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Abstract. This paper introduces a modified version of the Variational

Iteration Method, incorporating P-transformation. We propose a novel
semi-analytical technique named the modified variational iteration method

for addressing fractional differential equations featuring tempered Liouville-

Caputo derivatives. The modified variational iteration method emerges
as a highly efficient and powerful mathematical tool, offering exact or

approximate solutions for a diverse range of real-world problems in en-

gineering and the natural sciences, specifically those expressed through
differential equations. To assess its effectiveness and accuracy, we scru-

tinize the modified variational iteration method by applying it to three

problems related to the heat-like multidimensional diffusion equation with
a fractional time derivative in a tempered Liouville-Caputo form.

Keywords: Tempered fractional derivative, Mittag-Leffler function, frac-

tional diffusion equation.
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1. Introduction

Fractional calculus, originating from Leibniz’s conceptualization in 1695, has
undergone a transformative journey, evolving from a theoretical mathematical
construct into an indispensable tool with diverse practical applications [36].
Initially confined to pure mathematics for about three centuries, the field wit-
nessed a pivotal shift with the emergence of fractional partial differential equa-
tions. Researchers recognized the profound implications of these equations,
observing their broad applicability across disciplines such as physics, chem-
istry, ecology, biology, and engineering [5, 20,22,39,43,44].

The intrinsic capacity of fractional calculus to adeptly model systems char-
acterized by memory, long-range dependence, and anomalous diffusion marked
a paradigm shift. This enabled the field to address intricate phenomena that
conventional calculus struggled to encapsulate. Presently, fractional calculus
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stands as an invaluable tool, facilitating nuanced comprehension and model-
ing of complex systems within various scientific and engineering domains. The
historical narrative underscores the dynamic synergy between theoretical explo-
ration and practical efficacy, exemplifying the enduring pertinence and adapt-
ability of mathematical concepts in meeting the challenges posed by real-world
complexities [4, 9, 12,26,27,29,30,47].

The utilization of derivatives with non-integer orders has proven exception-
ally effective in describing complex physical phenomena, notably in Rheology,
damping laws, and diffusion processes. In Rheology, fractional calculus en-
hances the modeling of viscoelastic materials, providing a more nuanced un-
derstanding of how these substances respond to stress and strain [15]. Similarly,
in the realm of damping laws, fractional calculus excels in capturing the intrica-
cies of materials with non-local or memory-dependent damping characteristics,
offering heightened precision in dynamic response modeling. Additionally, frac-
tional calculus proves invaluable in describing anomalous diffusion processes,
where traditional models may falter in accounting for long-range dependence
or memory effects [2, 5].

These applications have sparked a notable surge in interest, prompting ex-
tensive studies across scientific and engineering disciplines. The flexibility and
accuracy afforded by fractional calculus in modeling real-world complexities
have opened new avenues for research [2, 3, 14, 16, 23]. As investigations into
this mathematical approach continues, its potential for innovative applications
across diverse domains remains a compelling driver in contemporary scientific
inquiry.

The fractional order diffusion equation has found application in modeling
practical sub-diffusive problems in fluid flow processes and finance [6]. In the
one-dimensional case, the fundamental solution was first computed in 1996 [25],
later extended to multi-dimensional cases [13], and recently simplified [28].

In the literature, various analytical and numeric approaches have been de-
veloped for solving such types of fractional-order PDEs. Numerical schemes in-
clude a finite difference scheme with nonuniform time steps [38,49], an implicit
finite-difference scheme [34], fractional Adams methods [2, 11], a nonstandard
finite difference method [48] and a higher-order numerical scheme [37].

Prior to 1998, there existed no analytical method for resolving equations
of this nature. Nowadays, various analytic and semi-analytic techniques exist
for solving fractional equations. In 2002, Shawagfeh suggested the Adomian
decomposition method (ADM) to solve fractional differential equations [41].
However, it was found to be challenging to compute the Adomian polynomials
in ADM [7]. Ji-Huan He proposed the homotopy perturbation method (HPM)
for solving such differential equations [17]. Momani and Odibat used HPM to
solve various fractional PDEs [32,33,35]. Jafari and Momani obtained analytic
solutions for fractional diffusion and wave equations using a modified HPM [21].
Authors in [45] solved fractional heat and wave-like equations with variable
coefficients using the homotopy analysis method. Dubey et al. in [10] applied
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Taylor series expansion approach for solving fractional order heat-like and wave-
like equations. Recently, Kumar solved the fractional order multi-dimensional
diffusion equation using a modified homotopy perturbation method (M-HPM)
based on Sumudu transform and HPM [24]. However, researchers found it
challenging to estimate the polynomial in this method, and the major drawback
of these approaches is their complicated and extensive calculations.

