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Abstract. Hypergroups that have at least one identity element and

where each element has at least one inverse are called regular hyper-

group. In this regards, for a regular hypergroup H, it is shown that there
exists a correspondence between the set of all strongly regular relations

on H and the set of all normal subhypergroups of H containing Sβ . More

precisely, it has been proven that for every strongly regular relation ρ
on H, there exists a unique normal subhypergroup of H containing Sβ ,

such that its quotient is a group, isomorphic to H/ρ. Furthermore, this

correspondence is extended to a lattice isomorphism between them.
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1. Introduction

The hyperstructure theory, born in 1934 with Marty’s paper at the viii Con-
gress of Scandinavian Mathematicians, was subsequently developed around the
40s with the contribution of various authors especially in France and in the
United States [15]. Marty showed that the characteristics of hypergroups can
be used in solving some problems of groups, algebraic functions, and ratio-
nal functions. Surveys of the theory can be found in [7, 8]. A special type
of equivalence relations which is called fundamental relations play important
roles in the theory of algebraic hyperstructures. The fundamental relations are
one of the most important and interesting concepts in algebraic hyperstructures
that ordinary algebraic structures are derived from algebraic hyperstructures by
them. The fundamental relation β∗ on hypergroups was defined by Koskas [14],
Corsini [6], Ferni [10, 11], and Vogiouklis [16]. Then D. Ferni introduced the
fundamental relation γ∗ which is the transitive closure of γ and is the smallest
relation such that H/γ∗ is an abelian group. Subsequently, fundamental rela-
tions were gradually introduced on other algebraic hyperstructures. R. Ameri
et al. introduced and studied the congruence relations on multialgebras, as a
general case of algebraic hyperstructures, such as hypergroups, hyperrings and
etc. in [2].
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T. Vogiouklis generalized the fundamental relations in [16] to use on hyperrings
and then R. Ameri et al., reformulated it based on polynomials [3]. In [1], it has
been demonstrated that relations β∗ and γ∗ are related together in the form of
γ∗= δ∗β∗, where δ is the congruence relation with respect to the commutator
subgroup.
A. Connes and C. Consani introduced hyperrings corresponding to adele classes
and studied algebraic geometry based on hyperrings [4]. Then, they utilized
hyperrings to prove certain propositions in number theory [5]. J. Jun investi-
gated tropical varieties on hyperrings [13], also in his doctoral thesis, he studied
algebraic geometry on hyperstructures and proved important propositions in
the field of algebraic geometry on hyperfields [12].
In the theory of algebraic hyperstructures, particularly in research related to
algebraic geometry based on hyperstructural concepts, one of the most crucial
question is whether the fundamental relations transfer the derived concepts
back to their classical form?
On the other hand, fundamental relations usually have long and intricate for-
mulas, posing challenges in the investigation of such issues. Since working with
congruence relations is significantly easier, our goal is to examine conditions
under which we can view fundamental relations as congruence relations. Now
in this paper, we follow [2], to established an isomorphism between the lattices
of all strongly regular relations on a hypergroups and its subhypergroups.
One of the most important applications of the results obtained in this arti-
cle is that they enable us to establish a one-to-one correspondence between
strongly regular relations on hyperrings and suitable hyperideals of hyperrings.
Additionally, we aim to investigate similar results concerning hypermodules.

2. Preliminaries

Let (H, ◦) be a semi-hypergroup. An equivalence relation ρ is called a
1- Regular on the right (resp. on the left), if for all x ∈ H, from aρb, it follows
that (a◦x)ρ̄(b◦x) (resp. (x◦a)ρ̄(x◦b));
2- Strongly regular on the right (resp. on the left), if for all x ∈ H, from aρb, it
follows that (a◦x)¯̄ρ(b◦x) (resp. (x◦a)¯̄ρ(x◦b));
3- Regular (resp. strongly regular), if it is regular (resp. strongly regular) on
the right and on the left.

