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Abstract. This paper introduces an innovative family of statistical mod-

els called the multivariate skew scale-shape mixtures of normal distribu-
tions. These models serve as a versatile tool in statistical analysis by

efficiently characterizing the skewed and leptokurtic nature commonly ob-
served in multivariate datasets. Their applicability shines in real-world

scenarios where data often deviate from standard statistical assumptions

due to the presence of outliers. We present an EM-type algorithm de-
signed for maximizing likelihood estimation and evaluate the model’s ef-

fectiveness through real-world data applications. Through rigorous test-

ing against various datasets, we assess the performance and practicality
of the proposed algorithm in real statistical scenarios. The results demon-

strate the remarkable performance of this new family of distributions.
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variate distributions, Stock Markets
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1. Introduction

Multivariate normal distributions are foundational models in statistics, por-
traying the collective behavior of correlated variables (Härdle and Simar, 2015).
Each variable adheres to a normal (Gaussian) distribution, and their joint
distribution characterizes the multivariate structure (Kotz, Balakrishnan, and
Johnson, 2004). Defined by a mean vector and covariance matrix, these dis-
tributions encapsulate variable averages and relationships (Mardia, Kent, and
Bibby, 1979). Conversely, multivariate skew normal distribution offer a nu-
anced extension, accommodating asymmetry in data (Azzalini and Capitanio,
2014). This distribution introduces skewness, allowing a flexible representa-
tion of non-symmetrical datasets (Mondal, 2023). Multivariate skew normal
distribution includes skewness matrix parameters alongside means and covari-
ance matrices, enabling modeling of asymmetrical tendencies (Arellano-Valle
and Genton, 2005). This adaptability goes beyond symmetric distributions,
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providing richer depictions of diverse multivariate data structures. In recent
years, several authors have introduced various generalizations of multivariate
normal and skew-normal distributions, delving into their properties. For addi-
tional literature on related distributions, readers are directed to studies such
as scale-shape mixtures of skew-normal distributions (Jamalizadeh and Lin,
2017), the multivariate flexible skew-symmetric-normal distribution (Mahdavi
et al., 2021), scale-shape mixtures of multivariate skew-normal distributions
and their stochastic ordering (Amiri and Balakrishnan, 2022), and generalized
location-scale mixtures of elliptical distributions (Pu et al., 2023).

Multivariate distributions frequently use in financial and economic analyses,
serving to describe the joint behavior of multiple variables. These distributions
find extensive applications in portfolio theory (Fabozzi, 2008), asset pricing
models (Fama and French, 1993), and risk management (Jorion, 2007). They
provide a reliable framework for depicting the interrelationships among various
financial assets, enabling efficient diversification strategies and risk assessments
(Bodie and Kane 2020). Conversely, multivariate skew normal distributions
have gained traction in financial modeling due to their ability to capture asym-
metry in asset returns and economic variables (Harvey and Siddique, 2000).
These distributions accommodate skewed and leptokurtic data, often observed
in financial markets, making them valuable for modeling stock returns, volatil-
ity, and other financial variables (Cont, 2007). Their applications extend to risk
modeling in insurance (Gómez-Déniz et al., 2022) and macroeconomic analy-
ses involving skewed economic indicators (Denkowska and Wanat, 2020). The
incorporation of skewness enhances the accuracy of financial models, offering
a more comprehensive depiction of the complexities inherent in economic data
structures.

This paper endeavors to introduce a novel skew scale-shape mixtures of
the multivariate normal distribution, designed to effectively encapsulate the
skewness and leptokurtosis inherent in financial datasets. Moreover, our study
introduces a groundbreaking innovation in multivariate distribution modeling
by incorporating a novel approach: treating the shape parameter of the skew-
normal distribution as a random variable. This departure from conventional
methodologies allows our model to dynamically adapt and incorporate vary-
ing levels of skewness and kurtosis, surpassing the capabilities of previous ap-
proaches. Building upon seminal works in this field (Azzalini and Capitanio,
2014), our methodology represents a paradigm shift, offering unparalleled flex-
ibility and precision in capturing the asymmetrical patterns and heavy-tailed
behavior inherent in financial datasets. Unlike traditional methods that im-
pose fixed or predetermined shape parameters, our approach empowers the
distribution to dynamically adjust, enabling it to more accurately reflect the
complexities of real-world financial data. Moreover, The introduced family en-
compasses shape mixtures of multivariate skew-symmetric normal distributions
which the symmetric part is a scale mixture of multivariate normal distribution
like symmetric generalized hyperbolic, slash, contaminated normal and logistic
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distributions. It offers greater flexibility compared to these subclasses in fitting
multivariate data, owing to its broader coverage of skewness and kurtosis. This
fundamental innovation not only distinguishes our study from previous contri-
butions (Mondal et al., 2023) but also positions it as a pioneering advancement
in the field of multivariate distribution modeling. By pushing the boundaries of
statistical methodology, our research opens up new horizons for advanced finan-
cial modeling, promising enhanced risk assessment, asset pricing, and portfolio
optimization strategies. Furthermore, our empirical validation in the context
of financial stock markets serves as compelling evidence of the efficacy and
superiority of our methodology in capturing the nuances of real-world data.
Through meticulous exploration of specific cases within our novel framework
and a detailed exposition of the EM algorithm’s application, we demonstrate
the practical utility and methodological rigor of our approach. In essence, our
paper represents a transformative contribution to the field, offering a robust
and adaptable framework that is poised to revolutionize the landscape of fi-
nancial modeling.