The variational iteration method (VIM) has been extensively studied for
many years by numerous authors [18]. Some authors have extended the VIM
for solving fractional differential equations [46]. Hesameddini and Latifizadeh
presented the reconstruction of the variational iteration method (RVIM) as a
modified form of VIM, designed to address FDEs. It has demonstrated itself
as the most straightforward analytical method for precisely solving both linear
and nonlinear fractional differential equations. The RVIM stands out as a
dependable, efficient, effective, and powerful analytical approach [8,19]. Ahmad
and colleagues [1] proposed new algorithms for modified variational iteration
for solving linear and nonlinear differential equations of integer and fractional
order.

In this paper, inspired by the above works, we present an approximate ana-
lytical solution of the time fractional heat-like (diffusion) equation of the order
0 < β ≤ 1 in a series form which converges to the exact solution rapidly, named
the Modified Variational Iteration Method (MVIM). The subsequent sections
of this paper are structured as follows: Section two revisits fundamental pre-
liminaries and notations pertaining to fractional calculus theory. Section three
introduces the implementation of the MVIM method and presents solutions
to several examples simulated using Mathematica software. In Section four,
we elucidate the convergence and error estimation of MVIM for the diffusion
equation resembling heat-like processes. The paper concludes in Section five.

2. Introductory Concepts

Multiple definitions of fractional integrals or derivatives can be found in
the existing body of literature. These definitions have been provided by vari-
ous researchers such as Riemann-Liouville, Grünwald-Letnikov, and Liouville-
Caputo, among others. In this context, we will focus solely on revisiting the
fundamental definitions and preliminary concepts centered around fractional
derivatives and fractional integrals. These definitions serve as the foundation
for our comprehensive investigation [26,36,47].

Definition 2.1. [36] The Riemann-Liouville fractional integral of f(t) of the
order β ≥ 0 is defined as:

(1) Jβι f(ι) =

{
f(ι), if β = 0,

1
Γ(β)

∫ ι
0
(ι− τ)β−1f(τ)dτ, if β > 0,
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where Γ denotes gamma function:

Γ(ψ) =

∫ ∞
0

e−ιιψ−1dι, ψ ∈ C, Re(ψ) > 0.

Definition 2.2. [36] The fractional derivative of f of the order β ≥ 0, in
Liouville-Caputo sense is defined as:

C
0D

β
ι f(ι) = Jm−1

ι Dm
ι f(ι) =

1

Γ(m− β)

∫ ι

0

(ι− τ)m−β−1f (m)(τ)dτ,(2)

for m− 1 < β ≤ m, m ∈ N , ι > 0, f ∈ Cm.

Definition 2.3. [40] Consider a finite interval [p, q] ⊂ R, and let P[p, q] denote
the integral space comprising functions that are Lebesgue measurable on the
interval [p, q], then

Ω([p, q]) =

{
g : ||g||Ω([p,q]) =

∫ b

a

|g(ι)|dι <∞

}
.

Definition 2.4. [40] Assuming that g(ι) is continuous over the interval [p, q]
and belongs to the Lebesgue space Ω([p, q]), with β > 0 and σ ≥ 0, the Tem-
pered fractional R-L integral of order β is expressed as follows:

(3) aIβ,σι (g(ι)) = e−σt aI
β
ι (eσιg(ι)) =

1

Γ(β)

∫ ι

a

e−σ(ι−%)(ι− %)β−1g(%)d%.

Here, aI
β
ι denotes the fractional R-L integral,

(4) aI
β
ι (g(ι)) =

1

Γ(β)

∫ ι

a

(ι− %)β−1g(%)d%, β, ι > 0.

Remark 2.5. We observe that, by setting σ = 0, in (3), we retrieve the fractional
integral in R-L concept as (4).

