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Abstract. It is suppose that {Xn, n ≥ 1} is a strictly stationary se-

quence of negatively associated random variables with continuous distri-
bution function F. The aim of this paper is to estimate the distribution

of (X1, Xk+1) for k ∈ IN0 using kernel type estimators. We also estimate

the covariance function of the limit empirical process induced by the se-
quence {Xn, n ≥ 1}. Then, we obtain uniform strong convergence rates

for the kernel estimator of the distribution function of (X1, Xk+1). These

rates, which do not require any condition on the covariance structure of
the variables, were not already found. Furthermore, we show that the

covariance function of the limit empirical process based on kernel type

estimators has uniform strong convergence rates assuming a convenient
decrease rate of covariances Cov(X1, Xn+1), n ≥ 1. Finally, the conver-

gence rates obtained here are empirically compared with corresponding
results already achieved by some authors.

Keywords: Almost sure convergence rate, Bivariate distribution function,
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1. Introduction

Estimation of distribution functions of random pairs has been always a sub-
ject of interest for many statisticians. It was studied by several authors under
the assumption that the random variables are independent (see, for exam-
ple, [4]). However, it is not always reasonable to consider the concerned random
variables as independent. The case of nonindependent random variables has
been studied, too (see, for example, [1], [2], [9], [10], and [11]). Negative asso-
ciation (NA) is one of the most applicable concepts of negative dependence in
multivariate statistical analysis and reliability theory ( [19]). Because the NA
sequence includes the independent sequence, it has been widely applied in mul-
tivariate statistical analysis, the permeability analysis, and reliability theory
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drawn much attention, and a lot of research results has been obtained. Some
cases of negatively associated random variables are normal random variables
(with negative correlation), multinomial, convolution of unlike multinomial,
multivariate hypergeometric, Dirichlet, and Dirichlet compound multinomial
distributions (see [15]).

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint subsets A and B of {1, 2, . . . , n},

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and such that the covariance
exists. An infinite family of random variables is NA if every finite subfamily
is NA. It is clear that sequences of NA random variables are a family of very
wide scope, which contain independent random variables. We refer the reader
to [19], [1], [15], [29], [24], [23], [22], [27], [13], [11], [14], [25], [28], [12], [18]
and [26] for more results on different aspects of NA random variables.

The mentioned comments above have drawn attention to the estimation
of the bivariate distribution function under negative association. A natural
(histogram) estimator of Fk(r, s) = P (X1 ≤ r,Xk+1 ≤ s) with k fixed, is
defined by

F̃k(r, s) =
1

n− k

n−k∑
i=1

{1(−∞,r](Xi)1(−∞,s](Xk+i)},(1)

where 1A denotes the indicator of event A. The asymptotic behavior of this
estimator was studied by [9], [10] and [13]. For dependent sequences, under
certain conditions (see Theorem 17 and the first remark in page 137 of [20]),
the limit of the uniform empirical process still is a centered Gaussian process,
but the covariance function changes to

Γk(r, s) = ϕk(r, s) +

∞∑
k=1

ϕk(r, s) +

∞∑
k=1

ϕk(s, r),

where ϕk(r, s) = Fk(r, s)− F (r)F (s). Under a convenient decrease rate of the
covariances, [9], [10] and [13] obtained a uniform strong convergence rate of
n−1/2 for two-dimensional empirical distribution function of (X1, Xk+1) and
covariance function of the limit empirical process.

Kernel estimators of density and distribution functions are the most well-
known nonparametric methods that their properties have been studied and
understood for decades by many authors (see, for example, [16], [3], [8] and
[7]). [2] and [11] considered the kernel estimator of Fk, defined by

F̂k(r, s) =
1

n− k

n−k∑
i=1

U(
r −Xi

hn
,
s−Xk+i

hn
),(2)

where U(., .) is a given bivariate distribution function and {hn, n ≥ 1} is a
sequence of positive numbers converging to zero. They found the optimal
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bandwidth convergence rate of order n−1. In this paper, using F̂k in (2), we
define the kernel estimator of ϕk(r, s) and Γ(r, s) as