Section 2 delves into the exploration of this new family of distributions,
analyzing specific cases within it. The EM algorithm, pivotal in this context,
is detailed in Section 3. A simulation study and the practical application of
these models in financial Stock Markets are investigated in Sections 4 and 5,
respectively. Some conclusions are made in Section 6.

2. Theory and methods

Within this section, we introduce a formulation of skew scale mixtures of
the multivariate normal distribution utilizing established guidelines. Initially,
we outline foundational concepts derived from multivariate normal and skew
normal distributions to lay the groundwork for our discussion.

2.1. Preliminary framework. A random vector Y is said to follow a mul-

tivariate skew normal distribution (MSN) with location vector ξ = (ξ1, ..., ξp)
>

,

p×p scale covariance matrix Σ and skewness parameter vector λ = (λ1, ..., λp)
>

,
denoted by Y ∼SNp (ξ,Σ, λ), if it has density

(1) fY(y; ξ,Σ, λ) = 2φp(y; ξ,Σ)Φ
(
λ>Σ−1/2 (y− ξ)

)
,

where φp(·; ξ,Σ) is the probability density function (pdf) of Np (ξ,Σ), and
Φ(·) is the cumulative distribution function (cdf) of univariate standard normal
distribution.

According to Arellano-Valle et al. (2005), the MSN distribution has a con-
venient stochastic representation

(2) Y = ξ+ Σ1/2
{
δ |Z0|+

(
Ip − δδT

)1/2
Z1

}
,
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where δ = λ/
√

1 + λTλ, Z0 ∼ N(0, 1) and Z1 ∼ Np
(
0, Ip

)
independently.

The random vector Y follows a scale mixture of normal (SMN) distribution
if Y| {U = u} ∼ Np(ξ, u

−1Σ) where and U is a positive variable and has pdf
h(u;ν), indexed by parameters ν.

Ferreira et al. (2016) introduced a family of skew scale mixture of normal
(SSMN) distributions by multiplying the density of SMN distribution by the
cdf of the normal distribution (as the skewing function). A random vector Y
has SSMN distribution

and it is denoted by Y ∼ SSMN(ξ,Σ, λ;h) when its pdf is

f(y) = 2f0(y)Φ(λ>Σ−1/2(y− ξ)),(3)

where f0(y) is the pdf of a SMN distribution. Some familiar skewed distri-
butions belong to this family, including multivariate skew-t-normal (MSTN),
skew-slash (MSSL) and skew-contaminated-normal (MSCN). In this paper, we
consider a more general class of skew scale-shape mixtures of normal (SKSSMN)
distributions and present feasible EM-type algorithms for the computation of
maximum likelihood (ML) estimates of parameters. A random variable Y is
said to follow a SKSSMN distribution if it has the following representation

Y | (U = u,V = v) ∼ SNp

(
ξ, u−1Σ, u−1/2v

)
,

U ∼ h(u;ν) ⊥ V ∼ Np(µ,Ω),(4)

where ⊥ means U and V are independent. The model in (3) is a special case
of the model in (4) when V is a fixed parameter as λ. So the new model can
be generalized all models discussed in Ferreira et al. (2016).

Let Y be a random vector following the representation in (4). Then, we say
that Y follows a SKSSMN distribution and write Y ∼ SKSSMN(ξ,Σ, µ,Ω;h)
for short.

