prime hyperideal containing I, we define√
I = R.

Definition 2.3. [5] A proper hyperideal I of R is maximal if for any hyperideal
J of R with I ⊆ J ⊆ R then J = I or J = R. Also, we say that R is a local
hyperring if it has just one maximal hyperideal. For a hyperring R we define
the Jacobson radical J(R) as the intersection of all maximal hyperideals of R.
Moreover, if I is a proper hyperideal of R, then the Jacobson radical J(I) is
defined as the intersection of all maximal hyperideals of R containing I.

Let C be the class of all finite products of elements of R i.e. C = {r1 ◦
r2 ◦ ... ◦ rn : ri ∈ R,n ∈ N} ⊆ P ∗(R). A hyperideal I of R is said to be
a C-hyperideal of R if for any A ∈ C, A ∩ I 6= ∅ implies A ⊆ I. Let I be a
hyperideal of R. Then, D ⊆

√
I where D = {r ∈ R : rn ⊆ I for some n ∈ N}.

The equality holds when I is a C-hyperideal of R (see[9, Proposition 3.2]).

Definition 2.4. [5] An element x ∈ R is called a unit, if there exists y ∈ R
such that 1 ∈ x ◦ y. Denote the set of all unit elements in R by U(R).

Definition 2.5. [2] An element x ∈ R is said to be a zero divisor, if there
exists 0 6= y ∈ R such that {0} = x ◦ y. The set of all zero divisors in R is
denoted by Z(R).
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Definition 2.6. [5] Let I and J be hyperideals of R and x ∈ R. Then define:

(I : a) = {r ∈ R : r ◦ a ⊆ I}

ann(x) = {y ∈ R : x ◦ y = {0}}

3. J-hyperideals

In this section, we introduce and study the concept of J-hyperideals.

Definition 3.1. Let I be a proper hyperideal of a hyperring R. We call I a
J-hyperideal if x, y ∈ R with x ◦ y ⊆ I, then either x ∈ J(R) or y ∈ I.

Example 3.2. Let Z be the ring of integers. For all a, b ∈ Z, we define the
hyperoperation a ◦ b = {axb | x ∈ A} where A = {2, 3}. Then (ZA,+, ◦)
is a hyperring in which ZA = Z. In the hyperring, every principal hyperideal
generated by a prime integer is a J-hyperideal. Now, let A = {14, 21}. Then the
principal hyperideal 〈7〉 is not a J-hyperideal. Because, 1 ◦ 1 = {14, 21} ⊆ 〈7〉,
but neither 1 ∈ 〈7〉 nor 1 ∈ J(Z).

Example 3.3. Consider the ring of integers (Z,+, ·). Let x be an indetermi-
nate. Assume that R = Z + 3xZ[x]. For all α, β ∈ Z, we define the hyperop-
eration α ◦ β = {2αβ, 4αβ}. Consider the hyperideal I = 3xZ[x]. Then I is a
J-hyperideal of R.

Proposition 3.4. If I is a J-hyperideal of R, then I is contained in J(R).

Proof. Assume that I is a J-hyperideal of R such that it is not contained
in J(R). Let x ∈ I but x /∈ J(R). Since I is a hyperideal of R, we have
x ◦ 1 ⊆ I. Since I is a J-hyperideal of R and x /∈ J(R), we get 1 ∈ I which is
a contradiction. Thus, I is contained in J(R). �

The converse of Proposition 3.4 may not be always true as it is shown in the
following example.

Example 3.5. Assume that M1 and M2 are the only maximal hyperideals of
R. Then there are x ∈ M1 and y ∈ M2 such that x /∈ M2 and y /∈ M1. Thus
we conclude that x◦y ⊆M1∩M2 and so 〈x◦y〉 ⊆M1∩M2. Since x, y /∈ 〈x◦y〉
and x, y /∈ J(R), 〈x ◦ y〉 is not a J-hyperideal of R.

Theorem 3.6. For a hyperring R, the following statements are equivalent:
(i) R is a local hyperring.
(ii) Every proper hyperideal of R is a J-hyperideal.
(iii) Every proper principal hyperideal of R is a J-hyperideal.

Proof. (i) =⇒ (ii) Suppose that I is a proper hyperideal of R and M is the only
maximal hyperideal of R. So J(R) = M . Let x ◦ y ⊆ I for some x, y ∈ R such
that x /∈M . Therefore, x ∈ U(R). Hence, we have y ∈ 1 ◦ y ⊆ (x−1 ◦ x) ◦ y =
x−1 ◦ (x ◦ y) ⊆ I. Thus I is a J-hyperideal of R.

(ii)=⇒ (iii) Obvious.
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(iii)=⇒ (i) Let every proper principal hyperideal of R be a J-hyperideal.
Suppose that the hyperideal M of R is maximal. Let x ∈ M . Since the
principal hyperideal 〈x〉 is a J-hyperideal and x ◦ 1 ⊆ 〈x〉, we get x ∈ J(R) or
1 ∈ 〈x〉. In the second case, we have a contradiction. Then x ∈ J(R) and so
J(R) = M . Thus, R is a local hyperring. �

Recall from [8] that a proper hyperideal I of R is said to be an n-hyperideal

if x ◦ y ⊆ I, then x ∈
√

0 or y ∈ I for any x, y ∈ R.

Proposition 3.7. Let R be a hyperring. If I is an n-hyperideal of R, then it
is a J-hyperideal.

Proof. Let x ◦ y ⊆ I for some x, y ∈ R such that x /∈ J(R). By Proposision

2.18 in [9], we have
√

0 ⊆ J(R). Therefore, x /∈
√

0. Since I is an n-hyperideal
of R, we obtain y ∈ I. Thus, I is a J-hyperideal of R. �

Theorem 3.8. Let R be a local hyperring such that
√

0 $ J(R). Then J(R)
is a J-hyperideal of R which is not an n-hyperideal.