ϕ̂k(r, s) = F̂k(r, s)− F̂ (r)F̂ (s), Γ̂(r, s) = ϕ̂k(r, s) +

n∑
k=1

(ϕ̂k(r, s) + ϕ̂k(s, r))

and derive a uniform convergence rate of order h2n−kn
−γ for the above esti-

mators, where 0 < γ < 1/2 and F̂ (r) is obtained from F̂k(r, s) with k = 0

and s = r. In fact F̂ (r) = 1
n

∑n
i=1 U( r−Xihn

), where U(.) is a univariate kernel

distribution function which is the special case of U(., .). For the convergence
rate, we need no condition on the covariance structure of the variables. The
above rate is flexible because of including the term hn which can be optionally
chosen. This flexibility makes us able to have a rate that tends to zero (as is
necessary for a convergence rate) and on the other hand, can be a better rate
than what was found by [13] and [11].

In what follows, we suppose that C is a positive constant not depending on
n. Also, we use the following general assumption throughout the paper:

(A). {Xn, n ≥ 1} is a NA and strictly stationary sequence of random
variables having bounded density function and

|U(
r −Xi

hn
,
s−Xi+k

hn
)− EU(

r −Xi

hn
,
s−Xi+k

hn
)| ≤ Ch2n, a.s.(3)

for any 1 ≤ i ≤ n and fixed r, s ∈ IR.

Remark 1.1. It can be easily checked that (3) holds for any NA sequence of
random variables mentioned in (A), because

U(
r −Xi

hn
,
s−Xi+k

hn
) − EU(

r −Xi

hn
,
s−Xi+k

hn
) =

∫ Y2

−∞

∫ Y1

−∞
u(t1, t2)dt1dt2

−
∫ ∞
−∞

∫ ∞
−∞

U(
r − xi
hn

,
s− xi+k
hn

)dFk(xi, xi+k), a.s.

where Y1 = r−Xi
hn

, Y2 = s−Xi+k
hn

, and u(., .) is the probability density function

associated to U(., .). By taking t1 = r+hnz1, t2 = s+hnz2, xi = r−hnvi and
xi+k = s− hnvi+k in the above equation and some calculations, we’ll have

|U(
r −Xi

hn
,
s−Xi+k

hn
)− EU(

r −Xi

hn
,
s−Xi+k

hn
)|

≤ h2n

∫ ∞
−∞

∫ ∞
−∞

u(r + hnz1, s+ hnz2)dz1dz2

+ h2n

∫ ∞
−∞

∫ ∞
−∞

U(vi, vi+k)dFk(vi, vi+k) = O(h2n). a.s.

In Section 2, some auxiliary results are given to find the convergence rates.
The moment inequality used for the proofs is presented in this section. The
strong uniform convergence rates are proved in Sections 3 and 4. In Section 5,



94 H. Jabbari

we compare the histogram and kernel estimators graphically using statistical
computations and then conclude the results.

2. Auxiliary results

In this section, we use the following moment inequality for NA random
variables and obtain an essential inequality required to prove our convergence
rates.

Lemma 2.1. [ [17] and [24]] Let (X1, X2, . . . , Xn) be an NA random vector
with EXj = 0 and E|Xj |p < ∞ for some p ≥ 2 and all j = 1, . . . , n. Then,
there exists a constant C = C(p) > 0 such that

E|
n∑
j=1

Xj |p ≤ C[

n∑
j=1

E|Xj |p + (

n∑
j=1

EX2
j )p/2].

Lemma 2.2. Let k ∈ IN0 be fixed, and let εn, n ≥ 1 be a sequence of positive
numbers. Suppose that the assumption (A) is satisfied. Then, there exists a
constant C such that, for r, s ∈ IR and p > 2,

P (|F̂k(r, s)− Fk(r, s)| > εn) ≤
Ch2pn−k

εpn(n− k)p/2
.

Proof. Similar to the technique used for the proof of Lemma 2.2 in [13], for
each n ∈ IN , 1 ≤ i ≤ n and fixed r, s ∈ IR, take

Zk,i = U(
r −Xi

hn
,
s−Xi+k

hn
)− Fk(r, s)

and also

Wk,i = Zk,i − E(Zk,i).