Theorem 2.1 ( [6]). Let (H, ◦) be a semi-hypergroup and ρ be an equivalence
relation on H.
If ρ is regular, then H/ρ = {ρ(h); h ∈ H} is a semi-hypergroup with respect to
the hyperoperation ρ(x)⊗ρ(y) = {ρ(z); z ∈ x◦y}.
Furthermore, if the above hyperoperation is well defined on H/ρ, then ρ is
regular.

Corollary 2.2 ( [6]). If (H, ◦) is a hypergroup and ρ is an equivalence relation
on H, then ρ is regular (resp. strongly regular) if and only if (H/ρ,⊗) is a
hypergroup (resp. group).
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Theorem 2.3 ( [6]). Let (H, ◦) be a semi-hypergroup and ρ be an equivalence
relation on H.
If ρ is strongly regular, then H/ρ is a semi-group with respect to the operation
ρ(x)⊗ρ(y) = ρ(z), for all z ∈ x◦y.
Furthermore, if the above operation is well defined on H/ρ, then ρ is strongly
regular.

Definition 2.4 ( [9]). For all n > 1, we define the relations βn and γn on a
semi-hypergroup H, as follows:

aβnb⇐⇒ ∃(x1, x2, ..., xn) ∈ Hn : {a, b} ⊆
n∏
i=1

xi

aγnb⇐⇒ ∃(x1, x2, ..., xn) ∈ Hn, σ ∈ Sn : a ∈
n∏
i=1

xi , b ∈
n∏
i=1

yσ(i)

and β =
⋃
n≥1 βn and γ =

⋃
n≥1 γn where β1 = γ1 = {(x, x);x ∈ H}. Let β∗be

the transitive closure of β and γ∗ be the transitive closure of γ.

If H is a hypergroup then γ = γ∗ and β = β∗. Also, β∗ is the smallest
strongly regular relation on H and γ∗ is the smallest strongly regular relation
on H such that the quotient H/γ∗ is a commutative group [9].

Definition 2.5 ( [6]). β∗ is called the fundamental equivalence relation on H
and H/β∗ is called the fundamental group.

Let ρ be a strongly regular relation on a hypergroup H, and σ be a congru-
ence relation on group H/ρ, then consider:

(a, b) ∈ σ∗ρ⇐⇒ (ρ(a), ρ(b)) ∈ σ.
If δ is a congruence relation on H/ρ corresponding to the commutator subgroup
of H/ρ, then δ∗ρ is the smallest strongly regular relation containing ρ on H,
such that H/(δ∗ρ) is a commutative group. In particular, γ = δ∗β [1].

Definition 2.6 ( [9]). Let (H, ◦) be a hypergroup and (K, ◦) be a subhyper-
group of it. We say that K is:
(i) closed on the left (on the right) if for all k1, k2 of K and x of H, from
k1 ∈ x ◦ k2 (k1 ∈ k2 ◦ x, respectively), it follows that x ∈ K;
(ii) invertible on the left (on the right) if for all x, y of H, from x ∈ K ◦ y
(x ∈ y ◦K), it follows that y ∈ K ◦ x (y ∈ x ◦K, respectively);
(iii) conjugable on the left if it is closed on the left and for all x ∈ H, there
exists x′ ∈ H such that x ◦ x′ ⊆ K. Similarly, we can define the notion of
conjugable on the right.
We say that K is closed (invertible, conjugable) if it is closed (invertible, con-
jugable) on the left and on the right.

It is proved that, each conjugable subhypergroup is invertible and each in-
vertible subhypergroup is closed [9].
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3. Correspondence

For a hypergroup H, denote the set of all strongly regular relations on H by
SR(H). Letting S(H) = {Sρ; ρ ∈ SR(H)}, where Sρ := {s ∈ H; ρ(s) = eH/ρ}.
Since H/ρ is a group, then there exists h ∈ H such that ρ(h) = eH/ρ. Hence,
Sρ 6= ∅. Also, denote the set of all subhypergroups of H containing Sβ by
(Sβ), and the set of all normal subhypergroups of H containing Sβ by N(Sβ).
Clearly, if H is a group then Sβ = {e} and S(H) = N(Sβ), because on groups,
the set of strongly regular relations becomes to the set of regular relations
(congruence relations) that is in one to one correspondence with the set of
normal subgroups.