Proof. Let R be a local hyperring. By Theorem 3.6, the hyperideal J(R) of R

is a J-hyperideal. Let x ∈ J(R) −
√

0. Then we get x ◦ 1 ⊆ J(R) such that

x /∈
√

0 and 1 /∈ J(R). This implies that J(R) is not an n-hyperideal of R. �

Recall from [8] that a proper hyperideal I of R is said to be a r-hyperideal
if for all x, y ∈ R, x ◦ y ⊆ I and ann(x) = {0}, then y ∈ I .

Theorem 3.9. Let R be a hyperring with Z(R) ⊆ J(R). If I is a r-hyperideal
of R, then I is a J-hyperideal.

Proof. Let I be a r-hyperideal of R. Suppose that x ◦ y ⊆ I for some x, y ∈ R
such that x /∈ J(R). Since Z(R) ⊆ J(R), then x /∈ Z(R) which implies
ann(x) = {0}. Since I is a r-hyperideal of R, we get y ∈ I. Thus, I is a
J-hyperideal of R. �

The proof of the following proposition is easy.

Proposition 3.10. Let {Ii}i∈∆ be a non-empty set of J-hyperideals of R.
Then

⋂
i∈∆ Ii is a J-hyperideal of R.

Theorem 3.11. Let I be a proper hyperideal of R. Then the following state-
ments are equivalent:

(i) I is a J-hyperideal of R.
(ii) I = (I : x) for every x /∈ J(R).
(iii) I1 ◦ I2 ⊆ I for some hyperideals I1 and I2 of R implies that I1 ⊆ J(R)

or I2 ⊆ I.

Proof. (i) =⇒ (ii) Let I be a J-hyperideal of R. It is clear that I ⊆ (I : x) for
all x ∈ R. Assume that y ∈ (I : x) such that x /∈ J(R). This means x ◦ y ⊆ I.
Since I is a J-hyperideal of R and x /∈ J(R), we get y ∈ I. Thus, we have
I = (I : x).
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(ii) =⇒ (iii) Let I1 ◦ I2 ⊆ I for some hyperideals I1 and I2 of R such that
I1 * J(R). Therefore, we get x ∈ I1 such that x /∈ J(R). Hence, x ◦ I2 ⊆ I
and so I2 ⊆ (I : x). Since I = (I : x), we obtain I2 ⊆ I.

(iii) =⇒ (i) Let x ◦ y ⊆ I for some x, y ∈ R such that x /∈ J(R). By
Proposition 2.15 in [9], we have 〈x〉 ◦ 〈y〉 ⊆ 〈x ◦ y〉 ⊆ I but 〈x〉 * J(R). Then
we get 〈y〉 ⊆ I which implies y ∈ I. Thus, I is a J-hyperideal of R. �

Theorem 3.12. Let I be a proper hyperideal of R. Then I is a J-hyperideal
of R if and only if (I : y) ⊆ J(R) for every y /∈ I.

Proof. =⇒ Let x ∈ (I : y) such that y /∈ I. So, x ◦ y ⊆ I. Since I is a
J-hyperideal of R, then x ∈ J(R).
⇐= Let x ◦ y ⊆ I for some x, y ∈ R such that x /∈ J(R). If y /∈ I, then

x ∈ (I : y) ⊆ J(R), by the hypothesis. This is a contradiction. Therefore,
y ∈ I. Thus, I is a J-hyperideal of R �

Lemma 3.13. Let I be a hyperideal of R and let T be a non-empty subset of
R such that T * I. If I is a J-hyperideal of R, then (I : T ) is a J-hyperideal
of R.

Proof. Let (I : T ) = R. Then 1 ∈ (I : T ) and so T ⊆ I. This is a contradiction.
Hence, (I : T ) is a proper hyperideal of R. Suppose that x ◦ y ⊆ (I : T ) for
some x, y ∈ R such that x /∈ J(R). This implies that x ◦ y ◦ t ⊆ I for all
t ∈ T . Then we get y ◦ t ⊆ I for all t ∈ T as I is a J-hyperideal of R. Thus
y ∈ (I : T ). �

Theorem 3.14. Suppose that I is a J-hyperideal of R such that there is no
J-hyperideal which contains I properly. Then I is a prime hyperideal.

Proof. Let x◦y ⊆ I for some x, y ∈ R such that x /∈ I. By Lemma 3.13, (I : x)
is a J-hyperideal of R. If y /∈ (I : x), then y ◦ x * I which is a contradiction
with the assumption x ◦ y ⊆ I. Thus, I is a prime hyperideal. �

The next theorem shows that the converse of Theorem 3.14 is true if I =
J(R).

Theorem 3.15. Let the hyperideal J(R) of R be prime. Then J(R) is a J-
hyperideal of R such that there is no J-hyperideal which contains J(R) properly.

Proof. Suppose that I = J(R). Let x ◦ y ⊆ I for some x, y ∈ R such that
x /∈ J(R). Since I is a prime hyperideal of R, then y ∈ I = J(R) and so the
hyperideal J(R) of R is a J-hyperideal. By Proposition 3.4, we conclude that
there is no J-hyperideal which contains I properly. �

Proposition 3.16. Let H be a hyperideal of R such that H * J(R). Then
(i) If A1 and A2 of R are J-hyperideals such that A1 ◦H = A2 ◦H, then

A1 = A2.
(ii) If I ◦H is a J-hyperideal for some hyperideal I of R, then I ◦H = I.
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Proof. (i) It is clear that A1 ◦H = A2 ◦H ⊆ A2. By Theorem 3.11, we obtain
A1 ⊆ A2 as the hyperideal A2 is a J-hyperideal. By a similar argument we get
A2 ⊆ A1. Thus A1 = A2. (ii) Since I is a hyperideal of R, then I ◦ H ⊆ I.
Let the hyperideal I ◦ H of R be a J-hyperideal. Since I ◦ H ⊆ I ◦ H and
H * J(R), we have I ⊆ I ◦H, by Theorem 3.11. Thus, I ◦H = I. �

Theorem 3.17. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two hyperrings and φ :
R1 −→ R2 be a good epimorphism.

(i) If I2 is a J-hyperideal of R2 such that Kerφ ⊆ J(R1), then φ−1(I2)
is a J-hyperideal of R1.

