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Abstract. In this article, the focus is on the study of derivations on

two types of algebraic structures: pseudo L-algebras and pseudo CKL-

algebras. For pseudo L-algebras, the notions of left and right deriva-
tions are introduced. These derivations are characterized and equiva-

lent characterizations are given. Additionally, the concepts of identity

and ideal derivations are defined based on the notion of derivations in
pseudo L-algebras. It is proven that any identity derivation is also an

ideal derivation. However, an example is provided to demonstrate that

not all ideal derivations are identity derivations. Moreover, it is shown
that ideal left derivations in pseudo L-algebras are idempotent. The ar-

ticle also introduces the notion of fixed point sets in pseudo L-algebras

and investigates some properties associated with them. Moving on to
pseudo CKL-algebras, various properties of derivations in these struc-

tures are studied. The relationship between pseudo CKL-algebras and
pseudo BCK-algebras is established, and it is proven that any pseudo

CKL-algebra is also a pseudo BCK-algebra. Conversely, an example is

provided to show that not all pseudo BCK-algebras are pseudo CKL-
algebras. Additionally, it is demonstrated that the contractive derivation

of a pseudo CKL-algebra is an identity derivation. We introduce the def-

inition of a pre-ideal and also introduce the definition of a non-empty
subset I in pseudo L-algebra, which is d-invariant, and prove that every

pre-ideal I in pseudo CKL-algebra is d-invariant, where d is a deriva-

tion. Overall, the article explores derivations in pseudo L-algebras and
pseudo CKL-algebras, providing definitions, characterizations, and ex-

amples to illustrate various properties and relationships between these

algebraic structures.

Keywords: Pseudo L-algebra, Pseudo CKL-algebre, Derivation, Identity,
Ideal derivation, Fixed point.
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1. Introduction

The decomposition theorem on square-free solutions of the quantum Yang-
Baxter equation, presented by German mathematician Wolfgang Rump in
2005 [18], states that certain solutions to the equation can be decomposed
into square-free elements. In 2008, W. Rump published an article [19] in which
he introduced the concept of L-algebra. According to the article, an L-algebra
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is a set X equipped with a binary operation that satisfies the following condi-
tion: if the left-multiplication mapping is a bijection, then for any elements x,
y, and z in X, the equation (x → y) → (x → z) = (y → x) → (y → z) holds.
Furthermore, the article suggests that the set X, satisfying the aforementioned
condition, contains the solutions of the Yu quantum Yang-Baxter equation. In
the literature [18] L-algebra was introduced and studied by the above equa-
tions contains only one operation and satisfies three axioms. W. Rump in [19]
pointed out that the Hilbert algebra, the positive implicative BCK-algebra,
the (pseudo)MV-algebra are special L-algebras. It can be seen that L-algebra
is a kind of basic algebraic structure, and the research about L-algebra has
become a hot issue in the study of logic algebra in the last ten years, which has
attracted many scholars at home and abroad [20]. According to W. Rump’s
work cited in reference [21], L-algebras are equipped with a group structure,
which serves as a foundation for further study on L-algebras. In 2019, Y. Wu,
J. Wang and others constructed an effect algebra with the negation of an L-
algebra, referred to as an orthogonal complement algebra, in reference [26].
They demonstrated that every lattice-ordered effect algebra can be associated
with an L-algebra that has the same orthogonal complement. In 2020, Y.
Wu established the axioms of orthogonal modular L-algebras (OL-algebras for
short) in reference [27]. Additionally, they provided a sufficient condition for
an L-algebra to be classified as a Boolean algebra. In addition to the previous
research, Holland’s theorems were proven using self-similar closure theory on
OL-algebras. This application of self-similar closure theory demonstrates its
usefulness in studying the properties of OL-algebras. Rump and X. Zhang fur-
ther refined the theory related to L-effect algebra, as described in reference [22].
They also investigated the relationship between L-effect algebra and quantum
set generation under specific conditions. This exploration suggests a potential
connection between L-effect algebra and the generation of quantum sets. J.
Wang, Y. Wu, Y. Yang, and others focused on the connection between L-effect
algebra and basic algebra. They also refined the relationship between L-algebra
and basic logic algebra. This investigation suggests that there may be signif-
icant connections and implications between L-effect algebra, L-algebra, basic
algebra, and basic logic algebra. X.L. Xin et al. discovered that the residue
lattice, BL-algebra, MTL-algebra, and constant algebra have corresponding
pseudo-structures. However, they found that there is no pseudo-structure of
L-algebra, as mentioned in reference [12]. This finding highlights a distinct
characteristic of L-algebra compared to these other algebraic structures. It
seems that there is ongoing research and exploration in the field of L-algebra,
with various researchers refining theories, exploring connections with other al-
gebraic structures, and investigating the absence of certain pseudo-structures in
L-algebra. The investigation conducted by X.L. Xin and others in 2022 focuses
on the relationship between the pseudo-structure of L-algebra and the pseudo-
structures of other algebras. They have generalized the structure of L-algebra
and introduced a new concept called Pseudo L-algebra [23]. The purpose of
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this investigation is to understand how the pseudo-structure of L-algebra can
be extended or adapted to other algebraic structures.