Theorem 3.1. If H is a hypergroup, then S(H) ⊆ N(Sβ).

Proof. Let Sρ ∈ S(H) and x ∈ Sρ. Then x ◦ Sρ ⊆ Sρ and Sρ ◦ x ⊆ Sρ.
If s ∈ Sρ, since H ◦ x = x ◦ H = H, then there exist h, h′ ∈ H such that
s ∈ h ◦ x ∩ x ◦ h′ and eH/ρ = ρ(s) = ρ(h ◦ x) = ρ(h)⊗ρ(x) = ρ(h) = ρ(h′).
So h, h′ ∈ Sρ and S ⊆ x ◦ Sρ ∩ Sρ ◦ x. Therefore Sρ is a subhypergroup of
H. Now consider ρ ∈ SR(H) and x ∈ H. So there is an x′ ∈ H such that
ρ(x ◦ x′) = ρ(x)⊗ρ(x′) = eH/ρ. Since ρ(Sρ) = eH/ρ then x ◦ Sρ ◦ x′ ⊆ Sρ and
therefore x ◦ Sρ ◦ x′ ◦ x ⊆ Sρ ◦ x. But x′ ◦ x ⊆ Sρ and hence x ◦ Sρ ⊆ Sρ ◦ x.
Similarly, it can be proved that Sρ ◦x ⊆ x◦Sρ and therefore the equality holds.
Also, since β ⊆ ρ then Sβ ⊆ Sρ. �

Example 3.2. Consider the hypergroup (H, ◦), where H = {0, 1} and

◦ 0 1
0 0 1
1 1 H

Hence SβH
= H and S(H) = {H}. Now consider K = S3 ×H, then S(S3) =

{{e}, A3, S3}, SβK
= {e}×H and (SβK

) = {{e}×H, (τ1)×H, (τ2)×H, (τ3)×
H,A3×H,S3×H}, N(SβK

) = {{e}×H,A3×H,S3×H}. It is easy to verify
that the congruence relation modulo of each element of N(SβK

) is strongly
regular relation on K. Hence N(SβK

) ⊆ S(K) and N(SβK
) = S(K).

Proposition 3.3. If H is a hypergroup and Sρ ∈ S(H), then Sρ is conjugable.

Proof. Let s1, s2 ∈ Sρ and h ∈ H such that s1 ∈ h ◦ s2. Then eH/ρ = ρ(s1) =
ρ(h ◦ s2) = ρ(h)⊗ρ(s2) = ρ(h), and hence h ∈ Sρ. If h ∈ H, then there
exists an element such as ρ(k) in group H/ρ which ρ(h)⊗ρ(k) = eH/ρ. Thus
h ◦ k ⊆ Sρ. �

Let (H, ◦) be a hypergroup and EH = {e ∈ H; x ∈ e ◦ x ∩ x ◦ e, ∀x ∈ H}.
For every x ∈ H, set CH(x) = {y ∈ H; EH ∩ (y ◦ x ∩ x ◦ y) 6= ∅}. If
CL(x) = {y ∈ H; EH ∩ y ◦x 6= ∅} and CR(x) = {y ∈ H; EH ∩x ◦ y 6= ∅}, then
CH(x) = CL(x) ∩ CR(x). Also y ∈ CL(x) if and only if x ∈ CR(y), and it is
clear that EH ⊆ Sρ for every ρ ∈ SR(H).
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Definition 3.4. A hypergroup H is called a regular hypergroup if EH 6= ∅
and CH(x) 6= ∅ for every x ∈ H. A regular hypregroup H is called a strongly
regular hypergroup, if CH(x) = {x−1} for every x ∈ H.

If H is a strongly regular hypergroup, then |EH | = 1. Because for every
e1, e2 ∈ EH ; e1 ∈ e2 ◦ e1 and e2 ∈ e2 ◦ e2. So e1, e2 ∈ CH(e2) and e1 = e2.