So, we have

F̂k(r, s)− E(F̂k(r, s)) =
1

n− k

n−k∑
i=1

Zk,i + Fk(r, s)− E(F̂k(r, s))

=
1

n− k

n−k∑
i=1

Wk,i +
1

n− k

n−k∑
i=1

E(Zk,i) + Fk(r, s)− E(F̂k(r, s)).

Since 1
n−k

∑n−k
i=1 E(Zk,i) = E(F̂k(r, s))− E(Fk(r, s)), we have

F̂k(r, s)− E(F̂k(r, s)) =
1

n− k

n−k∑
i=1

Wk,i.

Under (A), it is clear that for given k and n, Wk,n is a decreasing function of
the variables Xn. So, according to the properties of NA random variables (see,
for more information, [15]), {Wk,n, n ≥ 1} is NA and strictly stationary. Also,
|Wk,n| ≤ Ch2n and E(Wk,n) = 0; then, E|Wk,n|p < ∞, for each n ≥ 1 and
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p > 2, and so we can apply Lemma 2.1 to the sequence {Wk,n, n ≥ 1}. Thus,
for all n ≥ 1, we obtain

E|
n∑
i=1

Wk,i|p ≤ C[

n∑
i=1

E|Wk,i|p + (

n∑
i=1

EW 2
k,i)

p/2]

≤ Cnp/2h2pn .

Now, for fixed r, s ∈ IR, we find, for all n > k,

P (|F̂k(r, s)− Fk(r, s)| > εn) ≤ 2p

εpn(n− k)p
E|

n−k∑
i=1

Wk,i|p

≤
Ch2pn−k

εpn(n− k)p/2
.

As considered in [13], to prove the main results, we recall the following
notations as introduced in [13]. Let {tn, n ≥ 1} be a sequence of positive
integers such that tn → +∞ and for n ∈ IN and i = 1, . . . , tn, put xn,i =
Q(i/tn), where Q is the quantile function of F . Also, for n ∈ IN and k ∈ IN0,
take

Dn,k = sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|, D∗n,k = max
i,j=1,...,tn

|F̂k(xn,i, xn,j)− Fk(xn,i, xn,j)|.

Now, following the same steps as in Lemma 2.4 of [13] and applying Lemma
2.2, Theorem 2 of [9] and Lemma 2.3 of [13], we can prove the next lemma.

Lemma 2.3. Let εn and tn be two sequences of positive numbers such that
tn → +∞ and εntn → +∞, and let p > 2 and k ∈ IN0 be fixed. Suppose that
(A) holds. Then, for any large enough n,

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ Ct2n
εpn(n− k)p/2

h2pn−k.

3. Uniform strong convergence rates of F̂k

In this section, we summarize the previous results to get uniform strong
convergence rates of F̂k.

Lemma 3.1. Let k ∈ IN0 be fixed, and suppose that (A) holds. Then, under
the conditions of Lemma 2.3 and for every 0 < δ < p−2

2 , we have

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O(h
2p−2
p+2

n−k n
− p−2−2δ

2(p+2) ) a.s. .

Proof. Put tn = 1
εnhn−k

, and let 0 < δ < p−2
2 . Since tn → ∞ and tnεn → ∞

when n → ∞, from Lemma 2.3 for εn = h
2p−2
p+2

n−k n
− p−2−2δ

2(p+2) and n large enough,
we obtain

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ C

εp+2
n h2−2pn−k (n− k)p/2

≤ Cn−(1+δ).(4)



96 H. Jabbari

The proof is completed by using the Borel–Cantelli Lemma, because for all
δ > 0, the sequence on the right-hand side of (4) is summable .

If p → ∞, then εn → h2n−kn
−1/2. Since h2n−k → 0 when n → ∞, the

convergence rate of Lemma 3.1 remains reasonable for a large p. So, using
Lemma 3.1 and some calculations, we summarize the results of this section in
the next theorem.