Proposition 2.1. If Y ∼ SKSSMN(ξ,Σ, µ,Ω;h) the pdf of Y is given by

f(y) = 2f0(y)Φ

(
µ>d√

1 + d>Ωd

)
, y ∈ Rp,(5)

where d = Σ−1/2(y− ξ) and f0(y) =
∫∞

0
φp
(
y; ξ, u−1Σ

)
h(u;ν)du.

Proof. The proof is straightforward using the hierarchical representation in (4)
and some integration. �

Proposition 2.2. If Y ∼ SKSSMN(ξ,Σ, µ,Ω;h) a further stochastic rep-
resentation for Y is

(6) Y = ξ+ Σ1/2

{
u−1/2V√
u+ V>V

|Z0|+
(
uIp + VV>

)−1/2

Z1

}
.

Proof. The proposition is proved using representation (2) for conditional dis-
tribution in (4). �
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Let W =
√

1 + u−1V>V be a reparameterized latent variable. A further
hierarchical representation of the SKSSMN distribution can be written as

Y | (W = w,V = v, U = u) ∼ Np

(
ξ +

w

u+ v>v
Σ1/2v,Σ1/2

(
uIp + vv>

)−1

Σ1/2

)
,

W | (V = v, U = u) ∼ TN

(
0,

u+ v>v

u
; (0,∞)

)
,

V ∼ Np (µ,Ω) ⊥ U ∼ h(u;ν),(7)

where TN(µ, σ2; (a, b)) represents the truncated normal distribution forN(µ, σ2)
lying within the truncated interval (a, b).

Using (7), the joint pdf of Y,V,W and U is given by

f(y,v, w, u) =
2(2π)−(2p+1)/2up/2

|Ω|1/2 |Σ|1/2
exp

{
−u

2
d>d−

(
w − d>v

)2
2

}

× exp

{
−1

2
(v − µ)

>
Ω−1 (v − µ)

}
h(u;ν),(8)

where d = Σ−1/2 (y − ξ) and |A| denotes the determinant of matrix A.
Integrating out w in (8), we get

f(y,v, u) =

∫ ∞
0

f(y,v, w, u)dw =
2(2π)−p

|Ω|1/2 |Σ|1/2
up/2e−

u
2 d>d

× exp

{
−1

2
(v − µ)

>
Ω−1 (v − µ)

}
h(u;ν)Φ

(
d>v

)
.(9)

So dividing (8) by (9) gives

(10) f (w|y,v, u) =
φ
(
w − d>v

)
Φ (d>v)

= f (w|y,v) .

Implying that W and U are conditionally independent given Y = y and
V = v. It follows from (10) that the conditional distribution of W given
Y = y and V = v is

(11) W |(y,v) ∼ TN
(
d>v, 1; (0,∞

)
).

Integrating from (9) over v and u we have

f(y) =
2(2π)−p/2

|Σ|1/2
Φ

(
d>µ√

1 + d>Ωd

)∫ ∞
0

up/2e−
u
2 d>dh(u;ν)du

= 2f0(y)Φ

(
d>µ√

1 + d>Ωd

)
.(12)

Observing (9), we have the following relation

f(v, u | y) = f(v | y)f(u | y).(13)
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Implying that V and U are conditionally independent given Y = y. From
(12) and (13), we can get the following consequence

f(v | y) = φp(v;µ,Ω)
Φ
(
d>v

)
Φ

(
d>µ√

1+d>Ωd

) .
In particular, V | {Y = y} follows the extended SN (ESN) distribution

(Azzalini 2014), denoted by ESNp
(
µ,Ω,Ω1/2d,d>µ

)
.

Using the properties of ESN distribution, we have

(14) E(V|y) = µ+
Ωd√

1 + d>Ωd
R

(
µ>d√

1 + d>Ωd

)
,

where R (x) = φ(x)
Φ(x) and

E(VVT |y) = µµ> + Ω +
1√

1 + d>Ωd
R

(
µ>d√

1 + d>Ωd

)
×

(
Ωdµ> + µd>Ω− µ>d

1 + d>Ωd

(
Ωdd>Ω

))
.(15)

From (11) we have

E(W |y,v) = d>v +R(d>v).

Thus

E(W |y) = E(E(W |y,v)) = d>E (V | y) + E
(
R(d>V) | y

)
,

and

(16) E(WV|y) = E(VE(W |y,v)|y) = E(VVT |y)d + E
(
VR(d>V) | y

)
,

but

E
(
VR(d>V) | y

)
=

∫
Rp

vφ(d>v)φp(v;µ,Ω)dv

=
|Ω|−1/2

Φ

(
µTd√

1+d>Ωd

) (2π)
− p+1

2 e−
µ>Ω−1µ

2

×
∫
Rp

veµ
>Ω−1ve−

1
2{vT (ddT+Ω−1)v}dv

=

∣∣I + Ωdd>
∣∣−1/2

√
2πΦ

(
µ>d√

1+d>Ωd

) (I + Ωdd>)−1µ

× e−
1
2{µ>(I−(I+Ωdd>)−1)µ}.