Definition 2.6. [40] Suppose g(ι) belongs to the interval [p, q], is piecewise
continuous, and satisfies m− 1 < β ≤ m, where m ∈ Z+, σ ≥ 0, and ι > 0. In
such cases, the definition of the tempered fractional R-L derivative is expressed
as:

RL
aD

β,σ
ι [g(ι)] =eσι RLaD

β
ι [eσιg(ι)]

=
e−σι

Γ(m− β)
× dm

dιm

∫ ι

0

(ι− %)m−β−1eσ%g(%)d%,
(5)

where RL
aD

β
ι illustrate the fractional derivative in R− L’s concept

(6) RL
aD

β
ι [eσιg(ι)] =

1

Γ(m− β)

dm

dιm

∫ ι

a

(ι− %)m−β−1eσιg(%)d%.
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Variants of the tempered fractional R-L derivative in [40] defined as follow:

(7) RL
aD

β
ι g(ι) =

{
RL
aD

β,σ
ι g(ι)− σβg(ι), 0 < β ≤ 1,

RL
aD

β,σ
ι g(ι)− βσβ−1 d

dιg(t)− σβg(ι), 1 < β < 2.

Definition 2.7. [40] Let g(ι) ∈ [p, q] is piecewise continuous m− 1 < β ≤ m
where m ∈ Z+, σ ≥ 0 and ι > 0 then the tempered fractional derivative in
Liouville-Caputo sense is

C
aD

β,σ
ι [g(ι)] =e−σι CaD

β
ι [eσιg(ι)]

=
eσι

Γ(m− β)

∫ ι

a

(ι− %)m−β−1eσ%
dm

d%m
g(%)d%,

(8)

where C
aD

β
ι shows the fractional derivative in Liouville-Caputo concept

(9) C
aD

β
ι [eσιg(ι)] =

1

Γ(m− β)

∫ ι

a

(ι− %)m−β−1eσ%
dm

dιm
g(%)d%.

3. Definition and properties of P-transform

In this section, we will examine the P-transform and discuss some of its prop-
erties. Saifullah et al. [40] introduced a novel technique called the Tempered
fractional P-transform.

Definition 3.1. [40] Consider a function ν : [0,∞) × R of exponential or-
der defined over the set $ (the set of functions). The P-transform of ν over

$ =
{
ν(t) : ∃δ1, δ2,where |ν(t)| < ℵe

|ι|
δi , for ι ∈ (−1)i × [0,∞)

}
is defined as:

(10) Pν(ι) = ν(s, u) = u

∫ ∞
0

e(−sιu )ν(ι)dι = u2

∫ ∞
0

e−sιν(uι)dι.

Lemma 3.2. [40] If we consider e−σι as a weight function and ιβ within the
set $, then

P
{

e−σιιβ

Γ(1 + β)

}
=

uβ+2

(s+ σu)β+1
,

The P-transform has also the following properties:

(1) The linearity property,

P {f(ι) + Cg(ι)} = P {f(ι)}+ CP {g(ι)} , C ∈ R.

(2) The P-transform of the convolution product is defined as

P {(h ∗ g)(τ)} = P
{∫ τ

0

h(%)g(τ − %)d%

}
=

1

u
H(s, u)G(s, u).
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(3) The P-transform of tempered fractional integral

P
{
aIβ,σι (g(ι))

}
= P

{
1

Γ(β)

∫ ι

a

e−σ(ι−%)(ι− %)β−1g(%)d%

}
=

1

Γ(β)
P
[
e−σιιβ−1∗f(ι)

]
=

1

uΓ(β)
P
{
e−σιιβ−1

}
P {f(ι)} =

[
u

s+ σu

]β
ν(s, u),

(4) The P-transform of tempered fractional derivative (Liouville-Caputo
sense)

P
{
C
aD

β,σ
ι g(ι)

}
=

[
s+ σu

u

]β
P[g(ι)]−

n−1∑
l=0

u

[
s+ σu

u

]β−l−1 (
Dl(eσιg(ι))

)∣∣
ι=0

.

(5) The P-transform of R-L Tempered fractional derivative

P
{
RL
aD

β,σ
ι g(ι)

}
=

[
s+ σu

u

]β
P[g(ι)]−

n−1∑
l=0

u

[
s+ σu

u

]l (
Dβ−l−1(eσιg(ι))

)∣∣
ι=0

.

4. General form of multi-dimensional heat-like (diffusion) equa-
tion

This study is concerned with the time fractional multi-dimensional diffusion
equation expressed as:

(11) C
0D

β,σ
ι u = ∇.(D(u, r)∇u), 0 < β ≤ 1,

under the initial condition:

(12) u(r, 0) = u0(r), r ∈ R3.