Theorem 3.2. Under the assumptions of Lemma 3.1 and for every 0 < γ <
1/2, we have

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O(h2n−kn
−γ) a.s. .

Remark 3.3. Note that Theorem 4 of [11] holds for F̂k defined in (2) under
some regularity assumptions. So, for all x, y ∈ IR, we have

(n− k)MSE[F̂n(x, y)] = F (x, y)− F 2(x, y) + 2

∞∑
j=2

(Fj(x, y, x, y)− F 2(x, y))

+ O(hn + nh2n) + an,

where, for each positive integer j, Fj is the distribution function of (X1, Xk+1, Xj , Xk+j)
and

an =
1

(n− k)

∞∑
j=2

(j − 1)(Fj(x, y, x, y)− F 2(x, y))− 2

∞∑
j=n−k−1

(Fj(x, y, x, y)− F 2(x, y)).

Then, an optimal convergence rate of the MSE is achieved by choosing hn =
Cn−1.

As already said, if k = 0 and s = r, then the estimator F̂k(r, s) becomes

to the one-dimensional kernel distribution function F̂ (r). So, the results of

Theorem 3.2 hold true for F̂ and we can write

sup
r∈IR
|F̂ (r)− F (r)| = O(h2nn

−γ) a.s. .

Remark 3.4. From the results of Theorem 3.2, we understand that the conver-
gence rate h2n−kn

−γ , for every 0 < γ < 1/2 and hn, is very faster than those

obtained later by [13] (i.e. n−γ). So, the kernel estimator of two-dimensional
and one-dimensional distribution function Fk and F is better than empirical
one, respectively.

Now, we can readily obtain the convergence rate of the kernel estimator of
ϕk in the next theorem and then the proof is omitted.

Theorem 3.5. Under the assumptions of Theorem 3.2 and for every 0 < γ <
1/2, we have

sup
r,s∈IR

|ϕ̂k(r, s)− ϕk(r, s)| = O(h2n−kn
−γ) a.s. .
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4. Uniform strong convergence rates of Γ̂

In this section, we prove the uniform strong convergence rate for the sum∑∞
k=1 ϕ̂k(r, s), which is sufficient to obtain the desired result for the kernel

estimator of Γ. For this, we need a regular assumption on the covariance
structure of NA random variables. Regarding that this covariance structure
highly determines its approximate independence (see [20]), it is common to
have an assumption on the covariance structure of the random variables.

Now, we consider the following notation

v(n) =

∞∑
j=n+1

|Cov(X1, Xj)|1/3,(5)

to prove the uniform strong convergence rate for the kernel estimator of Γ.

Lemma 4.1. Let (A) hold, θ > 0 and an = n
p−2−2δ

p2+3p for some p > 2 and each
0 < δ < p−2

2 . If

v(an) ≤ Ch
4θ(p−1)

(p−2)(p+3)

n−k a−θn ,(6)

for all n ≥ 1, then

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| = O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .(7)

Proof. The idea is essentially the same as the proof of Lemma 4.1 of [13].
So, we repeat their proof using our required notations and definitions. Put

εn = h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) , for each 0 < δ < p−2
2 , and tn = an

εnhn−k
. Now, we

may have

P ( sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| > εn) ≤
an∑
k=1

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn
an

).(8)

Since 0 < δ < p−2
2 , (p−2)(p−2−2δ)

2p(p+2) > 0 and 0 < p−2−2δ
p2+3p < 1, it is easy to see

that εn → 0, an → +∞, tn → +∞, εn
an
tn → +∞, and an

n → 0 as n→ +∞.

Using εn
an

in place of εn in Lemma 2.3, we obtain, for all n large enough,

P ( sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| > εn) ≤
an∑
k=1

Ct2na
p
n

εpn(n− k)p/2
h2pn−k

≤ Cap+3
n

εp+2
n (n− an)p/2

h2p−2n−k .(9)

By some calculations, we may write εn = h
2p−2
p+2

n−k a
p+3
p+2
n n−

p−2−2δ
2p+4 . Inserting this

on the right-hand side of (9) leads to summable upper bound as an
n → 0. So,
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we have, by Borel–Cantelli Lemma,

sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| = O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .(10)

Now, we have

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| ≤ sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))|

+ 2an sup
r∈IR
|F̂ (r)− F (r)|

+ sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)|.(11)

For the first term on the right-hand side of (11), we use (10). Since p+3
p+2 > 1

by using Lemma 3.1 for the second term, we have

an sup
r∈IR
|F̂ (r)− F (r)| = O(anh

2p−2
p+2

n−k n
− p−2−2δ

2p+4 )

= O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. .