(ii) If the C-hyperideal I1 is a J-hyperideal of R1 such that Kerφ ⊆ I1,
then φ(I1) is a J-hyperideal of R2.

Proof. (i) Let I2 is a J-hyperideal of R2. Suppose that x◦1y ⊆ φ−1(I2) for some
x, y ∈ R1 such that x /∈ J(R1). This implies that φ(x) ◦2 φ(y) = φ(x ◦1 y) ⊆ I2.
Let M be a maximal hyperideal of R1 and φ(x) ∈ J(R2). Then φ(M) is a
maximal hyperideal of R2 which implies φ(x) ∈ φ(M). Since Kerφ ⊆M , then
we have x ∈ M and so x ∈ J(R1), a contradiction. Therefore φ(x) /∈ J(R2).
Now, we have φ(y) ∈ I2 as I2 is a J-hyperideal of R2. Then we conclude that
y ∈ φ−1(I2). Thus, φ−1(I2) is a J-hyperideal of R1.

(ii) Let x2 ◦2 y2 ⊆ φ(I1) for some x2, y2 ∈ R2 such that x2 /∈ J(R2). Then
for some x1, y1 ∈ R1 we have φ(x1) = x2 and φ(y1) = y2. So φ(x1) ◦2 φ(y1) =
φ(x1 ◦1 y1) ⊆ φ(I1). Now, take any u ∈ x1 ◦ y1. Then φ(u) ∈ φ(x1 ◦ y1) ⊆ φ(I1)
and so there exists w ∈ I1 such that φ(u) = φ(w). This means φ(u − w) = 0,
that is, u− w ∈ Kerφ ⊆ I1 and then u ∈ I1. Since I1 is a C-hyperideal of R1,
then we get x1 ◦1 y1 ⊆ I1. Since φ(J(R1)) ⊆ J(R2), then x1 /∈ J(R1). Hence,
we have y1 ∈ I1 as I1 is a J-hyperideal of R1. Thus, y2 = φ(y1) ∈ φ(I1). It
follows that φ(I1) is a J-hyperideal of R2. �

Corollary 3.18. Let H and I be C-hyperideals of R such that H ⊆ I.
(i) If I is a J-hyperideal of R, then the hyperideal I/H of R/H is a

J-hyperideal.
(ii) If the hyperideal I/H of R/H is a J-hyperideal such that H ⊆ J(R),

then I is a J-hyperideal of R.
(iii) If H is a J-hyperideal of R and the hyperideal I/H of R/H is a J-

hyperideal, then I is a J-hyperideal of R.

Proof. (i) Define the natural epimorphism π : R −→ R/H by π(x) = x + H.
Since Kerπ ⊆ I, we conclude that π(I) = I/H is a J-hyperideal of R/H, by
Theorem 3.17 (ii).

(ii) Let us consider the natural epimorphism mentioned in (i). Since H ⊆
J(R), we conclude that π−1(I/H) is a J-hyperideal of R by Theorem 3.17 (i).
Consequently, I is a J-hyperideal of R.

(iii) This can be proved by using (ii) and Proposition 3.4. �
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Definition 3.19. A non-empty subset S of R containing R− J(R) is called a
J-multiplicatively closed subset if x ◦ y ⊆ S for every x ∈ R− J(R) and every
y ∈ S.

Example 3.20. Suppose that Z4 = {0̄, 1̄, 2̄, 3̄}. Then (Z4,+, ◦) is a multiplica-
tive hyperring with “ + ” and “ ◦ ” defined by

+ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 2̄ 3̄ 0̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 0̄ 1̄ 2̄

◦ 0̄ 1̄ 2̄ 3̄
0̄ {0̄} {0̄} {0̄} {0̄}
1̄ {0̄} {1̄, 3̄} {2̄} {1̄, 3̄}
2̄ {0̄} {2̄} {0̄} {2̄}
3̄ {0̄} {1̄, 3̄} {2̄} {1̄, 3̄}

In the hyperring, S = {1̄, 3̄} is a J-multiplicatively closed subset.

Proposition 3.21. Let I be a proper hyperideal of R. Then I is a J-hyperideal
if and only if R− I is a J-multiplicatively closed subset of R.

Proof. =⇒ Let I be a proper hyperideal of R. By Proposition 3.4, we conclude
that R−J(R) ⊆ R−I. Suppose that x ∈ R−J(R) and y ∈ R−I. To establish
the claim, suppose, on the contrary, that x ◦ y ⊆ I. From x ∈ R − J(R) it
follows that y ∈ I as I is a J-hyperideal of R. This is a contradiction. Hence
x ◦ y ⊆ R− I as needed.
⇐= Let x ◦ y ⊆ I for some x, y ∈ R such that x /∈ J(R). If y /∈ I, then we

conclude that x ◦ y ⊆ R − I. Thus, we arrive at a contradiction. Therefore
y ∈ I and so I is a J-hyperideal. �

Theorem 3.22. Let S be a J-multiplicatively closed subset of R and I be a
hyperideal of R disjoint from S. Then there exists a hyperideal Q which is
maximal in the set of all hyperideals of R disjoint from S, containing I. Any
such hyperideal Q is a J-hyperideal of R.

Proof. Let Υ be the set of all hyperideals of R disjoint from S, containing I.
From I ∈ Υ it follows that Υ 6= ∅. Υ is a partially ordered set with respect to
set inclusion relation. Assume that I1 ⊆ I2 ⊆ · · · is some chain in Υ. Clearly,
∪∞i=1Ii is a hyperideal of R such that (∪∞i=1Ii)∩S = ∅. Thus ∪∞i=1Ii is an upper
bound of the mentioned chain. By Zorn,s lemma, there is a hyperideal Q which
is maximal in Υ. Suppose that Q is not a J-hyperideal of R. Let x ◦ y ⊆ Q
such that x ∈ R− J(R) and y ∈ R−Q. Therefore we have Q $ (Q : x). Since
Q is a maximal element of Υ, then (Q : x) ∩ S 6= ∅. Let t ∈ (Q : x) ∩ S.
Then t ◦ x ⊆ Q ∩ S and so Q ∩ S 6= ∅. Thus we arrive at a contradiction.
Consequently, Q is a J-hyperideal of R. �

Let (R1,+1, ◦1) and (R2,+2, ◦2) be two hyperrings with nonzero identity.
Recall (R1 ×R2,+, ◦) is a hyperring with the operation + and the hyperoper-
ation ◦ are defined respectively as (x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2) and
(x1, x2) ◦ (y1, y2) = (x1 ◦1 y1)× (x2 ◦2 y2) [23].
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Theorem 3.23. Let R1 and R2 be two hyperrings with nonzero identity. Then
R1 ×R2 has no J-hyperideals.