2.2. Some special cases. In this subsection, we study some special cases of
SKSSMN distribution.



Analyzing skewed financial data using skew scale-shap mixtures... – JMMR Vol. 13, No. 3 (2024) 77

2.2.1. Shape mixture of multivariate SCN. If U takes one of two states {ν2, 1}
with probabilities {ν1, 1− ν1}, then f0(y) in (5) is the pdf of multivariate
contaminated normal distribution (Ferriera et al., 2016). Then, the random
vector Y achieves a shape mixture of multivariate skew-contaminated-normal
(MSMSCN) distribution and its pdf, for y ∈ Rp, is

(17) f(y) = 2{ν1φp(y; ξ, ν−1
2 Σ) + (1− ν1)φp(y; ξ,Σ)}Φ

(
d>µ√

1 + d>Ωd

)
.

From Ferreira et al. (2016) we have

E(U | y) =
1− ν1 + ν1ν

p
2 +1
2 exp{(1− ν2)d>d/2}

1− ν1 + ν1ν
p/2
2 exp{(1− ν2)d>d/2}

.

2.2.2. Shape mixture of multivariate SSL. If U ∼ Beta(ν, 1) then the pdf (5),
for y ∈ Rp, is updated as

(18) f(y) = 2ν

∫ 1

0

uν−1φp(y; ξ, u−1Σ)duΦ

(
d>µ√

1 + d>Ωd

)
.

Thus we say Y has a shape mixture of skew slash (MSMSSL) distribution.
In this case U | y ∼ TG(ν + p/2,d>d/2, 1), where TG(a, b, t) is the right
truncated gamma distribution, so we have

E(U | y) =
2

d>d

γ(ν + p
2 + 1, d>d

2 )

γ(ν + p
2 ,

d>d
2 )

,

and

E(logU | y) =

(
2

d>d

)ν+ p
2 +1(

log

(
2

d>d

)
+

∂

∂ν
log γ

(
ν +

p

2
,
d>d

2

))
,

where γ(a, b) =
∫ b

0
xa−1e−xdx, denotes the incomplete gamma function.

2.2.3. Shape mixture of skew-generalized-hyperbolic-normal (SGHN). Let S =
1/U has a generalized inverse Gaussian (GIG) distribution with pdf(

ψ
χ

)λ
2

2Kλ

(√
χψ
) sλ−1e−

1
2 (χs−1+ψs), s > 0,

where

(19) Kλ (x) =
1

2

∫ +∞

0

yλ−1e−
x
2 (y+y−1)dy, x > 0,

being the Bessel function of the third kind with index λ. The parameters
λ, χ and ψ satisfy χ > 0, ψ ≥ 0 if λ < 0, χ > 0, ψ > 0 if λ = 0 and
χ ≥ 0, ψ > 0 if λ > 0. Then, the pdf f0(.) in (5) reduces to the pdf of
multivariate symmetric generalized hyperbolic distribution which is an elliptical
distribution (See McNeil et al. 2015) which is
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(20) f0(y) =

√
χψ
−λ
ψ
p
2

(2π)
p
2 |Σ| 12Kλ

(√
χψ
)Kλ− p2

(√
ψ (χ+ q (x))

)
√
ψ (χ+ q (y))

p
2−λ

,

where y ∈ Rp, q (y) = (y − ξ)
T

Σ−1 (y − ξ) and Kλ(.) is defined in(19). Now,
the shape mixture of skew-generalized-hyperbolic-normal (SMSGHN) distribu-
tion follows from Proposition 2.1 by substituting (20) into (5).

The following remark states some other special cases of the SKSSMN distri-
butions.