The definition of derivations from the analytic theory was introduced in
1957 by Posner [2] to a prime ring (R,+, ·) as a map d : R→ R satisfying the
conditions d(a+ b) = d(a) +d(b) and d(a · b) = d(a) · b+a ·d(b), for all a, b ∈ R.
Since the derivation proved to be useful for studying the properties of algebraic
systems, this definition has been defined and studied by many authors for the
cases of lattices [4,13,24,25] and algebras of fuzzy logic: MV-algebras [5,14,17],
BCI-algebras [6,7,28], commutative residuated lattice [16], BCC-algebras [1,15],
BE-algebras [11], basic algebras [8] and pseudo-MV algebras [9]. In particular,
in 2023, J.T. Wang, P.F. He and Y.H. She published an extremely interesting
article [10], in which they further studied the derivation in MV-algebra, they
mainly got every MV-algebra is isomorphic to the direct product of the fixed
point set of Boolean additive derivations and that of their adjoint derivations.
In addition, they also got the fixed point set of Boolean additive derivations
and that of their adjoint derivations in MV-algebras are isomorphic and so on,
all of which are very important for the study of derivation. The derivation
concept has proven to be useful in studying the properties of these algebraic
systems.

The purpose of this article is to discuss the concept of derivations on a pseudo
L-algebra and analyze their properties. We start by defining left and right
derivations on a pseudo L-algebra and providing an equivalent characterization
for each. Additionally, we introduce the notions of identity derivation and
ideal derivation. We prove that any arbitrary identity derivation is also an
ideal derivation. However, it is important to note that an ideal derivation
may not necessarily be an identity derivation. Furthermore, we introduce the
concept of fixed point sets of pseudo CKL-algebraic derivation and explore
their properties. In particular, we focus on the case of derivations on pseudo
CKL-algebras. We demonstrate that a contractive derivation on a pseudo CKL-
algebra is an identity derivation. Lastly, one of the main results of this article
is the proof that the preideal I is d-invariant, where d is a derivation.

2. Preliminaries

The section contains fundamental results about L-algebra and pseudo L-
algebra.

Definition 2.1. [26] An L-algebra is an algebra (L,→, 1) of type (2, 0) satis-
fying
(L1) a→ a = a→ 1 = 1, 1→ a = a;
(L2) (a→ b)→ (a→ c) = (b→ a)→ (b→ c);
(L3) a→ b = b→ a = 1 implies a = b;
for all a, b, c ∈ L.

Definition 2.2. [19] Let (L,→, 1) be an L-algebra
(1) If L satisfies condition K: a→ (b→ a) = 1, then L is called a KL-algebra;
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(2) If L satisfies condition C: (a → (b → c)) → (b → (a → c)) = 1, then L
is called a CL-algebra. It follows that in any L-algebra L satisfies condition
a→ (b→ c) = b→ (a→ c), for all a, b, c ∈ L.

Definition 2.3. [23] A pseudo L-algebras is an algebra (L,→, , 1) with two
binary operations →, and one constant 1 such that: for all a, b, c ∈ L
(PL1) 1→ a = a = 1 a, a→ 1 = 1;
(PL2) a→ a = 1 ;
(PL3) (a→ b)→ (a→ c) = (b→ a)→ (b→ c);
(PL4) (a b) (a c) = (b a) (b c);
(PL5) a→ b = b→ a = 1⇒ a = b;
(PL6) a→ b = 1 iff a b = 1.