Proof. Let I1 × I2 is a J-hyperideal of R1 × R2 for some hyperideals I1, I2 of
R1, R2. Since (0, 0) ∈ (1, 0) ◦ (0, 1) ∩ I1 × I2, then (1, 0) ◦ (0, 1) ⊆ I1 × I2. Let
(1, 0), (0, 1) ∈ J(R1×R2). Then (1, 0) = (1, 1)−(0, 1) and (0, 1) = (1, 1)−(1, 0)
are unit elements of R1×R2. Therefore we conclude that (1, 0), (0, 1) are not in
J(R1×R2). Thus, (1, 0), (0, 1) are in I1×I2. So, (1, 1) = (1, 0)+(0, 1) ∈ I1×I2
and so I1 × I2 = R1 ×R2. �

Definition 3.24. A proper hyperideal I of R is said to be J-primary if x, y ∈ R
and x ◦ y ⊆ I, then x ∈ J(I) or y ∈ I.

Example 3.25. Consider the set of integers Z with ordinary addition “ + ”
and hyperoperation “ ◦ ” defined by a ◦ b = {2ab, 3ab}. Then (Z,+, ◦) is a
multiplicative hyperring. 〈2〉 and 〈3〉 are J-primary hyperideals of Z. The
hyperideal 〈6〉 is not J-primary. In fact, 2 ◦ 3 ⊆ 〈6〉 but 2, 3 /∈ 〈6〉 and 2, 3 /∈
J(〈6〉).

Theorem 3.26. Let I be a hyperideal of R with I ⊆ J(R). Then I is a
J-hyperideal if and only if I is J-primary.

Proof. =⇒ Let I be a J-hyperideal of R. Suppose that x ◦ y ⊆ I for some
x, y ∈ R such that x /∈ J(I). This means x /∈ J(R) as J(R) ⊆ J(I). Since I is
a J-hyperideal of R and x /∈ J(R), we get y ∈ I. Consequently, the hyperideal
I is J-primary.
⇐= Suppose that the hyperideal I of R is J-primary. Let x◦ y ⊆ I for some

x, y ∈ R such that x /∈ J(R). By the hypothesis, we have J(I) ⊆ J(R). This
implies that x /∈ J(I). Since I is a J-primary hyperideal of R and x /∈ J(I),
then we get y ∈ I. Thus, I is a J-hyperideal. �

4. quasi J-hyperideals

In this section, we define the concept of quasi J-hyperideals as a generaliza-
tion of J-hyperideals.

Definition 4.1. A proper hyperideal I of R is called a quasi J-hyperideal if√
I is a J-hyperideal.

Example 4.2. In Example 3.2, the hyperideals 〈2〉 and 〈3〉 are quasi J-hyperideals.
The hyperideal 〈12〉 is not a quasi J-hyperideal. In fact, 3◦4 = {24, 36} ⊆ 〈12〉,
but 3, 4 /∈

√
〈12〉 = 〈2〉 ∩ 〈3〉 and 3, 4 /∈ J(Z).

Proposition 4.3. Let I be a quasi J-hyperideal of R. If x ◦H ⊆ I for some
hyperideal H of R and some element x ∈ R, then x ∈ J(R) or H ⊆

√
I.

Proof. Let I be a quasi J-hyperideal of R. Suppose that x ◦H ⊆ I for some
hyperideal H of R and some element a ∈ R such that x /∈ J(R). By Theorem

3.11, we get
√
I = (

√
I : x). Since H ⊆ (I : x) ⊆ (

√
I : x), then H ⊆

√
I. �



374 M. Anbarloei, A. Behtoei

Theorem 4.4. Let R be a hyperring and I be a proper hyperideal of R. Then
the following are equivalent:

(i) I is a quasi J-hyperideal of R.
(ii) If H ◦ T ⊆ I for some hyperideals H and T of R, then H ⊆ J(R) or

T ⊆
√
I.

(iii) If x ◦ y ⊆ I for some x, y ∈ R, then x ∈ J(R) or y ∈
√
I.

Proof. (i)=⇒ (ii) Let H ◦ T ⊆ I for some hyperideals H and T of R such that
H * J(R). Take x ∈ H such that x /∈ J(R). Clearly, x ◦ T ⊆ I. Since I is a

quasi J-hyperideal of R and x /∈ J(R), then T ⊆
√
I, by Theorem 4.3.

(ii) =⇒ (iii) Let x ◦ y ⊆ I for some x, y ∈ R. Put H = 〈x〉 and T = 〈y〉.
Hence, 〈x〉 ◦ 〈y〉 ⊆ 〈x ◦ y〉 ⊆ I. By the assumption, we get x ∈ 〈x〉 ⊆ J(R) or

y ∈ 〈y〉 ⊆ I ⊆
√
I.

(iii) =⇒ (i) Let x ◦ y ⊆
√
I for some x, y ∈ R such that x /∈ J(R). This

means we have (x ◦ y)n = xn ◦ yn ⊆ I for some n ∈ N. Since x /∈ J(R), we

obtain xn * J(R). Take t ∈ xn − J(R). If y /∈
√
I, then yn * I for all n ∈ N.

Assume that s ∈ yn− I. Since t◦ s ⊆ I and s /∈
√
I, we conclude that t ∈ J(R)

which is a contradiction. Thus y ∈
√
I as needed. �

Theorem 4.5. Let I be a proper hyperideal of R. Then I is a quasi J-
hyperideal of R if and only if I ⊆ J(R) and for x, y ∈ R, x ◦ y ⊆ I implies that

x ∈ J(I) or y ∈
√
I.