Remark 2.3. Let f0(.) in (20). Then, it becomes: the symmetric normal inverse
Gaussian (NIG) distribution if λ = −0.5, the symmetric variance gamma distri-
bution (VG) if λ > 0 and χ = 0, the Student’s t distribution if λ < 0 and ψ = 0,
the symmetric hyperbolic distribution if λ = (p + 1)/2. These choices gen-
erate, respectively, the shape mixtures of skew-symmetric-NIG-normal, skew-
symmetric-VG-normal, skew-t- normal and skew-symmetric-hyperbolic-normal
distributions. Also, some other distributions for U can be considered to gener-
ate more SMN distributions for f0(.) in (5) as introduced in Section 3 of Branco
and Dey (2001), for example logistic, stable, exponential power and Pearson
type II distributions. Considering these cases for f0(.) in Proposition 2.1,
respectively, follow the shape mixtures of skew- logistic-normal, skew-stable-
normal, skew-exponential-power-normal, and skew-Pearson type II-normal dis-
tributions. Two other examples for f0(.) are symmetric forms of distributions
introduced by Pourmousa et al. (2015) and Naderi et al. (2018) by supposing
the Birnbaum-Saunders and Lindley distributions for X = 1/U , respectively.

From Remark 1, If λ = −ν/2, χ = ν/2 and ψ = 0, then U ∼ Γ(ν2 ,
ν
2 ) and we

have a shape mixture of multivariate skew-t-normal (MSMSTN) distribution
with pdf

(21) f(y) = 2tp(y; ξ,Σ, ν)Φ

(
d>µ√

1 + d>Ωd

)
, y ∈ Rp.

In this case, U |y ∼ Γ
(
ν+p

2 , ν+d>d
2

)
and thus E(U | y) = ν+p

ν+d>d
and

E(logU | y) = DG

(
ν + p

2

)
− log

(
ν + d>d

2

)
,

where DG(x) = d
dx log Γ(x) is the digamma function.

Figure 1 shows the density surface and contour plots of bivariate distri-
butions MSMSTN (for ν = 4), MSMSCN (for ν1 = 0.2 and ν2 = 0.8) and
MSMSSL (for ν = 4) with pdfs, respectively, in (21), (17), and (18), and each
has common location vectors ξ and µ and common dispersion matrices Σ and
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Figure 1. Density and contour plots of bivariate MSMSTN,
MSMSCN and MSMSSL distributions.

Ω specified as

ξ = (1, 2)
>
, µ = (3, 4)

>
,

Σ =

(
1 0
0 1

)
, Ω =

(
1 0.5

0.5 1

)
.

These plots show the asymmetry and kurtosis of the introduced distributions
well. Therefore, using them to fit economic data is justifiable.
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3. ECME algorithm

The EM algorithm (Dempster et al., 1977) serves as a versatile tool for maxi-
mum likelihood estimation in models involving missing data or latent variables.
Its strength lies in maintaining implementation simplicity and ensuring mono-
tonic convergence. However, directly applying the EM algorithm to estimate
the SMSTN model faces challenges due to intractable computations in the M-
step.

To overcome this limitation, we propose employing the expectation-conditional
maximization (ECM) algorithm (Meng and Rubin, 1993). The ECM algorithm
replaces the M-step of EM with a series of simpler conditional maximization
steps. Each step maximizes the constrained function over Θ while keeping some
partitions fixed at their previous updates. Although the ECM algorithm re-
tains the favorable convergence properties of EM and converges to a stationary
point, it may exhibit slow convergence in certain scenarios.

To enhance the convergence rate compared to ECM, we suggest utilizing the
Expectation Conditional Maximization Either (ECME) algorithm (Liu and Ru-
bin, 1994). In ECME, some conditional maximization (CM) steps of ECM are
replaced with the CML-step, which maximizes the correspondingly constrained
actual-likelihood function. This modification aims to expedite the convergence
process while preserving the desirable properties inherited from the ECM al-
gorithm.

Let y1, · · · ,yn be a random sample of size n from SKSSMN(Θ), where
Θ = (ξ,Σ, µ,Ω, ν). Also assume V = (v1, ...,vn), U = (u1, ..., un) and
W = (w1, ..., wn), using (7), the complete data log-likelihood function of Θ is
given by

`c(Θ|y,v, w, u) =

n∑
i=1

ln f(yi, wi,vi, ui)(22)

= −n
2

log |Ω|

− n

2
log |Σ|

− 1

2

n∑
i=1

uid
>
i di

− 1

2

n∑
i=1

(
wi − d>i vi

)2
− 1

2

n∑
i=1

(vi − µ)
T

Ω−1 (vi − µ)

+

n∑
i=1

log h(ui;ν).
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The expected value of the complete log-likelihood function given observed
data, evaluated with Θ = Θ̂(k) , which we shall denote by the Q-function, is

Q
(
Θ|Θ̂(k)

)
= E (`c(Θ)|y,v, w, u)