For the third term on the right-hand side of (11), we use corollary of Theorem

1 in [21] and the relation (21) in [19]. So by (6) for θ = (p−2)(p+3)
2p+4 > 0 and

an = n
p−2−2δ

p2+3p , we obtain

sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)| ≤ C

∞∑
k=an+1

|Cov1/3(X1, Xk+1)|

= Cv(an)

= Ch
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) .

Hence, the proof is completed.

We now summarize the above result in the following theorem.

Theorem 4.2. Under the assumptions of Lemma 4.1 and condition (6), for
all n ≥ 1, θ > 0, and 0 < γ < 1/2, we have

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| = O(h2n−kn
−γ) a.s. .

Proof. For each δ > 0 and p > 2, we take (p−2)(p−2−2δ)
2p(p+2) > γ. So, similar to

the proof of Theorem 4.1 of [13], we obtain the desired result.

Now, summarizing the results achieved in Theorems 3.5 and 4.2, we can
state the following theorem for Γ̂.
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Theorem 4.3. Suppose that (A) holds. Under condition (6) for all n ≥ 1,
θ > 0, p > 2, and 0 < γ < 1/2, we get

sup
r,s∈IR

|Γ̂(r, s)− Γ(r, s)| = O(h2n−kn
−γ) a.s. .

Remark 4.4. As stated in Remark 3.4, our convergence rate h2n−kn
−γ , for every

0 < γ < 1/2 and hn in Theorem 4.3, is very faster than those obtained by [13]
(i.e. n−γ). So, the kernel estimator of Γ is better than the empirical one.

5. Statistical computations

In this section, we intend to compare the behavior of our estimator with
those of [13] via statistical computations using R software. As noted in [5], [?]
and [15], a number of well known multivariate distributions such as multivariate
normal distribution with negative correlations possess the NA property. So for
generating the NA data, suppose that the random vector (X1, . . . , Xn)

′
has

multivariate normal distribution with zero mean vector and covariance matrix

Σn =
1

1− ρ2


1 −ρ −ρ2 · · · −ρn−1
−ρ 1 −ρ · · · −ρn−2
...

...
...

. . .
...

−ρn−1 −ρn−2 −ρn−3 · · · 1

 ,(12)

where ρ > 0. For n = 20, 100, we generate one sample from n-dimensional

Figure 1. One-dimensional normal distribution function
with zero mean and variance 1

1−ρ2 (red), histogram estima-

tor (black) and kernel estimator (green) of F (r).
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multivariate normal distribution with zero mean vector and covariance matrix
Σn assuming ρ = 0.1, 0.36. Then, for k = 0, 1, 2, we compute the histogram
estimator F̃k in (1) and the kernel estimator F̂k in (2) using hn = n−1 and
hn = log−1(n) and U(., .) as bivariate normal distribution with zero mean
vector and covariance matrix

1

1− ρ2

[
1 −ρ
−ρ 1

]
.(13)

Remark 5.1. Notice that, it is important that to choose the values of ρ such
that (A) holds. Numerical results indicate that if ρ ∈ [0, 0.36], then |Σn| in
(12) is positive. Due to the similarity of the results, only the cases ρ = 0.1
(weak dependence) and ρ = 0.36 (strong dependence) are reported here. Also,
the simulation study is carried out for the reasonable special cases hn = n−1

and hn = log−1(n) which are suitable for justifying the results.