Lemma 3.5. Let H be a regular hypregroup. Then ρ(x) = x ◦ Sρ for every
Sρ ∈ S(H) and x ∈ H.

Proof. If z ∈ ρ(x), then x−1 ◦ z ⊆ Sρ and z ∈ x ◦ (x−1 ◦ z) ⊆ x ◦ Sρ. So,
ρ(x) ⊆ x ◦ Sρ. Conversely, if z ∈ x ◦ Sρ, then z ∈ x ◦ h, for some h ∈ Sρ, such
that ρ(z) = ρ(x) and z ∈ ρ(x), then x ◦ Sρ ⊆ ρ(x). �

Consider a subhypergroup K of a regular hypergroup H, and Sβ ⊆ K. Let
a, b ∈ K and h ∈ H such that a ∈ h ◦ b. Then β(a) = β(z) for each z ∈ h ◦ b,
and by Lemma 3.5, a ◦ Sβ = h ◦ b ◦ Sβ . Thus a ◦ Sβ ◦ K = h ◦ b ◦ Sβ ◦ K
and K = h ◦ K. Since H is a regular hypergroup then EH 6= ∅ and since
EH ⊆ Sβ ⊆ K then there exists e ∈ EH such that h ∈ h ◦ e ⊆ h ◦ K ⊆ K.
Therefore h ∈ K. Also, there is a element such as β(h′) in group H/β such
that β(h)⊗β(h′) = β(z) = eH/β for each z ∈ h ◦ h′. Hence h ◦ h′ ⊆ Sβ ⊆ K.
Thus K is conjugable on the left (resp. invertible on the left). Similarly it is
proved that K is conjugable on the right and therefore conjugable.
Also, if (x1, ..., xn) ∈ Hn such that

∏n
i=1 xi ∩K 6= ∅ and a ∈

∏n
i=1 xi ∩K then

β(a) = β(
∏n
i=1 xi). Therefore, a ◦ Sβ = (

∏n
i=1 xi) ◦ Sβ , and

a ◦ Sβ ◦K = (
∏n
i=1xi) ◦ Sβ ◦K ⇒ K = (

∏n
i=1xi) ◦K.

Let x ∈
∏n
i=1xi, then there are y1, y2 ∈ K such that y1 ∈ x ◦ y2. Since K is

conjugable, then it is closed and therefore x ∈ K. Thus
∏n
i=1xi ⊆ K and K is

complete part.
If S ∈ N(Sβ) then {(x, y) ∈ H2; x ◦ S = y ◦ S} is called the congruence

relation modulo S and, the following theorem can be stated about the elements
of N(Sβ).

Theorem 3.6. If H is a regular hypregroup, then the congruence relation
modulo of each element of N(Sβ) is strongly regular.

Proof. Let x, y, z ∈ H and S ∈ N(Sβ). If x◦S = y◦S, then (z◦x)◦S = (z◦y)◦S
and since Sβ ⊆ S then (z ◦ x) ◦ Sβ ◦ S = (z ◦ y) ◦ Sβ ◦ S. By Lemma 3.5, for
every r ∈ z ◦ x and t ∈ z ◦ y, one has z ◦ x ◦ Sβ = r ◦ Sβ and z ◦ y ◦ Sβ = t ◦ Sβ .
So, r ◦S = t◦S and the congruence relation modulo of S is strongly regular on
the left. Since S is normal, from x ◦S = y ◦S it concludes x ◦ z ◦S = y ◦ z ◦S.
Similarly it is proved that the congruence relation modulo of S is strongly
regular on the right. �

Theorem 3.7. If H is a regular hypregroup, then SR(H) ∼= N(Sβ) = S(H).