= d− n

2
log |Ω| − n

2
log |Σ| − 1

2

n∑
i=1

ŝ
(k)
1i dTi di + µTΩ−1

n∑
i=1

ŝ
(k)
2i

− n

2
µTΩ−1µ− 1

2
tr

(
Ω−1

n∑
i=1

ŝ
(k)
3i

)
− 1

2

n∑
i=1

dTi ŝ
(k)
3i di

+

n∑
i=1

dTi ŝ
(k)
4i +

n∑
i=1

E
(

log h(ui;ν)|yi, Θ̂(k)
)
,(23)

where

ŝ
(k)
1i = E

(
ui|yi, θ̂(k)

)
, ŝ

(k)
2i = E

(
Vi|yi, θ̂(k)

)
,

ŝ
(k)
3i = E

(
ViV

T
i |yi, θ̂(k)

)
, ŝ

(k)
4i = E

(
WiVi|yi, θ̂(k)

)
.(24)

Let Γ = Σ−1/2, proposed ECM algorithm for the SKSSMN distribution, in
general version, consists of one E-step and five CM-steps as described below:

E-step: Given θ = θ̂(k), compute ŝ
(k)
1i , ŝ

(k)
2i , ŝ

(k)
3i and ŝ

(k)
4i in Eq. (24) using

expectations (14), (15) and (16), for i = 1, ..., n.
CM-steps:

1. Update ξ̂(k) by maximizing (23) over ξ, which leads to

ξ̂(k+1) =

(
n∑
i=1

(
ŝ

(k)
1i Ip + ŝ

(k)
3i

))−1{ n∑
i=1

(
(ŝ

(k)
1i Ip + ŝ

(k)
3i )yi − Γ−1ŝ

(k)
4i

)}
.

2. Fix ξ = ξ̂(k+1). For updating Γ̂(k), we optimize (23) over Γ, which is
equivalent to solving the following equation:

n∑
i=1

AiΓBiΓ−
1

2

(
n∑
i=1

Ci +

n∑
i=1

C>i

)
Γ− nIp = 0,(25)

where Ai = (ŝ
(k)
1i Ip + ŝ

(k)
3i ), Bi = (yi − ξ̂(k+1))(yi − ξ̂(k+1))>, and Ci = (yi −

ξ̂(k+1))ŝ
(k)>

4i .

The root of equation (25) is obtained numerically. Hence, Σ̂(k+1) is simply

updated by Σ̂(k+1) = Γ̂−1(k+1)

Γ̂−1(k+1)

.
3. Update µ̂(k) by maximizing (23) over µ, which leads to

µ̂(k+1) =
1

n

n∑
i=1

ŝ
(k)
2i .
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4. Fix µ = µ̂(k+1), update Ω̂(k) by maximizing (23) over Ω, which leads to

Ω̂(k+1) =
1

n

n∑
i=1

ŝ
(k)
3i − µ̂

(k+1)µ̂(k+1)> ,

4′. In the case with Ω assumed to be diagonal, say Ω = Diag(ω2
1 , ..., ω

2
p) =

Diag(η), then update η̂(k) by

η̂(k+1) = Diag

(
1

n

n∑
i=1

ŝ
(k)
3i − µ̂

(k+1)µ̂(k+1)>

)
,

4′′. In the case with Ω assumed to be Ω = τIp, then update τ̂ (k) by

τ̂ (k+1) =
1

np

{
tr(

n∑
i=1

ŝ
(k)
3i )− nµ̂(k+1)>µ̂(k+1)

}
,

where tr(A) denotes the trace of matrix A.
Updating ν̂(k) is related to the form of h(ui;ν). Since the conditional expec-

tation E(log h(ui;ν)|yi, θ̂(k)) may be difficult to evaluate, one may resort to
maximize the restricted actual log-likelihood function, leading to the following
‘CML-step’:

CML-step: Update ν̂(k+1) by

ν̂(k+1) = arg max
ν

n∑
i=1

log fSKSSMN

(
yi; ξ̂

(k+1), Σ̂(k+1), µ̂(k+1), Ω̂(k+1),ν
)
,

which is equal to maximize
∑n
i=1 log f0(yi) with respect to ν. The iterations of

the above algorithm are repeated until a suitable convergence rule is satisfied,

e.g.,
∥∥∥θ̂(k+1)−θ̂(k)

∥∥∥ is sufficiently small.

