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Abstract. This paper focuses on investigating the equivalence problem
for fifth-order differential operators (FODOs) on the line under general
fiber-preserving transformations. Utilizing the Cartan method of equiv-
alence, the study specifically addresses the gauge equivalence problem,
seeking to establish the conditions for two FODOs to be related by a
fiber-preserving transformation. By analyzing the properties of these op-
erators, the research aims to identify conditions for their transformation
while maintaining the fiber structure. The systematic approach of the
Cartan method is employed to derive the necessary conditions for gauge
equivalence between these FODOs. The study aims to enhance under-
standing of the equivalence problem for FODOs and shed light on fiber-
preserving transformations that uphold gauge equivalence.

Keywords: Differential operators, Gauge equivalence, Absorption, Nor-
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1. Introduction
The history of the gauge equivalence problem dates back to the early 20th

century and has its roots in the development of gauge theory in physics and
differential geometry. The concept of gauge invariance was first introduced
in the context of electromagnetism by Hermann Weyl in 1918 and later ex-
tended to other fields of physics, such as quantum field theory. In the 1950s,
the mathematician Elie Cartan made significant contributions to the theory of
differential forms and exterior calculus, which provided a powerful framework
for studying geometric structures and their equivalence under various trans-
formations, [4–6]. This laid the foundation for the modern formulation of the
gauge equivalence problem, [3, 7, 15,16].

The main goal of the Cartan equivalence problem is to determine when
two different geometric structures, defined on the same underlying space, are
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equivalent or isomorphic. These structures may include objects such as dif-
ferential equations, differential forms, or geometric connections. Cartan’s ap-
proach to solving the equivalence problem involves the use of differential forms
and exterior calculus to encode the geometric properties of the structures in
a coordinate-independent manner. By analyzing the differential forms associ-
ated with the structures, one can study the invariant that are preserved under
various transformations and gauge choices.

The Cartan equivalence theory has applications in various areas of math-
ematics and physics, including differential geometry, gauge theory, and the
theory of partial differential equations. It provides a powerful framework for
understanding the relationships between different geometric structures and for
classifying them based on their underlying symmetries and invariances, [10–12].

The equivalence problem for FODOs revolves around establishing the con-
ditions that allow two operators to be transformed into each other through a
suitable change of variables. This complex issue has been the subject of ex-
tensive research, leading to the development of various methodologies aimed at
resolving it effectively, [1, 2, 8, 13].

In the realm of equivalence problems, it is possible to associate a set of one-
forms with an object being studied in its original coordinate system. Upon
undergoing a transformation into new coordinates, the object will exhibit a
distinct set of one-forms. By framing the equivalence problem in the Cartan
format, which entails utilizing a coframe ω on the manifold M along with
a structured group G that is a subgroup of GL(m), the Cartan equivalence
method can be brought into play. The primary objective here is to standard-
ize the coefficients of the structure group in a manner that preserves their
invariance, a feat accomplished by identifying a satisfactory array of invariant
combinations of these coefficients, as elucidated in [14].

The classification of linear differential equations represents a specific instance
within the broader scope of categorizing differential operators. In the [1], it was
shown that a diverse array of equivalence problems can be fully redefined as
a set of equations that incorporate one or more differential one-forms, and we
specifically addressed the direct equivalence problem for an FODO.

The gauge equivalence problem became a central topic in theoretical physics,
particularly in the study of gauge theories such as Yang-Mills theory and gen-
eral relativity, [9]. The idea of gauge transformations, which are local sym-
metries that do not change the physical observable, played a crucial role in
understanding the underlying structure of fundamental interactions in particle
physics.

Over the years, mathematicians and physicists have developed sophisticated
mathematical tools and techniques to address the gauge equivalence problem
in different contexts, leading to important breakthroughs in theoretical physics
and differential geometry. The study of gauge theories and their equivalence
continues to be an active area of research, with implications for our under-
standing of the fundamental forces of nature and the geometry of spacetime.
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2. A Brief Review of Cartan Equivalence
When examining equivalence problems as a procedural approach, we ini-

tially delve into the structure equations, normalization process, and absorption
techniques. Detailed insights into this subject are available in the authorita-
tive source referenced as [14]. In this section, the Einstein notation is used for
summation.