Every pseudo L-algebra satisfying a → b = a  b for all a, b ∈ L is an
L-algebra. A pseudo L-algebra is said to be proper if it is not an L-algebra.

Example 2.4. Let L = {a, b, c, 1}, where a ≤ b ≤ c ≤ 1. Define the operations
→ and  using the following tables

→ a b c 1
a 1 1 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

 a b c 1
a 1 1 1 1
b c 1 1 1
c a b 1 1
1 a b c 1

Then L = {a, b, c, 1} is a proper pseudo L-algebra (since b→ a = a, b a = c,
it follows that b→ a 6= b a, hence L is not an L-algebra).

Remark 2.5. [23] Let (L,→, , 1) be a pseudo L-algebra. Then we can see
that the reducts (L,→, 1) and (L , 1) of (L,→, , 1) are both L-algebras.

Proposition 2.6. [23] Let L be a pseudo L-algebra. Define a binary relation
” ≤ ” as follows

a ≤ b⇔ a→ b = 1⇔ a b = 1

Then ” ≤ ” is a partial order on L .

Lemma 2.7. [23] Let (L,→, , 1) be a pseudo L-algebra. If a ≤ b, then
c→ a ≤ c→ b and c a ≤ c b for all a, b, c ∈ L.

Definition 2.8. [3] A pseudo-BCK-algebra(more precisely, reversed left-pseudo-
BCK algebra) is a structure A=(A,≤,→, , 1) where ≤ is a binary relation on
A, → and  are binary operations on A and 1 is an element of A satisfying,
for all x, y, z ∈ A, the axioms
(psBCK1) x→ y ≤ (y → z) (x→ z), x y ≤ (y  z)→ (x z);
(psBCK2) x ≤ (x→ y) y, x ≤ (x y)→ y;
(psBCK3) x ≤ x;
(psBCK4) x ≤ 1;
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(psBCK5) if x ≤ y and y ≤ x, then x = y;
(psBCK6) x ≤ y iff x→ y = 1 iff x y = 1.

Since the partial order ” ≤ ” is determined by any of the two ”arrows”, we
can eliminate ” ≤ ” from the signature and denote a pseudo-BCK algebra by
A=(A,→, , 1).

3. The derivations in pseudo L-algebras

The main purpose of this section is to give the definition of left and right
derivations in pseudo L-algebra and discuss the relationship between left and
right derivations and also to discuss the relationship between identity and ideal
derivations.

Remark 3.1. A pseudo L-algebra L is bounded if there is an element 0 ∈ L
such that 0 ≤ a for all a ∈ L.

Example 3.2. Let L={0, a, 1} such that 0 < a < 1 and operation → and  
are defined as follows

→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

 0 a 1
0 1 1 1
a a 1 1
1 0 a 1

We can easily check that L is a bounded pseudo L-algebra.

Definition 3.3. Let L be a bounded pseudo L-algebra. We define two nega-
tions − and ∼, for all a ∈ L, a− = a→ 0, a∼ = a 0.

Remark 3.4. If L is a bounded pseudo L-algebra, then 1− = 0 = 1∼ and
0− = 1 = 0∼.

Definition 3.5. A pseudo L-algebra L is said to be a pseudo KL-algebra if it
satisfies K condition a ≤ b→ a and a ≤ b a for all a, b ∈ L.

Example 3.6. Let L = {a, b, c, 1}, such that a, b < c < 1, a and b are incom-
parable and operations → and  by the following two tables

→ a b c 1
a 1 b 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

 a b c 1
a 1 c 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

We can check that L is a pseudo KL-algebra .

Proposition 3.7. Let L be a pseudo KL-algebra. If a ≤ b, then b→ c ≤ a→ c
and b c ≤ a c for all a, b, c ∈ L.

Proof. Let a, b, c ∈ L such that a ≤ b, we get a → b = 1, a  b = 1. Since L
satisfies K condition, by (PL3) and (PL4), we get b → c ≤ (b → a) → (b →
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c) = (a→ b)→ (a→ c) = a→ c and b c ≤ (b a) (b c) = (a b) 
(a c) = a c, i.e., b→ c ≤ a→ c and b c ≤ a c. �

Let (L,→, , 1) be a pseudo L-algebra. Denote a t1 b = (a → b)  b and
a t2 b = (a  b) → b, for any a, b ∈ L. In order to inscribe derivation on
pseudo L-algebra with t1 and t2, we give lemmas and properties of the binary
operation t1 and t2 on a pseudo L-algebra.