Results for k = 0, 1, 2 and different values of n, ρ and hn are presented in
Figures 1–3, respectively. Also for simple comparison, we compute the following
mean square deviations (MSDs) between Fk(r, s) and F̂k(r, s) (or F̃k(r, s)) for
all r, s:

Figure 2. Bivariate normal distribution function with zero
mean vector and covarince matrix (13) (red), histogram esti-
mator (black) and kernel estimator (green) of F1(r, s).

MSD1 =
1

N

∑
r,s

(F̂k(r, s)− Fk(r, s))2

MSD2 =
1

N

∑
r,s

(F̃k(r, s)− Fk(r, s))2,(14)
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where N is the product of all numbers r and s. Note that the values of MSDs
are shown in the figures. Furthermore, for best comprehension, these values
for k = 1, 2 in two-dimensional cases are presented in Table 1.

From Figure 1, it is observed that for k = 0 (one-dimensional distribution
function):

a) When n is small (n = 20) and large (n = 100), kernel estimator (green)
of F (r) is better than histogram estimator (black) for all values of ρ and band-
width rates hn.

b) When n becomes large, the kernel estimator has a good fit.
c) When n is small, the bandwidth rate hn = log−1(n) is better than hn =

n−1.
d) When n is large, the bandwidth rates hn = n−1 and hn = log−1(n) have

the same behaviors.
e) Since the kernel estimator is smooth, the best estimator of F (r) is the

kernel estimator.
f) In all graphs, MSD of kernel estimator is less than histogram estimator.
g) In all cases, the histogram estimator has an over estimate.

Table 1. Values of MSDs for bivariate cases and different
values of k, n, ρ and hn.

k n ρ hn MSD1 MSD2

1 20 0.1 n−1 0.00166 0.00220
1 20 0.36 n−1 0.00336 0.00349

1 20 0.1 log−1(n) 0.01939 0.02341
1 20 0.36 log−1(n) 0.00152 0.00459

1 100 0.1 n−1 0.00043 0.00045
1 100 0.36 n−1 0.00030 0.00032

1 100 0.1 log−1(n) 0.00075 0.00113

1 100 0.36 log−1(n) 0.00024 0.00044

2 20 0.1 n−1 0.00556 0.00621
2 20 0.36 n−1 0.00176 0.00238

2 20 0.1 log−1(n) 0.00070 0.00190

2 20 0.36 log−1(n) 0.00029 0.00167

2 100 0.1 n−1 0.00126 0.00129
2 100 0.36 n−1 0.00196 0.00207

2 100 0.1 log−1(n) 0.00016 0.00023

2 100 0.36 log−1(n) 0.00011 0.00044

Figure 2 and Table 1 indicate that, for k = 1 (two-dimensional distribution
function with lag one):

a) When n is small (n = 20), we have over estimate for weak dependence
(ρ = 0.1) and hn = log−1(n). Also, this wrong fit holds true when n is small
(n = 20), ρ = 0.1, and hn = n−1 for some values of r and s (that is r, s ∈ [−2, 4],
approximately).

b) MSD of kernel estimator is less than histogram estimator for all cases.
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c) When n is large (n = 100), the difference between kernel and histogram
estimators is very small.

Figure 3. Bivariate normal distribution function with zero
mean vector and covarince matrix (13) (red), histogram esti-
mator (black), and kernel estimator (green) of F2(r, s).

d) When n is small (n = 20) or large (n = 100), the bandwidth rate hn =
n−1 has a better role than hn = log−1(n) for estimating F1(r, s) in weak (ρ =
0.1) dependence case and in strong (ρ = 0.36) dependence case; the bandwidth
rate hn = log−1(n) is almost better than hn = n−1 for estimating F1(r, s).

The following results are obtained from Figure 3 and Table 1 for k = 2
(two-dimensional distribution function with lag two):

a) When n is small (n = 20) and ρ = 0.1, we have over estimate for large
values of r and s (that is, r, s ∈ [0, 4], approximately).

b) MSD of kernel estimator is less than histogram estimator for all cases.
c) When n is large (n = 100), the difference between kernel and histogram

estimators is very small.
d) When n is small (n = 20) or large (n = 100), the bandwidth rate hn =

log−1(n) has a better role than hn = n−1 for estimating F2(r, s), approximately.
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