Here, CaD
β,σ
ι u represents the Liouville-Caputo fractional derivative of u with

order β. The function u(r, ι) signifies the density of the diffusing material at the
point r = (η, γ, z) and time ι, while D(u, r) denotes the diffusion coefficient for
u at point r. In cases where the diffusion coefficient is not dependent on density
(i.e., D(u, r) = ρ2 is a constant), equation (11) simplifies to the fractional order

multi-dimensional heat equation, i.e., C0D
β,σ
ι u = σ2∇2u, which represents the

heat distribution within a given domain. Specifically, when β = σ = 1 and for
the constant coefficient diffusion equation (12), it transforms into the classi-
cal multi-dimensional diffusion equation, uι = ρ2∇2u. This classical diffusion
equation has found extensive applications in various linear and nonlinear sys-
tems across physics, chemistry, ecology, biology, and engineering. It is widely
employed to describe diffusive-like behavior, such as the diffusion of alleles in
a population within population genetics.
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5. Modified Variational Iteration Method

In this segment, we present an approximate analytical technique designed for
solving multi-dimensional time fractional-order heat-like (diffusion) equations
of fractional order (0 < β ≤ 1). To achieve this, we employ the P-transform on
both sides of the equation, incorporating an artificial initial condition. Subse-
quently, through a series of simplifications, we express the transformed solution
in relation to other nonlinear terms. Ultimately, by employing the inverse of
the P-transform, we derive an integral equation. During this stage, we articu-
late a recursive formula reminiscent of the VIM method. Essentially, we have
modified the VIM method by incorporating the P-transform.

Now consider the following equation

(13)
(
C
0D

β,σ
ι Φ

)
(η, γ, ψ, ι) = g

(
ι, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂γ2
,
∂2Φ

∂ψ2

)
,

with the following initial condition

Φ(η, γ, ψ, 0) = f0(η, γ, ψ),

where the operator C
0D

β,σ
ι is the tempered Caputo fractional derivatives and

0 < β ≤ 1.
As previously noted, the application of the P-Transform to equation (13),

in terms of the independent variable ι and under the imposition of an artificial
zero initial condition, yields:

[
s+ σu

u

]β
P{Φ(η, γ, ψ, ι)} − u

[
s+ σu

u

]β−1

Φ(η, γ, ψ, 0)

= P
{
g

(
ι, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂γ2
,
∂2Φ

∂ψ2

)}
,

Therefore

P{Φ(η, γ, ψ, ι)} =

[
u2

s+ σu

]
f0(η, γ, ψ, ι)

+

[
u

s+ σu

]β
G

(
s, u, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂γ2
,
∂2Φ

∂ψ2

)
,

(14)
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Subsequently, by employing the inverse P-Transform on both sides of the equa-
tion (14) and utilizing the convolution theorem, we obtain:

u(η, γ, ψ, t) =e−σtf0(η, γ, ψ, ι)

+ P−1

{[
u

s+ σu

]β
G

(
s, u, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂γ2
,
∂2Φ

∂ψ2

)}

=e−σιf0(η, γ, ψ, ι) +
e−σιιβ−1

Γ(β)
∗ g
(
ι, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂γ2
,
∂2Φ

∂ψ2

)
=e−σιf0(η, γ, ψ, ι)

+
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1g

(
ξ, η, γ, ψ,Φ,

∂2Φ

∂η2
,
∂2Φ

∂η2
,
∂2Φ

∂ψ2

)
dξ,

Based on the actual initial conditions outlined in (13), a recursive formula
is formulated as follows:

Φn+1(η, γ, ψ, ι) = f0(η, γ, ψ, ι)

+
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1g

(
ξ, η, γ, ψ,Φ,

∂2Φn
∂η2

,
∂2Φn
∂γ2

,
∂2Φn
∂ψ2

)
dξ,

(15)

Through the aforementioned iterative process, each term is computed based
on the preceding term in the iteration formula, enabling a comprehensive eval-
uation. Consequently, the solution can be expressed as:

Φ(η, γ, ψ, ι) = lim
n→∞

Φn(η, γ, ψ, ι).

The resulting approximation for the fractional diffusion equation resembling
heat-like behavior is:

(16) Φ̃ = Φ0 + Φ1 + Φ2 + . . .+ Φn + . . . .

6. Convergence and Error Estimate of MVIM for the frac-
tional (heat-like) diffusion Equation

We will establish the convergence and error estimation of the modified vari-
ational Iteration method.

6.1. Convergence. The following theorem outlines the convergence analysis
of our proposed method:

Theorem 6.1. Consider a Banach space (B[0, T ], | · |), where Φn(η, γ, ψ, ι)
and Φ(η, γ, z, ι) are defined. If there exists a constant 0 < ς < 1 such that
|Φn+1| ≤ ς|Φn|, then the series solution in (16) converges to the solution of the
fractional heat-like equation (11).