4. Simulation

In this section, we present two simulation experiments aimed at assessing
the efficacy of the proposed models in fitting the data. Prior to delving into
these experiments, it is necessary to outline the simulation method based on
the introduced distributions. To simulate, we employ the following algorithm
using convolution-type representation in Equation (6).

Algorithm to generate random samples from SKSSMN:

(1) Generate u from h(u; ν);
(2) Generate x1, · · · , x2p+1, independently from N(0, 1);

(a) Let z0 = x2p+1 and z1 = (x1, · · · , xp)>,

(b) Let z2 = (xp+1, · · · , x2p)
> and v = µ+ Ω1/2z2,
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(c) Compute

y = ξ + Σ1/2 ×
{

u−1/2v√
u+ v>v

|Z0|+
(
uIp + vv>

)−1/2
z1

}
.

Repeat steps (1) and (2) n times to get y1, · · · ,yn.

4.1. Experiment 1. In this experiment, we first generate 500 observations
from each of the distributions MSMSTN (for ν = 4), MSMSCN (for ν1 =
0.2 and ν2 = 0.8) and MSMSSL (for ν = 4), respectively, in (21), (17), and
(18), and for the other true parameters, we set the same location vectors and
dispersion matrices as follows:

ξ = (0, 0)
>
, µ = (1,−1)

>
,

Σ =

(
1 0
0 1

)
, Ω =

(
1 2
2 1

)
.

Subsequently, employing the algorithm outlined in the preceding section, we
proceed to fit the introduced distributions to the generating data. Figure 2
showcases scatter plots depicting the generated data from each distribution
alongside their respective contour plots.

In Figure 2, it is evident that the bivariate distributions effectively capture
the data. Among these distributions, the MSMSCN distribution demonstrates
superior fitting to the generated data.

4.2. Experiment 2. In the second experiment, our objective is to examine
the impact of outliers on distribution fitting. To do so, we create 100 data
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Figure 2. Scatter plots for generated data and contour lines
of bivariate MSMSTN, MSMSCN and MSMSSL distributions.
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Figure 3. Generative data from bivariate normal with some
outliers and contour plots of bivariate MSMSTN, MSMSCN,
and MSMSSL distributions.

points from a bivariate normal distribution with true parameters similar to the
previous experiment and add 10 additional data points from a uniform distri-
bution within the range of min(Y )− 1.5 to max(Y ) + 1.5 to each component.
This results in the generated data exhibiting increased skewness compared to
the original distribution. We then fit the MSMSTN, MSMSCN, and MSMSSL
distributions to these data points. Figure 3 illustrates both the simulated data
and the distributions fitted to them. According to Figure 3, among the in-
troduced distributions, the MSMSCN distribution exhibits the best fit to the
generated data, which have higher kurtosis than the normal distribution.

5. Application

The methodology implemented in this study involves the analysis of Stock
Market data, specifically focusing on the S&P 500 Composite Index of the
United States (SP500) and Singapore’s Straits Times Index (STI). The data,
spanning from January 1, 2000, to December 31, 2022, was sourced from
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https://finance.yahoo.com. Given the distinctive characteristics of asset re-
turns, including sharper peaks, slight skewness, and heavier tails compared
to the normal distribution (Adcock et al., 2015), we recognize the need for
innovative approaches to handle financial data effectively. Skewed distribu-
tions such as the skew-normal (SN) and its robust extensions present promis-
ing solutions by accommodating these non-normal characteristics collectively.
In our analysis, we utilized adjusted closing prices to compute daily log re-
turns (rt) for each share, expressed as a percentage using the formula rt =
(logPt − logPt−1) × 100%, where Pt and Pt−1 represent the adjusted closing
price of the share at time t and t− 1, respectively.

Table 1 presents descriptive characteristics, indicating a slight negative skew-
ness but notably high excess kurtosis across the two log-return series. Addi-
tionally, we employ the D’Agostino test for skewness and the Anscombe-Glynn
test for kurtosis and the results are presented in Table 2. The findings imply
that the observed log-returns might be better represented by particular skew
distributions instead of the normal distribution.

Table 1. Descriptive statistics for stock market indices.

Stock Sample Standard
Index size

Mean
deviation

Skewness Kurtosis

SP500 4276 0.010 1.245 –0.194 11.163

STI 4276 0.003 1.159 –0.333 8.952

Table 2. Test of skewness and kurtosis for stock market in-
dices.