In the G-valued equivalence problem for coframes on m-dimensional man-
ifolds, where G is a subgroup of GL(m) is a Lie group and ω = {ωi}mi=1 and
ω = {ωi}mi=1 represent the coframes on the manifolds M and M , respectively,
the objective is to determine the existence of a local diffeomorphism Φ from M
to M and a function g from M to G satisfying the equation

Φ∗(ω) = g(x)ω,(1)
for all x ∈ M , and the functions g(x) =

(
gij(x)

)
, where gij(x) are elements of the

structure group G. Given the group property of G, the G-valued equivalence
problem can be solved if and only if there exist a pair of G-valued functions g(x)
and g(x) such that, for clarity, omitting the pull-back operation, the equation:

g(x)ω = g(x)ω(2)
holds. Our objective is to transform a given G-equivalence problem into a
standard equivalence problem for coframes. To facilitate this reduction, we
introduce new coframes defined by

θi = gij(x)ω
j ,

θ
i
= gij(x)ω

j ,
(3)

which satisfies the invariance property Φ∗(θ
i
) equals to θi. During the initial

step of the Cartan method, after calculating the differentials of θi and utilizing
(3), we can express them resulting in the differential expression

dθi = γi
j(x) ∧ θj + T i

jk(x, g)θ
j ∧ θk.(4)

The coefficients T i
jk, known as torsion coefficients, can either be constant or

dependent on x and g. While some torsion coefficients may exhibit invariance,
they are generally not invariant for the given problem at hand.

The γi
j terms in (4) represent the 1-forms given by

γi
j = dgik(x)(g

−1)kj (x).(5)
These γi

j components play a crucial role in the differential expression, offering
insights into the structure of the lifted coframe elements through the composi-
tion involving the differential of g and its inverse.

Let us consider the set {αi}ri=1 as a basis for the space of Maurer-Cartan
forms. In this context, each γi

j can be expressed as a linear combination of the
Maurer-Cartan basis as follows:

γi
j = Ai

jlα
l.(6)
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Consequently, the ultimate structure equations governing our lifted coframe,
in terms of the Maurer-Cartan forms, exhibit a general form given by

dθi = Ai
jlα

l ∧ θj + T i
jk(x, g)θ

j ∧ θk.(7)

To simplify the Maurer-Cartan forms αl back to the base manifold M , we can
express them as arbitrary linear combinations of coframe elements, given by

αl 7→ zljθ
j ,(8)

where the coefficients zlj are currently undetermined and are functions that
explicitly rely on the base variables x. Upon replacing the expression from
(8) into the structure equations given by (7), we can derive a set of 2-forms
represented as:

Θi = {Bi
jk[z] + T i

jk(x, g)}θj ∧ θk,(9)
here, the coefficients Bi

jk[z] can be expressed as linear functions of the coeffi-
cients z = (zlk), given by:

Bi
jk[z] = (Ai

klz
l
j −Ai

jlz
l
k).(10)

The values of these coefficients are dictated by the particular representation of
the structure group G ⊂ GL(m), ensuring their constancy and independence
from the coordinate system selected.

The procedure of finding the unknown coefficients z from the complete tor-
sion coefficients is commonly referred to as the absorption of torsion, alongside
the subsequent step known as the normalization of the resulting invariant tor-
sion coefficients, as outlined earlier. Substituting αl with the adjusted 1-form

πl = αl − zliθ
i,(11)

leads to absorb the inessential torsion in the equation (7). Here the zli = zli(x, g)
are the solutions to the absorption equations and consequently, we can deduce

dθi = Ai
jlπ

l ∧ θj + U i
jkθ

j ∧ θk, i, j = 1, . . . ,m,(12)
where U i

jk exclusively involve essential torsion.

3. The Algorithm of Gauge Equivalence
Let’s examine the FODO acting on a scalar function u(x) given by

D[u] =

5∑
i=0

fi(x)D
iu(13)

and a separate FODO acting on a real-valued function ū(x̄)

D̄[ū] =

5∑
i=0

f̄i(x̄) D̄
iū.(14)

where fi and f̄i for i = 1, 2, 3, 4, 5 denote analytic functions of the real variables
x and x̄, respectively, where f5 = f̄5 = 1 for simplicity. Moreover, Di and D̄i
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are the i-th derivative with respect to xi and x̄i respectively, and D0 = D̄0 = Id
represent the identity operators.