Proof. =⇒ Let
√
I be a J-hyperideal of R. By Proposition 3.4, we have

√
I ⊆

J(R). Since I ⊆
√
I, we get I ⊆ J(R). Let x◦y ⊆ I for some x, y ∈ R. Then we

have x ◦ y ⊆
√
I. Since

√
I is a J-hyperideal of R, we obtain x ∈ J(R) ⊆ J(I)

or y ∈
√
I.

⇐= Let x◦y ⊆ I such that x /∈ J(R). By the hypothesis, we get J(I) ⊆ J(R)

which implies x /∈ J(I). Hence, we have y ∈
√
I. We conclude that the

hyperideal I of R is a quasi J-hyperideal. �

Lemma 4.6. Let I be a hyperideal of R and S be a subset of R with S * J(R).

If I is a quasi J-hyperideal of R, then (
√
I : S) ⊆

√
(I : S).

Proof. Let x ∈ (
√
I : S). Then x ◦ S ⊆

√
I. Since x ◦ S =

⋃
y∈S x ◦ y, we have

x◦y ⊆
√
I for every y ∈ S. Since S * J(R), then there exists z ∈ S−J(R) such

that x ◦ z ⊆
√
I. Since

√
I is a J-hyperideal of R, we get x ∈

√
I. Therefore

for some n ∈ N, xn ⊆ I. This implies that xn ⊆ (I : S) and so x ∈
√

(I : S).

Consequently, (
√
I : S) ⊆

√
(I : S). �

Theorem 4.7. Let I be a C-hyperideal of R and S be a subset of R such that
S * J(R). If the hyperideal I of R is a quasi J-hyperideal, then so is (I : S).

Proof. It is clear that (I : S) is a proper hyperideal of R. Let x◦y ⊆ (I : S) for
some x, y ∈ R such that x /∈ J(R). Then x◦y◦S ⊆ I. Now we have x◦r ⊆ I for
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all r ∈ y◦S. By Theorem 4.4, we get r ∈
√
I. Since y◦S∩

√
I 6= ∅ and I is a C-

hyperideal, then we conclude that y ◦ S ⊆
√
I. This means y ∈ (

√
I : S) which

implies y ∈
√

(I : S), by Lemma 4.6. Thus, (I : S) is a quasi J-hyperideal of
R. �

Theorem 4.8. Let I be a C-hyperideal of R. Let I be a quasi J-hyperideal
such that there is no quasi J-hyperideal which contains I properly. Then the
hyperideal I of R is a J-hyperideal.

Proof. Let x ◦ y ⊆ I for some x, y ∈ R such that x /∈ J(R). By Theorem
4.7, we conclude that (I : x) is a quasi J-hyperideal of R. Since I ⊆ (I : x),
then I = (I : x), by the hypothesis. Thus, we get y ∈ I. Consequently, the
hyperideal I of R is a J-hyperideal. �

Corollary 4.9. Let J(R) be a C-hyperideal of R. J(R) is a J-hyperideal if
and only if J(R) is a quasi J-hyperideal.

Proposition 4.10. Let M be a maximal hyperideal of R. If 〈a ◦ b〉 is a quasi
J-hyperideal of R for each a, b ∈ R, then so is M .

Proof. Straightforward. �

Theorem 4.11. Let R be a hyperring. Then every maximal hyperideal of R is
a quasi J-hyperideal if and only if R is a local hyperring.

Proof. =⇒ Let the maximal hyperideal M of R be a quasi J-hyperideal. Then√
M is a J-hyperideal of R. By Proposition 3.4, we get

√
M ⊆ J(R). Since

M is maximal, then M is a prime hyperideal of R by Proposition 2.18 in [9].

Hence M =
√
M and so M ⊆ J(R). Since we have J(R) ⊆ M , the assertion

follows.
⇐= Let R be a local hyperring. By Theorem 3.6, every proper hyperideal of

R is a J-hyperideal and so every proper hyperideal of R is a quasi J-hyperideal.
Now, the claim follows by Proposition 4.10. �

Recall from [7] that a proper hyperideal I of R is said to be a quasi primary

hyperideal if
√
I is prime.

Theorem 4.12. Let R be a hyperring such that every prime hyperideal of R is
maximal. If the hyperideal I of R is a quasi J-hyperideal and I ⊆ J(R), then
I is a quasi primary hyperideal of R.

Proof. We show that
√
I is prime. Let x ◦ y ⊆

√
I for some x, y ∈ R such that

x /∈
√
I. Hence we have xn ◦ yn ⊆ I for some n ∈ N. By the hypothesis, we

conclude that
√
I = J(R). Since xn /∈ J(R) and the hyperideal I of R is a

quasi J-hyperideal, then yn ⊆
√
I, by Theorem 4.4. This means y ∈

√
I. Thus

I is a quasi primary hyperideal of R. �

Theorem 4.13. Let R be a hyperring. Let every prime hyperideal of R be
maximal and I be a hyperideal of R such that I ⊆ J(R). Then I is a quasi

J-hyperideal if and only if R is local with the maximal hyperideal
√
I.
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Proof. =⇒ Let I be a quasi J-hyperideal of R. Hence
√
I is a prime hyperideal

of R, by Theorem 4.12. By the hypothesis,
√
I is a maximal hyperideal of R.

Then there exists some prime hyperideal Q such that I = Qn for some n ∈ N.
This means

√
I = Q is maximal and so J(R) ⊆

√
I = Q. Since I ⊆ J(R), then

we conclude that
√
I = J(R). Thus the hyperring R is local with the maximal

hyperideal
√
I.

⇐= The claim follows by Theorem 4.11. �
Proposition 4.14. (i) If C-hyperideal Ii is a quasi J-hyperideal of R for

each 1 ≤ i ≤ n, then is so
⋂n

i=1 Ii.
(ii) If Ii is a quasi J-hyperideal of R for each 1 ≤ i ≤ n, then is so Πn

i=1Ii.