78 R. Ameri, B. Afshar

Proof. Consider the maps f : SR(H) → N(Sβ) and g : N(Sβ) → SR(H),
defined by f(ρ) = Sρ and g(S) = ρ

S
:= {(x, y); x◦S = y ◦S}. f and g are well

defined by Theorem 3.1 and Theorem 3.6, respectively. Since EH ⊆ Sβ ⊆ S
then h ∈ S if and only if h ◦ S = S, for every h ∈ H. Hence

f ◦ g(S) = f
(
{(x, y); x ◦ S = y ◦ S}

)
= {h ∈ H; (x ◦ S)(h ◦ S) = x ◦ S, ∀x ∈ H}
= {h ∈ H; x ◦ h ◦ S = x ◦ S, ∀x ∈ H}.

Since S is complete part and EH ⊆ Sβ ⊆ S then (x−1 ◦ x) ∩ S 6= ∅ and
x−1 ◦ x ⊆ S. So if x ◦ h ◦ S = x ◦ S then x−1 ◦ x ◦ h ◦ S = x−1 ◦ x ◦ S and
h ◦ S = S. Therefore f ◦ g(S) = {h ∈ H; h ◦ S = S} = S. By Lemma 3.5

g ◦ f(ρ) = g(Sρ) = {(x, y); x ◦ Sρ = y ◦ Sρ} = {(x, y); ρ(x) = ρ(y)} = ρ.

�

Theorem 3.8. Let ρ ∈ SR(H) and H/Sρ := {h ◦ Sρ; h ∈ H}. Then H/ρ ∼=
H/Sρ is a group isomorphism.

Proof. Since Sβ ⊆ Sρ, then x ◦ Sρ . y ◦ Sρ = (x ◦ y) ◦ Sρ = z ◦ Sρ for every
z ∈ x◦y. Thus the hyperopration on hypergroup H/Sρ reduces to an opration,
and hence H/Sρ is a group. Therefore, H/ρ → H/Sρ by ρ(x) 7→ x ◦ Sρ is
isomorphism because ρ(x) = x ◦ Sρ for every x ∈ H. �

Proposition 3.9. If H is a (resp. strongly) regular hypregroup and S ∈ (Sβ)
then S is conjugable and (resp. strongly) regular.

Proof. Consider s1, s2 ∈ S and h ∈ H such that s1 ∈ h ◦ s2. Then β(s1) =
β(h◦s2) and by Lemma 3.5, s1 ◦Sβ ◦S = (h◦s2)◦Sβ ◦S, and hence S = h◦S.
Also, from EH ⊆ Sβ ⊆ S it concluded that h ∈ S. Also, there exisrs h−1 ∈ H
such that EH ∩ h ◦ h−1 6= ∅. So h ◦ h−1 ⊆ Sβ ⊆ S.
Since EH ⊆ S then EH ⊆ ES and if x ∈ S, then there exists x′ ∈ H such that
ES ∩ (x ◦ x′) 6= ∅. So, e ∈ x ◦ x′ for some e ∈ ES , and because S is conjugable
then x′ ∈ S. Therefore, CS(x) 6= ∅.

�

Remark 3.10. The converses of Propositions 3.3 and 3.9 are not correct, because
if H is a strongly regular hypergroup, then S = {e} ×H is a conjugable and
strongly regular subhypergroup of H ×H but S /∈ S(H ×H).

Let S ∈ (Sγ) and x ∈ H. Then there exists x′ ∈ H such that γ(x)⊗γ(x′) =
γ(y) = γ(z) = eH/γ for each y ∈ x ◦ x′ and z ∈ x′ ◦ x. Hence for every s ∈ S
one has

(x ◦ s ◦ x′) ◦ Sγ = (x′ ◦ s ◦ x) ◦ Sγ = (s ◦ x ◦ x′) ◦ Sγ = s ◦ Sγ .
Thus (x◦s◦x′)◦Sγ ◦S = (x′ ◦s◦x)◦Sγ ◦S = s◦Sγ ◦S = S. Since S is regular
and EH ⊆ S then x ◦ s ◦ x′ ∪ x′ ◦ s ◦ x ⊆ S. So, x ◦ S ◦ x′ ∪ x′ ◦ S ◦ x ⊆ S and
since x ◦ x′ ∪ x′ ◦ x ⊆ Sγ ⊆ S, then x ◦ S ⊆ S ◦ x and S ◦ x ⊆ x ◦ S. Therefore:
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(Sγ) = N(Sγ) ⊆ N(Sβ).