Proof. Let {an} denote the sequence of partial sums in (16). We aim to es-
tablish that an(η, γ, ψ, ι) forms a Cauchy sequence within (B[0, T ], ||.||). To
demonstrate this, consider
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||an+1(η, γ, ψ, ι)− an(η, γ, ψ, ι)|| =||Φn+1(η, γ, ψ, ι)||
≤ ς||Φn(η, γ, ψ, ι)||
≤ ς2||Φn−1(η, γ, ψ, ι)

≤ . . . ≤ ςn+1||Φ0(η, γ, ψ, ι)||

(17)

Now, for partial sums an and am, where n,m ∈ N and n ≥ m, applying the
triangle inequality yields:

||an − am|| = ||(an(η, γ, ψ, t)− an−1(η, γ, ψ, ι)) + (an−1(η, γ, ψ, ι)− an−2(η, γ, ψ, ι))

+ . . .+ (am+1(η, γ, ψ, ι)− am(η, γ, ψ, ι))||
≤ ||an(η, γ, ψ, ι)− an−1(η, γ, ψ, ι)||+ ||an−1(η, γ, ψ, ι)− an−2(η, γ, ψ, ι)||
+ . . .+ ||am+1(η, γ, ψ, ι)− am(η, γ, ψ, ι)||,

(18)

Considering (17) we get:

||an − am|| ≤ ςn||Φ0(η, γ, ψ, ι)||+ ςn−1||Φ0(η, γ, ψ, ι)||+ . . .+ . . . ςm+1||
≤
(
ςn + ςn−1 + . . .+ ςm+1

)
||Φ0(η, γ, z, ι)||

≤ ςm+1
(
ςn−m−1 + ςn−m−2 + . . .+ ς + 1

)
||Φ0(η, γ, z, ι)

≤ ψm+1

(
1− ςn−m

1− ς

)
||Φ0(η, γ, ψ, ι)||,

(19)

As 0 < ς < 1, it follows that 1− ςn−m < 1. Consequently, we derive:

(20) ||an − am|| ≤
ςm+1

1− ς
max |Φ0(x, γ, ψ, ι)|, ∀ι ∈ [0, T ],

Since Φ0 is bounded, so

(21) lim
n,m→∞

||an(η, γ, ψ, ι)− am(η, γ, ψ, ι)||= 0.

We have demonstrated that an(η, γ, ψ, t) constitutes a Cauchy sequence within
the Banach space (B[0, T ], ||.||). Consequently, the series solution in (16) con-
verges to the solution of (11). �

6.2. Error Estimate. The error estimate serves as a valuable criterion for
evaluating the effectiveness and accuracy of a numerical method. In this sec-
tion, we explore the error estimate associated with the MVIM method.

Theorem 6.2. Consider the time fractional-order heat-like or diffusion equa-
tions given in (11). The maximum ideal truncation error in its solution, as
expressed in (16), is then determined as:

(22) |Φ(η, γ, ψ, ι)−
m∑
j=0

Φj(η, γ, ψ, ι)| ≤
ςm+1

1− ς
||Φ0(η, γ, ψ, ι)||.
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Proof. Based on (19)

(23) ||Φ(η, γ, ψ, ι)− am|| ≤ ςm+1

(
1− ςn−m

1− ς

)
||Φ0(η, γ, ψ, ι)||,

Given that 0 < ς < 1, it follows that 1− ςn−m < 1. As a result:

(24) |Φ(η, γ, ψ, ι)−
m∑
j=0

Φj(η, γ, ψ, t)| ≤
ςm+1

1− ς
Φ0(η, γ, ψ, ι).

�

Given that we have covered the solution method for the equation and dis-
cussed topics related to convergence analysis and error analysis, in the following
section, we will solve several examples using the presented method to showcase
its effectiveness.

7. Examples

In this section, we demonstrate the application of our proposed method
(MVIM) to solve some examples of fractional heat-like equations.

Example 7.1. We direct our attention towards a one-dimensional diffusion
equation of the heat-like variety, wherein the temporal variation is accounted
for by means of a derivative of fractional order [42]

C
0D

β,σ
t Φ(η, ι) =

η2

2

∂2Φ

∂η2
, ∀η ∈ [0, 1], ι > 0, 0 < β ≤ 1,(25)

with initial condition

(26) Φ(η, t)|t=0 = η2.