Example 3.8. In Example 3.6, we can get the t1 operation and the t2 oper-
ation as follows

t1 a b c 1
a a 1 c 1
b 1 b c 1
c 1 1 c 1
1 1 1 1 1

t2 a b c 1
a a b c 1
b 1 b c 1
c 1 1 c 1
1 1 1 1 1

Lemma 3.9. In any pseudo L-algebra L the following hold for all a, b ∈ L
(1) 1 t1 a = 1 t2 a = a t1 1 = a t2 1 = 1;
(2) If a ≤ b, then a t1 b = b, a t2 b = b;
(3) a t1 a = a t2 a = a.

Proof. The proof is straightforward. �

A pseudo L-algebra L is said to be t1-commutative(t2-commutative) if at1
b = b t1 a(a t2 b = b t2 a), for all a, b ∈ L.

Definition 3.10. Let (L,→, , 1) be a pseudo L-algebra. A mapping dl : L→
L is called a left derivation if it satisfies the following conditions for all a, b ∈ L

(pld1) dl(a→ b) = (a→ dl(b)) t2 (dl(a)→ b).
(pld2) dl(a b) = (a dl(b)) t1 (dl(a) b).

Definition 3.11. Let (L,→, , 1) be a pseudo L-algebra. A mapping dr : L→
L is called a right derivation if it satisfies the following conditions for all a, b ∈ L

(pld3) dr(a→ b) = (dr(a)→ b) t2 (a→ dr(b)).
(pld4) dr(a b) = (dr(a) b) t1 (a dr(b)).

Let L be a pseudo L-algebra. Denote
PLD(l)(L) the set of all left derivations on L;
PLD(r)(L) the set of all right derivations on L;
PLD(L) = PLD(l)(L) ∩ PLD(r)(L) the set of all left derivations and right

derivations on L.
If a mapping d on L is both a left derivation and a right derivation, then we

call d a derivation on L. In what follows we will denote dx instead of d(x).
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Example 3.12. In Example 3.2, we know that L is a pseudo L-algebra . Now
we define a map d : L→ L as follows: for all x ∈ L,

d(x) =

{
1, x = a, 1
0, x = 0.

Then it is easy to verify that d is a left derivation, not a right derivation ,
because d(a  0) = d(a) = 1, (da  0) t1 (a  d0) = (1  0) t1 (a  0) =
0t1 a = (0→ a) a = 1 a = a, 1 6= a, therefore, d is not a right derivation
on pseudo L-algebra.

Example 3.13. In Example 2.4, we know that L is a pseudo L-algebra . Now
we define a map d : L→ L as follows: for all x ∈ L,

d(x) =

{
c, x = b, c
1, x = 1, a.

Then it is easy to verify that d is a right derivation, not a left derivation ,
because d(1 → b) = d(b) = c, (1 → db) t2 (d1 → b) = c t2 b = (c  b) → b =
b→ b = 1, c 6= 1, therefore, d is not a left derivation on pseudo L-algebra.

Example 3.14. In Example 3.6, we know that L is a pseudo L-algebra . Now
we define a map d : L→ L as follows: for all x ∈ L,

d(x) =

{
1, x = b, c, 1
a, x = a.

Then it is easy to verify that d is a derivation on pseudo L-algebra.

Example 3.15. Let L = {0, a, b, c, 1} be a lattice, where 0 < a < b, c < 1, b
and c are incomparable. Define the operations → and  using the following
tables

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 a 1 c 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b 0 a 1 c 1
c 0 a c 1 1
1 0 a b c 1

Then (L,→, , 1) is a pseudo L-algebra. Consider the mapping d: L → L is
given in the table below

x 0 a b c 1
d(x) 0 a b c 1

We can see that d are derivation.

Example 3.16. [23] Let L={0, a, b, c, 1} be a lattice such that 0 < a < b, c < 1,
b and c are incomparable and operation → and  are defined as follows
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→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 a a 1 1
1 0 a b c 1

Then (L,→, , 1) is an pseudo L-algebra. Now we define a map d : L→ L as
follows: for all x ∈ L,

d(x) =

{
1, x = 0, a, b, 1
a, x = c.