4. Lattice perspective

From now on, all hypergroups are strongly regular hypergroups unless oth-
erwise stated. For a hypergroup H, (S(H),⊆) and (SR(H),⊆) are posets and
S(H) = {Sθ; θ∈SR(H)} = N(Sβ), SR(H) = {θS ; S∈N(Sβ)}, where θS is the
congruence relation modulo S.
Let ∆H = {(h, h);h∈H} and ∇H = H2. Then ∇H , βH ∈ SR(H). For ev-
ery ρ, σ ∈ SR(H) put ρ∨σ = ρ ∪ (ρ◦σ) ∪ (ρ◦σ◦ρ) ∪ (ρ◦σ◦ρ◦σ) ∪ ... where
ρ◦σ = {(x, y)∈H2; ∃z∈H 3 (x, z)∈ρ, (z, y)∈σ}. Also, ρ ∩ σ ∈ SR(H) and⋂
ρ∈SR(H) ρ = βH .

If L is a lattice and a ∈ L, then I(a) := {b∈L; b 6 a} is the principal ideal
generated by a and F (a) := {b∈L; a 6 b} is the filter generated by a.

Lemma 4.1. If ρ, σ ∈ SR(H), then ρ∨σ ∈ SR(H).

Proof. Clearly, ρ∨σ is the smallest equivalence relation containing ρ and σ. Let
(x, y) ∈ ρ∨σ and z ∈ H. Then there are n ∈ N and z1, ..., zn ∈ H such that
z1 = x, zn = y and (zi, zi+1) ∈ ρ ∪ σ, for every 1 ≤ i ≤ n− 1. Without loss of
generality assume that (x, z2) ∈ ρ, (z2, z3) ∈ σ,..., (zn−1, y) ∈ ρ. So

z ◦ x ¯̄ρ z ◦ z2 ¯̄σ z ◦ z3 ... z ◦ zn−1 ¯̄ρ z ◦ y.

Hence for every t1 ∈ z ◦ x and tn ∈ z ◦ y there are t2, ..., tn−1 ∈ H, where
t1 ρ t2 σ t3 ... tn−1 ρ tn and tk ∈ z ◦ zk, for every 2 ≤ k ≤ n − 1. Thus

(t1, tn) ∈ ρ∨σ and z◦x ρ∨σ z◦y. Similarly, one can prove that x◦z ρ∨σ y◦z. �

Theorem 4.2. Let (H, ◦) be a hypergroup. Then S(H) and SR(H) are com-
plete lattices.

Proof. Let A ⊆ SR(H) then by Lemma 4.1;∨
ρ∈A

ρ ∈ SR(H) ,
⋂

ρ∈SR(H)

ρ = β ∈ SR(H).

If S, T ∈ S(H), then S ◦ T is the smallest normal subhypergroup of H such
that S ∪ T ⊆ S ◦ T . So S ∨ T = S ◦ T . Also

⋂
S∈S(H) S = Sβ ∈ S(H). �

Proposition 4.3. The lattices S(H) and SR(H) are isomorph.

Proof. Consider the function f introduced in Theorem 3.7 and suppose ρ, σ ∈
SR(H) and S, T ∈ S(H) where ρ ⊆ σ and S ⊆ T . Hence f(ρ) = Sρ ⊆ Sσ =
f(σ) and if (x, y) ∈ H2 be such that x ◦ S = y ◦ S then x ◦ S ◦ T = y ◦ S ◦ T .
Therefore, x ◦ T = y ◦ T and f−1(S) ⊆ f−1(T ). �

Therefore Sρ◦Sσ = Sρ∨σ, Sρ∩Sσ = Sρ∩σ, θS∨θT = θS◦T and θS∩θT = θS∩T .
Where S, T ∈ S(H), ρ, σ ∈ SR(H) and θS = {(x, y) ∈ H2; x◦S = y ◦S}. Also∨
ρ∈SR(H) ρ = ∇H ,

⋂
ρ∈SR(H) ρ = βH ,

∨
S∈S(H) S = H and

⋂
S∈S(H) S = Sβ .
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Theorem 4.4. Let f : H → K be a good homomorphism of strongly regular
hypergroups and ρ ∈ SR(H), such that Sρ ⊆ Kerf . Then there is a unique good
homomorphism f̄ : H/ρ→ K where f̄(ρ(h)) = f(h) such that Kerf̄ = ρ(Kerf)
and Imf = Imf̄ . Moreover, f is isomorphism if and only if f is onto and
Sρ = Kerf .