Considering the fiber-preserving transformations given by

(x̄, ū) = (ξ(x), φ(x)u),(15)

where φ(x) 6= 0, we can use the chain rule formula to establish the relationship
between the total derivative operators as

D̄x̄ =
d

dx̄
=

1

ξ′(x)

d

dx
=

1

ξ′(x)
Dx.(16)

In [1], we addressed the direct equivalence problem by considering D[u] = D̄[ū]
under the change of variables given by (15). The direct equivalence leads to
the transformation rule

D̄ = D · 1

φ(x)
,(17)

which applies directly to the differential operators themselves. Resolving the
local direct equivalence problem involves establishing specific conditions on
the coefficients of the two differential operators to ensure their equivalence
when subjected to a change of variables in the form of (15). However, the
transformation rule (17) does not maintain the eigenvalue problem D[u] = λu
or the Schrodinger equation iut = D[u] since it lacks a φ(x) factor. To tackle
this limitation, we introduce the notion of gauge equivalence and consider the
subsequent transformation rule:

D̄ = φ(x) · D · 1

φ(x)
when x̄ = ξ(x).(18)

Theorem 3.1. Assume D and D̄ represent two FODOs. Consider two coframes
given by Ω = {ωi}7i=1 and Ω̄ = {ω̄j}7j=1 defined on open subsets of the corre-
sponding fifth jet spaces. These coframes are selected such that the differential
operators are equivalent under the pseudogroup (15) based on the respective
transformation rule (18). The relationship between the coframes Ω and Ω̄ can
be represented as Ω̄ = G Ω, where G is the following matrix:

G =



a1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 a2 a3 0 0 0 0
0 a4 a5 a6 0 0 0
0 a7 a8 a9 a10 0 0
0 a11 a12 a13 a14 a15 0
0 0 0 0 0 0 1


(19)

with ai being real numbers for i that 1 ≤ i ≤ 15, and ensuring that a1a3a6a10a15
is different from zero.
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Proof: The necessary and sufficient condition for the point transformation
to be in the desired linear form (15) is that the following one-form equations
hold on the subset of J5 where u 6= 0, for the functions ζ1 = ξx and ζ2 = φx/φ:

dx̄ = ζ1 dx,

dū

ū
=

du

u
+ ζ2 dx.

(20)

For a diffeomorphism Φ between jet space J5 to constitute a contact transfor-
mation, it must satisfy the condition:

dū− p̄ dx̄
1

dp̄− q̄ dx̄
dq̄ − r̄ dx̄
dr̄ − s̄ dx̄
ds̄− t̄ dx̄

1


= G .



du− p dx
1

dp− q dx
dq − r dx
dr − s dx
ds− t dx

1


,(21)

where G corresponds to the matrix defined in (19). The simultaneous fulfill-
ment of the initial contact condition (21) alongside the linearity conditions
(20) constitutes a segment of an over-determined equivalence problem. Upon
substituting ζ2 = −p/u and a1 = 1/u into (20), the resulting 1-form is as
follows:

dū− p̄ dx̄

ū
=

du− p dx

u
,(22)

which is invariant, and (22) can serve as a replacement for both (20). Hence,
we can choose the following six elements from our coframe as the 1-forms:

ω1 = dx, ω2 =
du− p dx

u
, ω3 = dp− q dx, ω4 = dq − r dx,

ω5 = dr − s dx, ω6 = ds− t dx.
(23)

This leads to the following relations:

ω̄1

ω̄2

ω̄3

ω̄4

ω̄5

ω̄6

1


= G .



ω1

ω2

ω3

ω4

ω5

ω6

1


.(24)

In the context of the problem (18), considering the additional factor of φ, the
invariant becomes:

I =
D[u]

u
.(25)
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This leads to the determination of:

ω7 = dI =
1

u
dt+

f4
u

ds+
f3
u

dr +
f2
u

dq +
f1
u

dp− t+ f4s+ f3r + f2q + f1p

u2
du

+
{f ′

4s+ f ′
3r + f ′

2q + f ′
1p

u
+ f ′

0

}
dx,

(26)

serves as the final component of the coframe for the equivalence problem (18).
The set of one-forms Ω = {ωi}7i=1 forms with u 6= 0 and f5(x) 6= 0. This
condition ensures that the final coframe elements are in agreement up to contact

ω̄7 = ω7.(27)

By examining the relations (24) and (27), the structure group linked to the
equivalence problems (17) and (18) can be identified as a group of matrices G.
This group satisfies Ω̄ = GΩ, resulting in (19). Subsequently, the lifted coframe
on the space J5 ×G is given by:

θ1

θ2

θ3

θ4

θ5

θ6

θ7


= G .