Proof. (i) By Proposition 3.3. in [9], we have
√⋂n

i=1 Ii =
⋂n

i=1

√
Ii. Since√

Ii is a J-hyperideal of R for each 1 ≤ i ≤ n, we conclude that
⋂n

i=1

√
Ii is

a J-hyperideal of R, by Theorem 3.10. Thus,
√⋂n

i=1 Ii is a J-hyperideal of R
and so

⋂n
i=1 Ii is a quasi J-hyperideal of R.

(ii) Let x ◦ y ⊆ Πn
i=1Ii for some x, y ∈ R such that x /∈ J(R). Since Ii is a

quasi J-hyperideal of R for each 1 ≤ i ≤ n and Πn
i=1Ii ⊆

⋂n
i=1 Ii, we conclude

that y ∈
√
Ii for each 1 ≤ i ≤ n. This means yti ⊆ Ii for each 1 ≤ i ≤ n.

Put t = t1 + t2 + ... + tn. Therefore, yt = yt1 ◦ yt2 ◦ ... ◦ ytn ⊆ Πn
i=1Ii which

implies y ∈
√

Πn
i=1Ii. Consequently, the hyperideal Πn

i=1Ii of R is a quasi
J-hyperideal. �

5. 2-absorbing J-hyperideals

In this section , we extend the notion of J-hyperideals to 2-absorbing J-
hyperideals and give some properties of them.

Definition 5.1. Let I be a proper hyperideal of R. I is called a 2-absorbing
J-hyperideal of R if x, y, z ∈ R with x◦y ◦ z ⊆ I, then x◦y ⊆ I or x◦ z ⊆ J(R)
or y ◦ z ⊆ J(R).

Example 5.2. (1) In Example 3.2, let A = {2, 4}. Then the principal hyper-
ideal 〈15〉 is a 2-absorbing J-hyperideal.

(2) Let Z6 be the ring {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} under addition and multiplication mod-
ulo 6. We define the hyperoperation x̄ � ȳ = {x̄y, ¯2xy, ¯3xy, ¯4xy, ¯5xy}, for all
x̄, ȳ ∈ Z6. In the commutative multiplicative hyperring (Z,+,�), hyperideal
{0̄} is a 2-absorbing J-hyperideal.

Example 5.3. Consider the hyperring R in Example 3.3. The hyperideal I2

is a 2-absorbing J-hyperideal of R.

Theorem 5.4. If I is a J-hyperideal of R and J(R) is a C-hyperideal of R,
then I is a 2-absorbing J-hyperideal of R.

Proof. Let I be a J-hyperideal of R. Suppose that x ◦ y ◦ z ⊆ I for some
x, y, z ∈ R. Choose u ∈ x ◦ z. Since y ◦ u ⊆ I and I is a J-hyperideal of
R, we get y ∈ I or u ∈ J(R). In the former case, we have y ◦ z ⊆ I and so
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y ◦ z ⊆ J(R), by Proposition 3.4. In the second case, we obtain x ◦ z ⊆ J(R)
as J(R) is a C-hyperideal of R. �

Proposition 5.5. If I is a 2-absorbing J-hyperideal of R, then I ⊆ J(I).

Proof. Let I be a 2-absorbing J-hyperideal of R. We suppose that I * J(I)
and look for a contradiction. From I * J(I) it follows that there exists x ∈ I
such that x /∈ J(R). Since 1 ◦ 1 ◦ x ⊆ I and I is a 2-absorbing J-hyperideal
of R, we have 1 ◦ 1 ⊆ I, a contradiction or x ∈ 1 ◦ x ⊆ J(R), a contradiction.
Thus, I ⊆ J(I). �

Recall from [6] that a proper hyperideal I of R is said to be an 2-absorbing

primary hyperideal if x ◦ y ◦ z ⊆ I implies x ◦ y ⊆ I or x ◦ z ⊆
√
I or y ◦ z ⊆

√
I

for any x, y, z ∈ R.
The next theorem shows that the inverse of Proposition 5.5 is true if I is a
2-absorbing primary hyperideal of R

Theorem 5.6. Let I be a 2-absorbing primary hyperideal of R and I ⊆ J(R).
Then I is a 2-absorbing J-hyperideal of R.

Proof. Suppose that I is a 2-absorbing primary hyperideal of R such that
I ⊆ J(R). Let x ◦ y ◦ z ⊆ I for some x, y, z ∈ R such that x ◦ z, y ◦ z * J(R).

Then we conclude that x ◦ z, y ◦ z *
√
I. This implies that x ◦ y ⊆ I as I

is a 2-absorbing primary hyperideal of R. Consequently, I is a 2-absorbing
J-hyperideal of R. �

Theorem 5.7. Let the hyperring R has at most two maximal hyperideals.
Suppose that the hyperideal I of R is 2-absorbing primary that is not quasi
primary. Then I is a 2-absorbing J-hyperideal of R.

Proof. Let the hyperideal I of R be 2-absorbing primary. Then
√
I is prime

or
√
I = P1 ∩ P2 for some prime hyperideals P1 and P2 of R, by Theorem 4.5

in [6]. In the former case, we have a contradiction since I is not a quasi primary

hyperideal of R. Therefore, we obtain I ⊆
√
I ⊆ J(R) as the hyperring R has

at most two maximal hyperideals. Thus, I is a 2-absorbing J-hyperideal of R,
by Theorem 5.6. �

Corollary 5.8. Let R1 and R2 be two local hyperrings. Then every 2-absorbing
primary hyperideal of R1 × R2 that is not quasi primary is a 2-absorbing J-
hyperideal.

Theorem 5.9. Let I be a 2-absorbing J-hyperideal of R. Then for each a, b ∈ I
with a ◦ b * I, (I : a ◦ b) ⊆ (J(R) : a) or (I : a ◦ b) ⊆ (J(R) : b).