Through the application of MVIM to the provided equation, we obtain the
following recurrence relation

Φn+1(η, ι) = e−σιf0(η, t) +
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1

(
η2

2

∂2Φn
∂η2

)
dξ,(27)

for n = 0 in recurrence equation (25):

Φ1(η, ι) = e−σιη2 +
η2

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1e−σξdξ

= e−σιη2 +
η2

Γ(β)
P−1

{
P
{
e−σιιβ−1 ∗ 1

}}
= e−σιη2

(
1 +

ιβ

Γ(1 + β)

)
.
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Now, for n = 1, we obtain

Φ2(η, ι) = e−σ(ι−ξ)η2 +
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1

(
η2

2

∂2u1

∂η2

)
dξ

= e−σιη2 +
η2

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1e−σι
(

1 +
ξβ

Γ(1 + β)

)
dξ

= e−σιη2

(
1 +

ιβ

Γ(1 + β)
+

ι2β

Γ(1 + 2β)

)
.

Finally, for n we obtain:

Φn(η, ι) = e−σιη2

(
1 +

ιβ

Γ(1 + β)
+

ι2β

Γ(1 + 2β)
+ · · ·+ ιnβ

Γ(1 + nβ)

)
,

Based on the Mittag-Leffler function definition for a single parameter, we can
obtain the closed-form solution of (25) as

Φ(η, ι) = lim
n→∞

Φn(η, ι) = e−σιη2
∞∑
m=0

ιmβ

Γ(mβ + 1)
= e−σιη2Eβ(ιβ).

Setting β = 1 yields the exact solution for classical model of (25) as follows:

Φ(η, ι) = lim
n→∞

un(η, ι) = e−σιη2
∞∑
m=0

ιm

Γ(m+ 1)
= η2eι(1−σ).

Φ2(1,ι), β=0.5

Φ4(1,ι), β=0.5

Φ7(1,ι), β=0.5

Φ10(1,ι), β=0.5

Exact, β=0.5

0.0 0.5 1.0 1.5 2.0

1

2

3

4

5

ι

Φ
(1
,ι)

Figure 3. Error estimate between approximate solutions and
the exact solution for β = 0.5 in model (25).

Figure 1 portrays the dynamic behavior reminiscent of classical one-dimensional
diffusion, similar to processes observed in heat transfer phenomena. These dy-
namics are governed by equation (25), with a specific parameter value set at
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(a) β = 0.7, σ = 0.5 (b) β = 1, σ = 0.5

(c) β = 0.2, σ = 0.5 (d) β = 0.5, σ = 0.5

Figure 1. The observed dynamics depict the physical char-
acteristics of one-dimensional classical diffusion, reminiscent
of heat transfer, governed by equation (25) with a parameter
value of σ = 0.5.

σ = 0.5. The observed patterns in Figure 1 provide insight into the spa-
tiotemporal evolution of the system under consideration, shedding light on its
underlying physical characteristics. The graph in Figure 3 demonstrates that
the numerical method converges to the analytical solution as the number of
terms (n) used in the calculation increases.

Example 7.2. Examining the time fractional-order diffusion equation in two
dimensions, denoted by [42]

C
0D

β,σ
ι Φ(η, γ, ι) =

∂2Φ

∂η2
+
∂2u

∂γ2
, ∀η, γ ∈ [0, 1], ι > 0, 0 < β ≤ 1,(28)

with an initial concentration exhibiting exponential growth in both η and γ, is
the focus. The initial condition is specified as

(29) Φ(η, γ, t)|t=0 = eη+γ .
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β=1

β=0.7

β=0.5

β=0.2
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ι

Φ
(1
,ι)

Figure 2. Illustration of solutions for time fractional-order
(heat-like) diffusion equation (25) with various values of pa-
rameters β = 1, 0.7, 0.5, 0.2, and a fixed auxiliary parameter
η = 1.

Through the application of MVIM to equation (28), we obtain the following
recurrence relation:

Φn+1(η, γ, ι) =e−σιf0(η, γ, ι)

+
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1e−σι
(
∂2Φn
∂η2

+
∂2Φn
∂γ2

)
dξ,

(30)

For n = 0 in recurrence equation we have

Φ1(η, γ, ι) =e−σιeη+γ +
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−12e(η+γ)dξ

=eη+γ−σι
(

1 +
2ιβ

Γ(1 + β)

)
,

and for n = 1, we have

Φ2(η, γ, ι) = eη+γ−σι +
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1

(
∂2u1

∂η2
+
∂2u1

∂γ2

)
dξ

= eη+γ−σι +
1

Γ(β)

∫ ι

0

(ι− ξ)β−12eη+γ−σι
(

1 +
2ξβ

Γ(1 + β)