ω1

ω2

ω3

ω4

ω5

ω6

ω7


.(28)

□

4. The Final Structure Equations
Theorem 4.1. In gauge equivalence using the coframes (23) and (27), the
ultimate structural equations are:

dθ1

dθ2

dθ3

dθ4

dθ5

dθ6

dθ7


=



0 0 0 0 0 0 0
0 0 θ1 0 0 0 0
0 0 0 θ1 0 0 0
0 0 0 I1θ

1 θ1 0 0
0 0 0 I2θ

1 + 5θ3 0 θ1 0
0 0 I3θ

1 I4θ
1 + I5θ

3 5θ3 0 θ1

0 0 0 0 0 0 0


∧



θ1

θ2

θ3

θ4

θ5

θ6

θ7


(29)
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here the functions I1, . . . , I5 are represented as:

I1 = − 1

u
[f4u+ 5p] ,

I2 =
1

u2

[
2ḟ4u

2 − f3u
2 − 4f4pu− 10p2

]
,

I3 = − 1

u
[2pf2 + 3f3q + 4f4r + f1u+ 5s] ,

I4 =
1

u3

[
4ḟ4pu

2 − f2u
3 + ḟ3u

3 − 3f3pu
2 − 4f4p

2u− 2u2f4q

− f̈4u
3 − 10p3 + 5pqu− 5ru2

]
,

I5 = − 1

u
(f4u+ 5p).

(30)

Proof. During the initial iteration of the equivalence problem procedure, as
outlined in Proposition 3.1, the structure group G specified in Ω̄ = G Ω where
G is (19) precisely aligns with the following structure equations:

dθ1 = α1 ∧ θ1,

dθ2 = T 2
12θ

1 ∧ θ2 + T 2
13θ

1 ∧ θ3,

dθ3 = α2 ∧ θ2 + α3 ∧ θ3 + T 3
12θ

1 ∧ θ2 + T 3
13θ

1 ∧ θ3 + T 3
14θ

1 ∧ θ4,

dθ4 = α4 ∧ θ2 + α5 ∧ θ3 + α6 ∧ θ4 + T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4

+ T 4
15θ

1 ∧ θ5,

dθ5 = α7 ∧ θ2 + α8 ∧ θ3 + α9 ∧ θ4 + α10 ∧ θ5 + T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3

+ T 5
14θ

1 ∧ θ4 + T 5
15θ

1 ∧ θ5 + T 5
16θ

1 ∧ θ6,

dθ6 = α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4 + α14 ∧ θ5 + α15 ∧ θ6 + T 6
12θ

1 ∧ θ2

+ T 6
13θ

1 ∧ θ3 + T 6
14θ

1 ∧ θ4 + T 6
15θ

1 ∧ θ5 + T 6
16θ

1 ∧ θ6 + T 6
17θ

1 ∧ θ7,

dθ7 = 0,

The set of {αi}15i=1 serves as a basis for the right-invariant Maurer-Cartan forms
on the Lie group G. The essential torsion coefficients within the initial loop
can be represented as:

T 2
12 = −a2 + a3p

a1a3u
, T 2

13 =
1

a1a3u
, T 3

14 =
a3
a1a6

, T 4
15 =

a6
a1a10

,

T 5
16 =

a10
a1a15

, T 6
17 =

a15u

a1
.