Then it is easily checked that d(b→ c) = d(c) = a, (b→ d(c)) t2 (d(b)→ c) =
(b → a) t2 (1 → c) = c t2 c = c, a 6= c, therefore, d is not a derivation on
pseudo L-algebra.

Example 3.17. In Example 3.16, we know that L is a pseudo L-algebra. Now
we define a map d : L→ L as follows: for all x ∈ L,

d(x) =

{
1, x = a, b, c, 1
0, x = 0.

We can get that d is a derivation.

Remark 3.18. Let L be a pseudo L-algebra, if 1L, IdL: L → L, defined by
1L(x) = 1 and IdL(x) = x for all x ∈ L, then 1L, IdL are both derivations, of
which IdL we call the identity derivation.

Proposition 3.19. Any derivation d of a pseudo L-algebra satisfies d1 = 1.

Proof. Since d is a derivation on a pseudo L-algebra, then d is both a left
derivation and a right derivation.
When d is a left derivation we have
d1 = d(1→ 1) = (1→ d1) t2 (d1→ 1) = d1 t2 1 = 1;
d1 = d(1 1) = (1 d1) t1 (d1 1) = d1 t1 1 = 1;
When d is a right derivation we have
d1 = d(1→ 1) = (d1→ 1) t2 (1→ d1) = 1 t2 d1 = 1;
d1 = d(1 1) = (d1 1) t1 (1 d1) = 1 t1 d1 = 1.

Therefore, any derivation d of a pseudo L-algebra satisfies d1 = 1. �

Proposition 3.20. Let L be a pseudo L-algebra. Then the following hold for
all x ∈ L
(1) if dl ∈ PLD(l)(L), then dlx = dlx t1 x = dlx t2 x;
(2) if dr ∈ PLD(r)(L), then drx = x t1 drx = x t2 drx.

Proof. By Proposition 3.19, we get dl1 = 1 = dr1. Then
(1) dl(x) = dl(1→ x) = (1→ dl(x)) t2 (dl(1)→ x) = dl(x) t2 x;

dl(x) = dl(1 x) = (1 dl(x)) t1 (dl(1) x) = dl(x) t1 x.
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(2) dr(x) = dr(1→ x) = (dr(1)→ x) t2 (1→ dr(x)) = x t2 dr(x).
dr(x) = dr(1 x) = (dr(1) x) t1 (1 dr(x)) = x t1 dr(x). �

Theorem 3.21. Let L be a pseudo L-algebra, d be a derivation on L. If the
pseudo L-algebra L is commutative of t1 and commutative of t2, then the left
derivation is equal to the right derivation.

Proof. Since L is t1-commutative and t2-commutative, we can get a t1 b =
b t1 a, a t2 b = b t2 a.
d(a → b) = (a → db) t2 (da → b) = (da → b) t2 (a → db), d(a  b) = (a  
db) t1 (da b) = (da b) t1 (a db).

Hence, we can get if L is commutative of t1 and commutative of t2. Then
the left and right derivations are equal. �

Definition 3.22. Let L be a pseudo L-algebra and d be a derivation.
(1) d is called isotone derivation provided that x ≤ y implies d(x) ≤ d(y) for
all x, y ∈ L;
(2) d is called a contractive derivation provided that d(x) ≤ x for all x ∈ L.
In particular, if d is both isotone and contractive, we call d the ideal derivation.

Proposition 3.23. Let L be a pseudo L-algebra and dl be a contractive left
derivation. Then dlx = x.

Proof. Since dl is a contractive left derivation. We can get dlx ≤ x, then
dlx x = 1. dlx = dl(1→ x) = (1→ dlx) t2 (dl1→ x) = dlx t2 x = (dlx 
x)→ x = x;
Similarly, we can get dlx = dl(1 x) = x.
Hence dlx = x. �

Remark 3.24. If L is a pseudo L-algebra and d is a derivation, we may not be
able to get dx ≤ x.

Example 3.25. Consider the pseudo L-algebra L from Example 3.6. Then
L = {a, b, c, 1} is a pseudo L-algebra. Now we define a derivation d as follows

d(x) =

{
b, x = a, b, c
1, x = 1

We can check that da ≤ a is not true.