Stock Sample
D’Agostino Anscombe

Index size
test Glynn test

(p-value) (p–value)

SP500 4276
–5.13 25.86

(<1e-4) (<1e-4)

STI 4276
–8.68 23.28

(<1e-4) (<1e-4)

Many researchers have suggested that stock market data are correlated and
can be considered as multivariate data. Junior and Franca (2012) discussed on
correlations between financial markets in times of crisis. Madan (2020) used
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Stock Market data for fitting multivariate distributions. Mata et al. (2021)
studied multivariate distributions in the Stock Markets of some countries. We
apply the ECM algorithm, as detailed in Section 2, to fit the SKSSMN distribu-
tions to the bivariate (SP500, STI) log-returns. Additionally, we fit the MSTN,
MSSL, MSCN, MST, and MSN distributions to facilitate comparison. Maxi-
mum likelihood estimates of the introduced model parameters were obtained
through the ECM algorithm. However, due to the large number of parameters
and for the sake of summarizing the article, we won’t display them here.

Our comprehensive analysis extends beyond the evaluation of model perfor-
mance using Table 3, encompassing visual representations of the data patterns
through contour plots depicted in Figures 4 and 5. These figures superimpose
several fitted bivariate skew densities, allowing for a direct comparison of model
fit across different distributions. Notably, our findings from these visualizations
align with the quantitative assessments presented in Table 3. This evaluation
was based on the Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC), which are widely utilized measures for model selection.
A lower value of AIC or BIC indicates a better fit of the model to the data.

Upon meticulous examination of Table 3, which presents the results of our
model evaluations, it is evident that the MSMSCN model emerges as the most
favorable choice for the bivariate data series. Specifically, the MSMSCN model
exhibits significantly lower AIC and BIC values compared to alternative models
considered in our analysis. This suggests that the MSMSCN model not only
provides a superior fit to the observed data but also offers a more parsimonious
representation of the underlying data structure.

Moreover, the contour plots in Figures 4 and 5 illustrate that the MSMSCN
distribution exhibits a more satisfactory fit to the data compared to other com-
peting models. This observation further reinforces the robustness and efficacy
of the MSMSCN model in capturing the underlying patterns and dependencies
within the bivariate data series. In summary, our results from both quantita-
tive evaluations and visual representations collectively highlight the exceptional
performance of the MSMSCN distribution in modeling multivariate data with
skewed and heavy-tailed distributions. The alignment of findings across differ-
ent analytical approaches lends further support to the robustness and efficacy
of the MSMSCN model, positioning it as a valuable tool for researchers and
practitioners seeking to accurately model and analyze complex multivariate
datasets.

6. Conclusions

In this paper, we undertake an in-depth examination of SKSSMN distribu-
tions, introducing a diverse array of multivariate skewed distributions charac-
terized by significantly elevated levels of kurtosis and skewness compared to
the standard multivariate normal distribution. Throughout our investigation,
we thoroughly explore various specific instances within this expansive family.
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Table 3. Information criteria of several fitted distribution to
financial market data. (`max is the maximized log-likelihood)

Distribution `max AIC BIC
MSN -13638.71 27291.43 27335.95
MST -12677.53 25377.07 25447.04
MSTN -12596.28 25212.56 25276.17
MSSL -12648.44 25310.88 25355.41
MSCN -12687.47 25388.95 25433.47
MSMSTN -12594.09 25204.17 25255.06
MSMSSL -12641.78 25301.56 25358.80
MSMSCN -12589.04 25194.08 25244.97

−10 −5 0 5 10

−
5

0
5

SN

SP500

S
T

I

−10 −5 0 5 10

−
5

0
5

ST

SP500

S
T

I

−10 −5 0 5 10

−
5

0
5

SCN

SP500

S
T

I

−10 −5 0 5 10

−
5

0
5

SSL

SP500

S
T

I

Figure 4. Scatter plots for the log-returns of SP500 and STI
indices and contour lines of some fitted bivariate SMSN distri-
butions.

Our analysis is underpinned by the development and refinement of an ECM
algorithm meticulously crafted to precisely estimate the parameters governing
these models. Subsequently, we employ these developed models to analyze
bivariate Stock Market data. Notably, our comparison with traditional distri-
butions, particularly the scale-shape mixtures of multivariate normal, reveals a
superior fit, with the MSMSCN model demonstrating particularly strong per-
formance. Furthermore, our findings demonstrate a significant enhancement
in performance compared to scale mixtures of multivariate normal distribution
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Figure 5. Scatter plots for the log-returns of SP500 and STI
indices and contour lines of some fitted bivariate SKSSMN
distributions.

models, underscoring the superior efficacy of these distributions in capturing
the nuanced behaviors inherent in Stock Market data.
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