)
dξ

= eη+γ−σι +
2eη+γ−σι

Γ(β)

∫ ι

0

(ι− ξ)β−1

(
1 +

2ξβ

Γ(1 + β)

)
dξ

= eη+γ−σι
(

1 +
2ιβ

Γ(1 + β)
+

22ι2β

Γ(1 + 2β)

)
.
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Here we obtain

Φn(η, γ, ι) = eη+γ−σι
(

1 +
2ιβ

Γ(1 + β)
+

22ι2β

Γ(1 + 2β)
+ · · ·+ 2nιnβ

Γ(1 + nβ)

)
,

Therefore by using the definition of Mittag-leffler function in one parameter,
the exact solution of the problem (28) is given by

Φ(η, γ, ι) = lim
n→∞

Φn(η, γ, ι) = eη+γ−σι
∞∑
m=0

2mιmβ

Γ(mβ + 1)
= eη+γ−σιEβ(2ιβ).

Like the previous example, if we put β = 1, we obtain the exact solution of
classical model as

Φ(η, γ, ι) = lim
n→∞

Φn(η, γ, ι) = eη+γ−σι
∞∑
m=0

2mιm

Γ(m+ 1)
= eη+γ+2ι−σι.

(a) β = 0.8, σ = 0.5 (b) β = 1, σ = 0.5

(c) β = 0.6, σ = 0.5 (d) β = 0.5, σ = 0.5

Figure 4. The solution of two-dimensional diffusion equation
(28) for different values of parameters in γ = 1.
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Figure 5. The solution for multi-dimensional, time
fractional-order heat-like (diffusion) equation (28) with
various fractional parameter β = 1, 0.8, 0.6, 0.5 and parame-
ters η = 1 and γ = 1.

Φ2(1,ι), β=0.5

Φ4(1,ι), β=0.5

Φ7(1,ι), β=0.5

Φ10(1,ι), β=0.5

Exact, β=0.5
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ι
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Figure 6. Error estimate between approximate solutions and
the exact solution for β = 0.5 in model (28).

Figure 4 illustrates the solution of equation (28) for γ = 1. This figure shows
how the solution behaves with respect to the two variables t and η. Figure 5
shows the solution at position (η, γ) = (1, 1) over time t for different values of
the fractional order β. We can see that the solutions exhibit similar character-
istics for different values of β. Figure 6 plots the approximate solution based
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on the series solution of equation (28) to demonstrate that the approximate
solution converges to the exact solution.

Example 7.3. Consider the time fractional-order heat-like equation in three-
dimensional [42].

C
0D

β,σ
ι Φ(η, γ, ψ, ι) =

∂2Φ

∂η2
+
∂2Φ

∂η2
+
∂2Φ

∂ψ2
, ∀η, γ, ψ ∈ [0, 1], ι > 0, 0 < β ≤ 1,

(31)

with initial condition

(32) Φ(η, γ, ψ, t)|t=0 = (1− γ)eη+ψ.

Through the application of MVIM to equation (31), we obtain the following
recurrence relation:

Φn+1(η, γ, ψ, ι) =(1− γ)eη+ψ−σι

+
1

Γ(β)

∫ ι

0

eσ(ι−ξ)(ι− ξ)β−1

(
∂2Φn
∂η2

+
∂2Φn
∂γ2

+
∂2Φn
∂ψ2

)
dξ,

(33)

In this step, by setting n = 0 in recurrence equation (33) we have

Φ1(η, γ, ψ, t) = (1− γ)eη+ψ−σι +
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−12(1− γ)eη+ψdξ

= (1− γ)eη+ψ−σι
(

1 +
2ιβ

Γ(1 + β)

)
,

for n = 1

Φ2(η, γ, ψ, ι) =(1− γ)eη+ψ−σι

+
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1

(
∂2Φ1

∂η2
+
∂2Φ1

∂γ2
+
∂2Φ1

∂ψ2

)
dξ

=(1− γ)eη+ψ−σι

+
1

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−12(1− γ)eη+ψ−σι
(

1 +
2ιβ

Γ(1 + β)

)
dξ

=(1− γ)eη+ψ−σι

+
2(1− γ)eη+ψ

Γ(β)

∫ ι

0

e−σ(ι−ξ)(ι− ξ)β−1e−σι
(

1 +
2ιβ

Γ(1 + β)

)
dξ

=(1− γ)eη+ψ−σι
(

1 +
2ιβ

Γ(1 + β)
+

22ι2β

Γ(1 + 2β)

)
,

and for n we obtain:

Φn(η, γ, ψ, ι) = (1− γ)eη+ψ−σι
(

1 +
2ιβ

Γ(1 + β)
+

22ι2β

Γ(1 + 2β)
+ · · ·+ 2nιnβ

Γ(1 + nβ)

)
,
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Therefore by using the definition of Mittag-leffler function in one parameter,
the solution of the problem (33) is given by

Φ(η, γ, ψ, ι) = lim
n→∞

Φn(η, y, ψ, ι) = (1− γ)eη+ψ−σι
∞∑
m=0

2mιmβ

Γ(mβ + 1)

= (1− γ)eη+ψ−σιEβ(2ιβ).