Example 3.26. Let L = {0,m, n, x, y, 1}. The Cayley tables for the operations
→ and  are shown below.
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→ 0 m n x y 1
0 1 1 1 1 1 1
m y 1 y 1 y 1
n m m 1 1 1 1
x 0 m y 1 y 1
y m m x x 1 1
1 0 m n x y 1

 0 m n x y 1
0 1 1 1 1 1 1
m n 1 n 1 n 1
n m m 1 1 1 1
x 0 m y 1 y 1
y m m x x 1 1
1 0 m n x y 1

We can check that L is a pseudo L-algebra. Now we define a derivation d as
follows

d(x) =

 0, x = 0,m, n, x
n, x = y
1, x = 1.

We can check that d is an ideal derivation.

Theorem 3.27. Identity derivation is an ideal derivation, but the reverse may
not be true.

Proof. we give a counter-example. In Example 3.26, we get that d is an ideal
derivation where dm = 0 6= m, so we know that d is not an identity derivation.

�

Definition 3.28. Let L be a pseudo L-algebra and d be a derivation. Then d
on L is said to be idempotent if d2 = d, where d2(x) = d(d(x)) or d2 = d ◦ d
for all x ∈ L.

Example 3.29. Let L = {0, a, b, c, 1} be a lattice, where 0 < a, b < c < 1, a
and b are incomparable. Define the operations → and  using the following
tables

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

 0 a b c 1
0 1 1 1 1 1
a c 1 c 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then (L,→, , 1) is a pseudo L-algebra. Consider the maps d1, d2, d3: L→ L
given in the table below

x 0 a b c 1
d1(x) 0 a b c 1
d2(x) 1 a b 1 1
d3(x) 1 1 1 c 1

We can get d1(x), d2(x) and d3(x) are idempotent derivations.

In Example 3.26, we know that d is a derivation, but d2y = d(dy) = dn =
0, dy = n, d2y 6= dy, so we can check that d is not an idempotent derivation.
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Corollary 3.30. Let L be a pseudo L-algebra. If dl is a contractive left deriva-
tion, then dl is idempotent derivation.

Proof. According to Proposition 3.23, we get dlx = x. Hence, we get dl(dlx) =
dlx for all x ∈ L. �

Proposition 3.31. Let L be a pseudo L-algebra and d be a derivation on L.
Then d(x→ dx) = d(x dx) = d(dx→ x) = d(dx x) = 1, for all x ∈ L.

Proof. For all x ∈ L, since d is a derivation of L, then we have
d(x → d(x)) = (x → d(d(x)) t2 (d(x) → d(x)) = (x → d(d(x)) t2 1 = 1;
d(x→ d(x)) = (d(x)→ d(x)) t2 (x→ d(d(x))) = 1 t2 (x→ d(d(x)) = 1;
Similarly, we can get d(x d(x)) = d(d(x)→ x) = d(d(x) x) = 1.

Hence d(x → dx) = d(x  dx) = d(dx → x) = d(dx  x) = 1, for all
x ∈ L. �

Proposition 3.32. Let L be a pseudo L-algebra and d be a derivation. If
x, y ∈ Fixd(L), then x → y ∈ Fixd(L), x  y ∈ Fixd(L), where Fixd(L) =
{x ∈ L|dx = x}.

Proof. Since x, y ∈ Fixd(L), we have dx = x, dy = y.
d(x → y) = (x → dy) t2 (dx → y) = (x → y) t2 (x → y) = x → y;
d(x → y) = (dx → y) t2 (x → dy) = (x → y) t2 (x → y) = x → y. Similarly,
we can get d(x y) = x y.

Hence, x→ y ∈ Fixd(L), x y ∈ Fixd(L). �

Example 3.33. In Example 3.29, we can easily check that Fixd1
(L) = L,

Fixd2
(L) = {a, b, 1}, Fixd3

(L) = {c, 1}.

Corollary 3.34. Let L be a pseudo L-algebra and d be a derivation. Then
Fixd(L) is a subalgebra of L.

Proof. According to Proposition 3.32. �

Proposition 3.35. Let L be a pseudo L-algebra and d be a derivation. If
x, y ∈ Fixd(L), then x t1 y ∈ Fixd(L), x t2 y ∈ Fixd(L).