Proof. Let I be a 2-absorbing J-hyperideal of R. Let c ∈ (I : a ◦ b) for some
a, b ∈ R with a ◦ b * I. This means a ◦ b ◦ c ⊆ I. Since the hyperideal I of R is
2-absorbing J-hyperideal and a ◦ b * I, then a ◦ c ⊆ J(R) of b ◦ c ⊆ J(R) and
so c ∈ (J(R) : a) or c ∈ (J(R) : b). This implies that (I : a ◦ b) ⊆ (J(R) : a) or
(I : a ◦ b) ⊆ (J(R) : b). �
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Recall from [10] that a hyperideal I of R is called a strong C-hyperideal if
for any E ∈ U, E ∩ I 6= ∅, then E ⊆ I, where U = {

∑n
i=1Ai : Ai ∈ C, n ∈ N}

and C = {r1 ◦ r2 ◦ ... ◦ rn : ri ∈ R,n ∈ N}.

Theorem 5.10. Let I be a proper strong C-hyperideal of R. Then the following
are equivalent:

(i) I is a 2-absorbing J-hyperideal of R.
(ii) If a ◦ b ◦H ⊆ I for some a, b ∈ R and some hyperideal H of R, then

a ◦ b ⊆ I or a ◦H ⊆ J(R) or b ◦H ⊆ J(R).
(iii) If a ◦H ◦T ⊆ I for some a ∈ R and some hyperideals H,T of R, then

a ◦H ⊆ I or a ◦ T ⊆ J(R) or H ◦ T ⊆ J(R).
(iv) If K ◦H ◦ T ⊆ I for some hyperideals K,H, T of R, then K ◦H ⊆ I

or K ◦ T ⊆ J(R) or H ◦ T ⊆ J(R).

Proof. (i) =⇒ (ii) Let a ◦ b ◦H ⊆ I for some a, b ∈ R and some hyperideal H
of R such that a ◦ b * I. Hence, we get H ⊆ (J(R) : a) or H ⊆ (J(R) : b), by
Theorem 5.9. This implies that a ◦H ⊆ J(R) or b ◦H ⊆ J(R).

(ii) =⇒ (iii) Let a ◦H ◦ T ⊆ I for some a ∈ R and some hyperideals H,T
of R such that a ◦ H * I and a ◦ T * J(R). Therefore, we get a ◦ h1 * I
and a ◦ t1 * J(R) for some h1 ∈ H and t1 ∈ T . Since a ◦ h1 ◦ T ⊆ I, then
h1 ◦T ⊆ J(R), by (i). Let h2 ∈ H. Suppose that h2 ◦T * J(R). By (i), we get
a ◦ h2 ⊆ I as a ◦ h2 ◦ T ⊆ I. Hence a ◦ (h1 + h2) * I. Again by (i), we obtain
(h1 +h2) ◦T ⊆ J(R) as a ◦ (h1 +h2) ◦T ⊆ I. As h1 ◦T ⊆ J(R), h2 ◦T ⊆ J(R)
and so H ◦ T ⊆ J(R).

(iii) =⇒ (iv) Let K ◦ H ◦ T ⊆ I for some hyperideals K,H, T of R such
that K ◦ H * I and H ◦ T * J(R). Then we have k ◦ H * I for some
k ∈ K. It is clear that k ◦H ◦ T ⊆ I. Hence we have k ◦ T ⊆ J(R), by (iii).
Assume that x ∈ K. By (iii), we conclude that x ◦H ⊆ I or x ◦ T ⊆ J(R) as
x ◦H ◦ T ⊆ I. If x ◦H ⊆ I, then (k+ x) ◦H ⊆ (k ◦H) + (x ◦H) * I. Clearly,
(k+x) ◦H ◦T ⊆ I. Then (k+x) ◦T ⊆ J(R). Since I is a strong C-hyperideal
of R, then (k ◦ T ) + (x ◦ T ) ⊆ J(R). Hence, x ◦ T ⊆ J(R) as k ◦ T ⊆ J(R).
Now, let x ◦H * I. It is obvious that x ◦H ◦ T ⊆ I. Therefore, x ◦ T ⊆ J(R),
by (iii). Consequently, K ◦ T ⊆ J(R).

(iv) =⇒ (i) Let x ◦ y ◦ z ⊆ I for some x, y, z ∈ R such that x ◦ z * J(R) and
y ◦ z * J(R). We consider K = 〈x〉, H = 〈y〉 and T = 〈z〉. Thus, we conclude
that K ◦T = 〈x〉 ◦ 〈z〉 ⊆ 〈x ◦ z〉 * J(R) and H ◦T = 〈y〉 ◦ 〈z〉 ⊆ 〈y ◦ z〉 * J(R).
Since K ◦ H ◦ T ⊆ I, by (iv), we get K ◦ H ⊆ I and so x ◦ y ⊆ I and that
completes the proof. �

Theorem 5.11. If every proper hyperideal of R is a 2-absorbing J-hyperideal,
then R is a local hyperring.

Proof. Let every proper hyperideal of R be a 2-absorbing J-hyperideal. Sup-
pose that M is a maximal hyperideal of R. We show that M ⊆ J(R). Let
a ∈M and I = 〈a〉. Since I is a 2-absorbing J-hyperideal of R, then I ⊆ J(R)
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by Proposition 5.5. Therefore, a ∈ J(R) and so M ⊆ J(R). Thus J(R) = M
as J(R) ⊆M . Consequently, R is a local hyperring. �

Proposition 5.12. Let {Ii}i∈∆ be a non-empty set of 2-absorbing J-hyperideals
of R. Then

⋂
i∈∆ Ii is a 2-absorbing J-hyperideal of R.

Proof. Let x ◦ y ◦ z ⊆
⋂

i∈∆ Ii for some x, y, z ∈ R such that x ◦ z * J(R) and
y ◦ z * J(R). This implies that x ◦ y ◦ z ⊆ Ii for every i ∈ ∆. Since Ii is a
2-absorbing J-hyperideal of R for every i ∈ ∆, we get the result that x ◦ y ⊆ Ii
and so x ◦ y ⊆

⋂
i∈∆ Ii. Thus

⋂
i∈∆ Ii is a 2-absorbing J-hyperideal of R. �

Definition 5.13. A proper hyperideal I of R is called 2-absorbing J-primary
if elements x, y, z ∈ R and x ◦ y ◦ z ⊆ I, then x ◦ y ⊆ I or x ◦ z ∈ J(I) or
y ◦ z ∈ J(I).