Proof. If x, y ∈ H and ρ(x) = ρ(y), then x ◦ y−1 ⊆ Sρ ⊆ Kerf . Therefore,
f(x ◦ y−1) = f(x)f(y)−1 = eK and f(x) = f(y). Clearly, Imf̄ = Imf ,
Kerf̄ = {ρ(x); x∈Kerf} = ρ(Kerf) and f̄ is unique. Thus f̄(ρ(x)⊗ρ(y)) =
f̄(ρ(x ◦ y)) = f(x ◦ y) = f(x)f(y) and f̄ is one to one if and only if kerf̄ =
ρ(Kerf) = {Sρ} if and only if Kerf = Sρ.

�

Corollary 4.5. Let f : H → K be a good homomorphism of strongly regular
hypergroups and ρ ∈ SR(H), σ ∈ SR(K) such that f(Sρ) 6 Sσ. Then there is
a unique homomorphism f̄ : H/ρ→ K/σ where f̄(ρ(h)) = σ(f(h)). Moreover,
f̄ is a isomorphism if and only if Imf ∨ Sρ = K and f−1(Sσ) ⊆ Sρ.

Proof. If ρ(x) = ρ(y), then (f(x), f(y)) ∈ f(ρ) ⊆ σ and σ(f(x)) = σ(f(y)).
Thus f̄ is welldefined. Also f̄(ρ(x)⊗ρ(y)) = f̄(ρ(x ◦ y)) = σ(f(x ◦ y)) =
σ(f(x)f(y)) = σ(f(x))⊗σ(f(y)) = f̄(ρ(x))f̄(ρ(y)). Let f̄ be an isomorphism,
then f is onto and Imf ∨ Sσ = K. Since Kerf̄ = Sρ then {ρ(x); f̄(ρ(x)) =
Sσ} = {ρ(x); σ(f(x)) = Sσ} = {x ◦ Sρ; f(x)∈Sσ} = Sρ. Thus, f−1(Sσ) ⊆ Sρ.
If f−1(Sσ) ⊆ Sρ and Imf ∨ Sσ = K, then Kerf̄ = Sρ and Sσ ⊆ Imf .
Therefore, Imf = K and f̄ is onto. �

If H is a strongly regular hypergroup and A, B, X and Y are lattices of
subhypergroups of H, normal subhypergroups of H, equivalence relations on
H and strongly regular relations on H, respectively, then A ∼= X and B ∼= Y .

5. Examples

Example 5.1. Let G = {p, q, x1, x2, x3, x4, x5} and consider (G, ◦) as the fol-
lowing table

◦ p q x1 x2 x3 x4 x5
p {p, q} {p, q} {x1} {x2} {x3} {x4} {x5}
q {p, q} {p, q} {x1} {x2} {x3} {x4} {x5}
x1 {x1} {x1} {p, q} {x4} {x5} {x2} {x3}
x2 {x2} {x2} {x5} {p, q} {x4} {x3} {x1}
x3 {x3} {x3} {x4} {x5} {p, q} {x1} {x2}
x4 {x4} {x4} {x3} {x1} {x2} {x5} {p, q}
x5 {x5} {x5} {x2} {x3} {x1} {p, q} {x4}

It is routine to see that β = ∆G ∪ {(p, q), (q, p)} and G/β ∼= S3. Since β is
the smallest strongly regular relation and, also strongly regular relations and
regular relations are the same on groups. Then SR(H) = {β, γ,∇G}, where
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γ = β ∪
{

(xi, xj); i, j ∈ {1, 2, 3}, i 6= j
}
∪
{

(xr, xs); r, s ∈ {4, 5}, r 6= s
}

,
G/γ ∼= Z2. Also Sβ = {p, q} and Sγ = {p, q, x4, x5}.