Proof. Let x, y ∈ Fixd(L), we have dx = x, dy = y. By Proposition 3.32, we
get d(x→ y) = x→ y, d(x y) = x y. Then we get

d(x t1 y) = d((x→ y) y) = ((x→ y) dy) t1 (d(x→ y) y) = ((x→
y)  y) t1 ((x → y)  y) = (x → y)  y = x t1 y, d(x t1 y) = d((x → y)  
y) = (d(x → y)  y) t1 (x → y)  dy) = ((x → y)  y) t1 ((x → y)  y) =
(x→ y) y = x t1 y. Similarly, we can get d(x t2 y) = x t2 y.

Hence x t1 y ∈ Fixd(L), x t2 y ∈ Fixd(L). �

Proposition 3.36. Let L be a pseudo L-algebra with t1-commutative and t2-
commutative and d be a derivation. If x ∈ Ker(d) and x ≤ y, then we have
y ∈ Ker(d), where Ker(d) = {x ∈ L|dx = 1} for all x, y ∈ L.
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Proof. Let x ∈ Kerd and x ≤ y. Then d(x) = 1 and x→ y = x y = 1.
d(y) = d(1→ y) = d((x y)→ y) = d(x t2 y) = d(y t2 x) = d((y  x)→

x) = ((y  x) → dx) t2 (d(y  x) → x) = ((y  x) → 1) t2 (d(y  x) →
x) = 1 t2 (d(y  x)→ x) = 1.

d(y) = d(1→ y) = d((x y)→ y) = d(x t2 y) = d(y t2 x) = d((y  x)→
x) = (d(y  x)→ x) t2 (y  x)→ dx) = (d(y  x)→ x) t2 (y  x)→ 1) =
(d(y  x)→ x) t2 1 = 1. Similarly, we can get d(y) = d(1 y) = 1.

Hence y ∈ Kerd. This completes the proof. �

Proposition 3.37. Let L be a pseudo L-algebra with t1-commutative and t2-
commutative and d be a derivation. If x ∈ Kerd, then we have xt1 y ∈ Kerd,
x t2 y ∈ Kerd for all y ∈ L.

Proof. d is a derivation and x ∈ Kerd. Then d(x) = 1. Hence we have for all
y ∈ L,

d(x t1 y) = d(y t1 x) = d((y → x) x) = ((y → x) dx) t1 (d(y → x) 
x) = ((y → x) 1) t1 (d(y → x) x) = 1 t1 (d(y → x) x) = 1.

d(x t1 y) = d(y t1 x) = d((y → x)  x) = (d(y → x)  x) t1 ((y → x)  
dx) = (d(y → x) x)t1 ((y → x) 1) = (d(y → x) x)t1 1 = 1. Similarly,
we can get d(x t2 y) = 1.

Hence, x t1 y ∈ Kerd, x t2 y ∈ Kerd, for all y ∈ L. �

Proposition 3.38. Let (L,→, , 1) be a pseudo L-algebra and d be a deriva-
tion. Then the following hold for all x, y ∈ L
(1) if y ∈ Ker(d) then x t1 y, x t2 y ∈ Ker(d);
(2) if y ∈ Ker(d) then x→ y, x y ∈ Ker(d).

Proof. (1) Let y ∈ Ker(d), we have dy = 1. Then: d(x t1 y) = d((x → y)  
y) = ((x→ y) dy)t1 (d(x→ y) y) = ((x→ y) 1)t1 (d(x→ y) y) =
1 t1 (d(x→ y) y) = 1;
d(x t1 y) = d((x → y)  y) = (d(x → y)  y) t1 ((x → y)  dy) = (d(x →
y)  y) t1 ((x → y)  1) = (d(x → y)  y) t1 1 = 1. Similarly, we can get
d(x t2 y) = 1.

Hence x t1 y, x t2 y ∈ Ker(d).
(2) Let y ∈ Ker(d), we have dy = 1. It follows that d(x → y) = (x →

dy) t2 (dx→ y) = (x→ 1) t2 (dx→ y) = 1 t2 (dx→ y) = 1;
d(x→ y) = (dx→ y)t2 (x→ dy) = (dx→ y)t2 (x→ 1) = (dx→ y)t2 1 = 1.
Similarly, we can get d(x y) = 1.