Example 5.14. In Example 3.2, let A = {3, 4}. Then the hyperideal 〈8〉 is a
2-absorbing J-primary of ZA.

Theorem 5.15. Let I be a hyperideal of R . Then I is a 2 -absorbing J-
hyperideal of R if and only if I is a 2-absorbing J-primary hyperideal of R with
J(I) = J(R).

Proof. =⇒ Let I be a 2 -absorbing J-hyperideal of R. Suppose that x, y, z ⊆ I
for some x, y, z ∈ R. This implies that x◦y ⊆ I or x◦z ⊆ J(R) or y ◦z ⊆ J(R)
as I is a 2 -absorbing J-hyperideal of R. Since J(R) ⊆ J(I), we have x ◦ y ⊆ I
or x ◦ z ⊆ J(I) or y ◦ z ⊆ J(I). Thus I is a 2-absorbing J-primary hyperideal
of R. It is clear that J(R) ⊆ J(I). For the reverse inclusion, we have I ⊆ J(R)
by Proposition 5.5. Thus J(I) ⊆ J(R) and so J(I) = J(R).
⇐= Let I be a 2-absorbing J-primary hyperideal ofR such that J(I) = J(R).

Suppose that x, y, z ⊆ I for some x, y, z ∈ R. This implies that x ◦ y ⊆ I or
x ◦ z ⊆ J(I) or y ◦ z ⊆ J(I) as I is a 2-absorbing J-primary hyperideal of R.
Since J(I) = J(R), we get x ◦ y ⊆ I or x ◦ z ⊆ J(R) or y ◦ z ⊆ J(R). This
means I is a 2 -absorbing J-hyperideal of R. �

Theorem 5.16. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two hyperrings and let I1
and I2 be hyperideals of R1 and R2, respectively. Then I1× I2 is a 2-absorbing
J-hyperideal of R1 × R2 if and only if I1 is a J-hyperideal of R1 and I2 is a
J-hyperideal of R2.

Proof. =⇒ Let I1× I2 is a 2-absorbing J-hyperideal of R1×R2. Suppose that
a ◦1 b ⊆ I1 such that b /∈ J(R1). Therefore (a, 1) ◦ (1, 0) ◦ (b, 1) = {(x, y) | x ∈
a ◦1 1 ◦1 b, y ∈ 1 ◦2 0 ◦2 1} ⊆ I1 × I2, (a, 1) ◦ (b, 1) = {(x′, y′) | x′ ∈ a ◦1 b, y′ ∈
1 ◦2 1} * J(R1 × R2) and (b, 0) ∈ (1, 0) ◦ (b, 1) * J(R1 × R2). Hence we get
(a, 0) ∈ (a, 1)◦(1, 0) ⊆ I1×I2 and so a ∈ I1. Consequently, I1 is a J-hyperideal
of R1. By a similar argument, we can prove that I2 is a J-hyperideal of R2.
⇐= Let I1 be a J-hyperideal of R1 and I2 is a J-hyperideal of R2. Suppose

that (a1, b1)◦(a2, b2)◦(a3, b3) ⊆ I1×I2 such that (a2, b2)◦(a3, b3) * J(R1×R2).
Take a ∈ a2 ◦1 a3. Then a1 ◦1 a ⊆ a1 ◦1 a2 ◦1 a3 ⊆ I1. We assume that
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a2 ◦1 a3 * J(R1). So a /∈ J(R1). Since I1 is a J-hyperideal of R1, a1 ∈ I1 and
so a1◦1a2 ⊆ I1. On the other hand, if b1◦2 b3 ⊆ J(R2), then (a1, b1)◦(a3, b3) ⊆
I1×J(R2) ⊆ J(R1×R2), as needed. Then we may assume b1◦b3 * J(R2). Take
b ∈ b1 ◦2 b3. Then b2 ◦2 b ⊆ I2. Since I2 is a J-hyperideal of R2 and b /∈ J(R2),
we have b2 ∈ I2 and so b1 ◦2 b2 ⊆ I2. This (a1, b1) ◦ (a2, b2) ⊆ I1 × I2. This
implies that I1 × I2 is a 2-absorbing J-hyperideal of R1 ×R2. �

Theorem 5.17. Let (R1,+1, ◦1), (R2,+2, ◦2) and (R3,+3, ◦3) be three hy-
perrings with nonzero identity. Then, R1 × R2 × R3 has no 2-absorbing J-
hyperideals.

Proof. Let I1 × I2 × I3 is a 2-absorbing J-hyperideal of R1 × R2 × R2 for
some hyperideals I1, I2 and I3 of R1, R2 and R3, respectively. Since (0, 0, 0) ∈
(1, 1, 0) ◦ (0, 1, 1) ◦ (1, 0, 1) ∩ I1 × I2 × I3, then (1, 1, 0) ◦ (0, 1, 1) ◦ (1, 0, 1) ⊆
I1× I2× I3. Since (1, 1, 0)◦ (0, 1, 1) * J(R1×R2×R3) and (1, 1, 0)◦ (1, 0, 1) *
J(R1 × R2 × R3), then (0, 0, 1) ∈ (0, 0, 1) ◦ (1, 0, 1) ⊆ I1 × I2 × I3. Moreover,
we can get (0, 1, 0), (1, 0, 0) ∈ I1 × I2 × I3. Thus (1, 1, 1) = (1, 0, 0) + (0, 1, 0) +
(0, 0, 1) ∈ I1 × I2 × I3 which is a contradiction. �

6. Conclusion

In this paper, we defined the notion of J-hyperideals as a generalization
of n-hyperideals and studied the relations between J-hyperideals and other
classical hyperideals such as n-hyperideals, r-hyperideals, prime and maximal
hyperideals. Moreover, we extended this concept to quasi J-hyperideals and 2-
absorbing J-hyperideals. Some main results and examples are given to explain
the structures of these concepts.

7. future work

Definition 7.1. Let P be a hyperideal of R. P refers to a strongly quasi
J-hyperideal if x, y ∈ R and x ◦ y ⊆ P imply x2 ⊆ P or y ∈ J(R).
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