•

•

•

γ

∇G

β

•

•

•

Sγ

G

Sβ

Now consider the hypergroup H = G ×G. Then
(
(h1, h2), (k1, k2)

)
∈ βH if

and only if (h1, k1), (h2, k2) ∈ βG, similarly for γH . Also SγH = SγG×SγG and
SβH

=
{

(p, p), (q, q), (p, q), (q, p)
}

.

•

•

••

• •

•

•
∇H

βH=(βG, βG)

(γG, βG)(βG, γG)

(γG,∇G)(∇G, γG)

γH=(γG, γG)

•

•

••

• •

•

•
H=G×G

SβH

S(γG,βG)S(βG,γG)

S(γG,∇G)S(∇G,γG)

SγH

Example 5.2. In Example 3.2 we have the following correspondence:

•

•

•

γ×∇H

∇S3
×∇H

βS3
×∇H

•

•

•

A3×H

S3×H

{e}×H

Example 5.3. Let H = Z2×Z2×Z2 and ◦ be the following hyperoperation:

◦ e p q r s t u v
e = (0, 0, 0) {e} {e, p} {q} {q, r} {s} {s, t} {u} {u, v}
p = (0, 0, 1) {e, p} {p} {q, r} {r} {s, t} {t} {u, v} {v}
q = (1, 0, 0) {q} {q, r} {e} {e, p} {u} {u, v} {s} {s, t}
r = (1, 0, 1) {q, r} {r} {e, p} {p} {u, v} {v} {s, t} {t}
s = (0, 1, 0) {s} {s, t} {u} {u, v} {e} {e, p} {q} {q, r}
t = (0, 1, 1) {s, t} {t} {u, v} {v} {e, p} {p} {q, r} {r}
u = (1, 1, 0) {u} {u, v} {s} {s, t} {q} {q, r} {e} {e, p}
v = (1, 1, 1) {u, v} {v} {s, t} {t} {q, r} {r} {e, p} {p}

Since H is commutative,

β = γ = ∆ ∪ {(e, p), (p, e), (q, r), (r, q), (s, t), (t, s), (u, v), (v, u)}
and Sγ = Sβ = {e, p}. Let S1 = {e, p, q, r}, S2 = {e, p, r, s} and S3 =
{e, p, u, v}, so H/Sβ ∼= V4 and H/S1

∼= H/S2
∼= H/S3

∼= Z2.
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•

•

•

••

H

S2 S3S1

Sβ

Example 5.4. Let H = {e, a, b, c} and ◦ be the following hyperoperation:

◦ e a b c
e {e, b} {a, c} {e, b} {a, c}
a {a, c} {e, b} {a, c} {e, b}
b {e, b} {a, c} {e, b} {a, c}
c {a, c} {e, b} {a, c} {e, b}

Since H is commutative, β = γ = ∆ ∪ {(e, b), (b, e), (a, c), (c, a)} and Sγ =
Sβ = {e, b}. Also H/β ∼= Z2 and

•

•
H

Sβ

6. Conclusions

In this paper we considered hypergroups, as a generalization of groups. In
this paper we study the lattices of strong regular relations on a fixed hyper-
group H, and has been proved there is a lattice isomorphisms between strong
regular congruences relations of H and its normal subhypergroups. This paper
was provided a good introduction for study the relationship between strong
congruence relations and subhyperstructures, for othere classes of hyperstruc-
tures such as hyperrings and hypermodules.
Our next goal will be to generalize the one-to-one correspondence presented in
this article to arbitrary hypergroups. Additionally, we aim to examine the cor-
respondence between the strongly regular relations whose quotient is a cyclic,
nilpotent or idempotent group and the corresponding normal subhypergroups,
from the perspective of lattice theory.
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