(31)

Normalization can be achieved by setting

a1 = 1, a2 = − p

u
, a3 = a6 = a10 = a15 =

1

u
.(32)

In the second iteration of the equivalence problem, we integrate the normal-
ization condition (32) into the lifted coframe expression (28). Following this,
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we compute the differentials of the revised invariant coframe to deduce the
updated structural equations:

dθ1 = 0

dθ2 = θ1 ∧ θ3

dθ3 = θ1 ∧ θ4

dθ4 = T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5

dθ5 = T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + θ2 ∧ θ3

+ 2θ3 ∧ θ4 − θ2 ∧ θ5 + θ1 ∧ θ6 + α7 ∧ θ2 + α8 ∧ θ3

dθ6 = T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
23θ

2 ∧ θ3 + T 6
14θ

1 ∧ θ4

+ T 6
34θ

3 ∧ θ4 + T 6
15θ

1 ∧ θ5 + T 6
16θ

1 ∧ θ6 + θ3 ∧ θ5

+ θ2 ∧ θ4 − θ2 ∧ θ6 + θ1 ∧ θ7 + α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4

dθ7 = 0

(33)

Here, αi for i = 7, 8, 11, 12, 13 denote the Maurer-Cartan form, and the funda-
mental torsion components of the structural equations are provided by:

T 3
12 = −a4u+ q

u
, T 3

13 = −a5u+ 2p

u
, T 5

15 = −a14u− a9u+ p

u
,

T 6
16 =

a14u− f4u− p

u
.

(34)

Thus, the normalization can be expressed as:

a4 = − q

u
, a5 = −2p

u
, a9 =

f4u+ 2p

u
, a14 =

f4u+ p

u
.(35)

Substituting equation (35) into equation (28) and subsequently recalculating
the differentials of the updated 1-forms results in:

dθ1 = 0

dθ2 = θ1 ∧ θ3

dθ3 = θ1 ∧ θ4

dθ4 = T 4
12θ

1 ∧ θ2 + T 4
13θ

1 ∧ θ3 + T 4
14θ

1 ∧ θ4 + θ1 ∧ θ5

dθ5 = T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + θ2 ∧ θ3 + 2θ3 ∧ θ4

− θ2 ∧ θ5 + θ1 ∧ θ6 + α7 ∧ θ2 + α8 ∧ θ3

dθ6 = T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
23θ

2 ∧ θ3 + T 6
14θ

1 ∧ θ4 + T 6
34θ

3 ∧ θ4

+ θ2 ∧ θ4 + T 6
15θ

1 ∧ θ5 + θ3 ∧ θ5 + T 6
16θ

1 ∧ θ6 − θ2 ∧ θ6 + θ1 ∧ θ7

+ α11 ∧ θ2 + α12 ∧ θ3 + α13 ∧ θ4

dθ7 = 0
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The essential torsion components include T 4
12, T 4

13, and T 6
15. This directly

indicates the subsequent normalization:

a7 = −f4qu+ 2pq + ru

u2
, a8 = −2f4pu+ 4p2 + 3qu

u2
,

a13 = − ḟ4u
2 − f4pu− f3u

2 − 2p2 + qu

u2
.

(36)

In the fourth loop, by inserting the normalization (36) into the raised coframe
(28) and solving for the parameters a7, a8 and a13, we update the differentials.
Consequently, the revised structure equations are:

dθ1 = 0

dθ2 = θ1 ∧ θ3

dθ3 = θ1 ∧ θ4

dθ4 = T 4
14θ

1 ∧ θ4 + θ1 ∧ θ4

dθ5 = T 5
12θ

1 ∧ θ2 + T 5
13θ

1 ∧ θ3 + T 5
14θ

1 ∧ θ4 + 5θ3 ∧ θ5 + θ1 ∧ θ6

dθ6 = T 6
12θ

1 ∧ θ2 + T 6
13θ

1 ∧ θ3 + T 6
23θ

2 ∧ θ3 + T 6
14θ

1 ∧ θ4 + T 6
34θ

3 ∧ θ4

+ θ3 ∧ θ5 − θ2 ∧ θ6 + θ1 ∧ θ7 + α11 ∧ θ2 + α12 ∧ θ3

dθ7 = 0

(37)

The essential torsion components consist of T 5
12 and T 5

13. The corresponding
parameters are determined as follows:

a11 = −f4ru+ pr + su

u2
, a12 = −3f4qu+ 3pq + 4ru

u2
.(38)