Putting β = 1, implies that the exact solution of counterpart classical problem
is

Φ(η, γ, ψ, ι) = lim
n→∞

Φn(η, γ, ψ, ι) = (1− γ)eη+ψ−σι
∞∑
m=0

2mιm

Γ(m+ 1)

= (1− γ)eη+ψ+2ι−σι.

(a) β = 1 (b) β = 0.7

(c) β = 0.5 (d) β = 0.45

Figure 7. The solution of three-dimensional diffusion equa-
tion (33) for γ = −1, ψ = 1, σ = 0.5 and different values of β.

Figure 7 presents the solution to equation (33) under the specific conditions
where γ = −1, ψ = 1, and σ = 0.5. This illustration highlights the behavior of
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Figure 8. The solution for three-dimensional time fractional-
order heat-like (diffusion) equations with different values of
fractional parameter β = 0.45, 0.5, 0.7, 1 and auxiliary param-
eter η = 1, ψ = 1 and γ = −1.
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Figure 9. Error estimate between approximate solutions and
the exact solution for β = 0.5 in model (13).

the solution in relation to the variables t and η. The graphical representation
provides insights into how the solution evolves over these parameters, offering
a clear visualization of the dynamics involved. In Figure 8, the solution is
depicted at the fixed position (η, γ) = (1,−1, 1) over time t, showcasing the



Exact analytical solution of tempered fractional heat-like... – JMMR Vol. 13, No. 2 (2024) 589

influence of different values of the fractional order β. This figure reveals that
while the solutions for varying β values display similar overall characteristics,
subtle differences can be observed in their specific trajectories. This compar-
ison emphasizes the impact of the fractional order on the solution’s behavior.
Figure 9 compares the approximate solution derived from the series solution of
equation (28) with the exact solution. This plot demonstrates the convergence
of the approximate solution towards the exact one, validating the accuracy and
reliability of the series solution approach. The close alignment of the approxi-
mate and exact solutions underscores the effectiveness of this method in solving
the given equation.

8. Conclusion

In this study, we addressed the time-fractional heat-like differential equa-
tion using the tempered fractional derivative. Initially, we enhanced the VIM
method through the utilization of the P-transformation and introduced a novel
approach termed Modified Variational Iteration Method (MVIM). Within this
methodology, we formulated a recursive formula based on the differential equa-
tion. The solution series sentences were then easily constructed at each step,
leveraging the properties of the tempered fractional integral. Furthermore, this
article encompasses the presentation of the convergence and error analysis for
the proposed method. Ultimately, we applied our technique to solve one, two,
and three-dimensional diffusion equations in three examples, demonstrating the
accuracy and effectiveness of the approach. Figures 3, 6, and 9 illustrate the
convergence of the approximate solution to the exact solution, confirming the
precision and dependability of the series solution obtained from our proposed
method. The strong correlation between the approximate and exact solutions
highlights the efficacy of this approach in accurately solving the given equation.
It is noteworthy that the analytical solutions we proposed were derived with-
out resorting to any deformation, perturbation, discretization, or other limiting
conditions. Notably, the MVIM solutions we put forward align with the solu-
tions obtained by Kumar et al [24], Momani [31] and Singh and Srivastava [42].

Future work can expand on this study by applying the MVIM to nonlinear
and higher-dimensional fractional differential equations, assessing its perfor-
mance in more complex scenarios. Real-world applications, such as anoma-
lous diffusion in biological tissues and viscoelastic materials, can be explored
to validate the method’s practical relevance. Comparative studies with other
advanced methods like ADM and HPM will help evaluate its efficiency and ac-
curacy. Developing adaptive algorithms and robust software implementations
can enhance the usability and performance of MVIM. Further research could
also focus on detailed error analysis, long-term behavior studies, parameter
sensitivity, and hybrid methods, while advancing the theoretical foundations of
MVIM to ensure broader applicability and deeper understanding.
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