Thus the final invariant coframe is now given by

θ1 = dx,

θ2 =
du− p dx

u
,

θ3 =
1

u2

[
(p2 − qu) dx− p du+ u dp

]
,

θ4 = − 1

u3

[
(2p3 − 3pqu+ ru2) dx− (2p2 − qu) du+ 2pu dp− u2 dq

]
,

θ5 =
1

u4

[
(−u3f4r + 3f4pqu

2 − 2f4p
3u+ 3p2qu− 4p4 + 3q2u2

− pru2 − su3) dx+ (2f4p
2u− u2f4q + 4p3 + pqu− ru2) du

− (2f4pu+ 4p2 + 3qu)u dp+ (f4u+ 2p)u2 dq + u3 dr
]
,
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θ6 = − 1

u5

[
(2f3p

3u2 − 3f3pqu
3 + f3u

4r − 2ḟ4p
3u2 + 3ḟ4pqu

3

− ḟ4ru
4 + 2f4p

4u− 3f4q
2u3 + f4su

4 + 4p5 − 5p3qu+ 5p2ru2

− 5qru3 + tu4) dx+
( (f4pu+ f3u

2 − ḟ4u
2 + 2p2 − qu)(2p2 − qu)

u5

+
3f4pqu− f4ru

2 + 3p2q + 3pru− su2

u4

)
du

+
2f3pu

2 − 2ḟ4pu
2 + 2f4p

2u+ 3f4u
2q + 4p3 + pqu+ 4ru2

u4
dp

+
f4pu+ f3u

2 − ḟ4u
2 + 2p2 − qu

u3
dq

+
f4u+ p

u2
dr +

1

u
ds
]
,

θ7 =
f ′
4s+ f ′

3r + f ′
2q + f1p+ f ′

0u

u
dx− t+ f4s+ f3r + f2q + f1p

u2
du

+
f1
u

dp+
f2
u

dq +
f3
u
dr +

f4
u
ds+

dt

u
.

Subsequently, the final structure equations (29) incorporating the fundamental
invariant coefficients (30) are derived. □

4.1. An Example. Consider the fifth order differential operator (FODO)

D = D5
x + f4(x)D

4
x + f3(x)D

3
x + f2(x)D

2
x + f1(x)Dx + f0(x).(39)

Under the change of variables of following gauge transformation

x̄ = ξ(x) = x, φ(x) = exp

{∫
f4(x) dx

}
u(40)

where φ(x) = exp

{∫
f4(x) dx

}
is the gauge factor. The FODO (39) is trans-

formed to

D̄ = D5
x + p(x)Dx + f0(x),(41)

where p(x) = f0(x)− f2(x)f4(x) + f3(x)f
2
4 (x)− f4

4 (x), under the gauge trans-
formation (40). To obtain the operator (41), we must take into account that
D̄ under the transformation (40) is connected to D through the formula:

D̄ = exp

{∫
f4(x)dx

}
D exp

{
−
∫

f4(x)dx

}
.(42)
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Let’s apply this formula to the given FODO (39) and using formula (42), we
have

D̄ = exp

{∫
f4(x)dx

}(
D5

x + f4(x)D
4
x + f3(x)D

3
x + f2(x)D

2
x + f1(x)Dx

+ f0(x)
)
exp

{
−
∫

f4(x)dx

}
.

Expanding this expression using the transformation rules, and substituting

D̄x̄ = exp

{∫
f4(x)dx

}
Dx exp

{
−
∫

f4(x)dx

}
,

which simplifies the expression to (41).

5. Conclusion
This paper has delved into the investigation of the equivalence problem

concerning fifth-order differential operators (FODOs) on the line within the
realm of general fiber-preserving transformations. Through the application of
the Cartan method of equivalence, the study has focused on tackling the gauge
equivalence problem, aiming to delineate the criteria under which two FODOs
can be linked through a fiber-preserving transformation.

By scrutinizing the characteristics and behaviors of these operators, the re-
search has strived to unveil the prerequisites for their transformation while
preserving the underlying fiber structure. Leveraging the systematic method-
ology of the Cartan method, the study has successfully derived the essential
conditions for achieving gauge equivalence between FODOs.

In essence, this study endeavors to enrich the comprehension of the equiva-
lence quandary surrounding FODOs and to illuminate the landscape of fiber-
preserving transformations that maintain gauge equivalence. Through a rig-
orous analytical approach and a focus on the intricate relationships between
operators and transformations, this research contributes to advancing the un-
derstanding of FODO equivalence and the significance of fiber-preserving trans-
formations in this context.
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