Thus x→ y, x y ∈ Ker(d). �

Proposition 3.39. Let L be a pseudo L-algebra and d be an isotone derivation.
If x ≤ y and x ∈ Kerd, then y ∈ Kerd.

Proof. Let x ≤ y and x ∈ Kerd. They we have d(x) = 1, and so 1 = d(x) ≤
d(y), which implies d(y) = 1. �
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Proposition 3.40. Let L be a pseudo L-algebra and d be a derivation on L.
Then Ker(d) is a subalgebra of L.

Proof. Since d1 = 1, it follows that 1 ∈ Ker(d). Let x, y ∈ Ker(d), i.e.
dx = dy = 1. Then we have d(x → y) = (x → dy) t2 (dx → y) = (x →
1) t2 (1→ y) = 1 t2 y = 1, hence d(x→ y) = 1, i.e. x→ y ∈ Ker(d).
Similarly, x y ∈ Ker(d), thus Ker(d) is a subalgebra of L. �

4. Derivations of pseudo CKL-algebras

In this section, we mainly study the correlation properties of derivation of
pseudo CKL-algebras, and get the relationship between contractive derivation
and identity derivation of pseudo CKL-algebras.

Definition 4.1. A pseudo L-algebra L is said to be pseudo CKL-algebra if it
satisfies condition: a→ (b c) = b (a→ c) for all a, b, c ∈ L.

Proposition 4.2. Let L be a pseudo CKL-algebra, then the following hold for
all a, b, c ∈ L.
(1) a ≤ a t1 b and a ≤ a t2 b;
(2) If L is bounded, then a ≤ a−∼ and a ≤ a∼−;
(3) If L is bounded, then a→ b−∼ = b−  a−, a b∼− = b∼ → a∼;
(4) L is a pseudo KL-algebra;
(5) a→ b ≤ (b→ c) (a→ c) and a b ≤ (b c)→ (a c);
(6) If L is bounded, then a→ b ≤ b−  a−, a b ≤ b∼ → a∼;
(7) If a ≤ b c, then b ≤ a→ c; If a ≤ b→ c, then b ≤ a c.

Proof. (1) Let a, b ∈ L. Since L is pseudo CKL-algebra, we have a → ((a →
b)  b) = (a → b)  (a → b) = 1 and a  ((a  b) → b) = (a  b) → (a  
b) = 1, so a ≤ (a→ b) b = a t1 b and a ≤ (a b)→ b = a t2 b.

(2) By (1), taking b = 0, we have a ≤ a−∼ and a ≤ a∼− for all a ∈ L.
(3) Let a, b ∈ L, by pseudo CKL-algebra definition, we have a → b−∼ =

a → (b−  0) = b−  a− and a  b∼− = a  (b∼ → 0) = b∼ → (a  0) =
b∼ → a∼.

(4) Let a, b ∈ L, we have a → (b  a) = b  (a → a) = b  1 = 1 and
a  (b → a) = b → (a  a) = b → 1 = 1, that is a ≤ b  a and a ≤ b → a,
hence L is a pseudo KL-algebra.

(5) Let a, b, c ∈ L. Since L is pseudo CKL-algebra, by (4), we have (a →
b) → ((b → c)  (a → c)) = (b → c)  ((a → b) → (a → c)) = (b → c)  
((b→ a)→ (b→ c)) = 1, hence a→ b ≤ (b→ c) (a→ c). Similarly, we get
(a  b)  ((b  c) → (a  c)) = (b  c) → ((a  b)  (a  c)) = (b  
c)→ ((b a) (b c)) = 1, hence we get a b ≤ (b c)→ (a c).

(6) By (5), taking c = 0, we have a→ b ≤ b−  a− and a b ≤ b∼ → a∼

for all a, b ∈ L.
(7) Since a ≤ b c, then a→ (b c) = b (a→ c) = 1. Hence b ≤ a→ c.

Similarly, we can get that if a ≤ b→ c, then b ≤ a c. �
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Remark 4.3. Every pseudo CKL-algebra is a pseudo BCK-algebra, but the
reverse may not be true.

Proof. According to the definition of pseudo L-algebra and Proposition4.2(5).
We get every pseudo CKL-algebra is a pseudo-BCK algebra.

In turn, we give a counterexample below �

Example 4.4. [12] Let A = {o1, a1, b1, c1, o2, a2, b2, c2, 1} with o1 < a1, b1 <
c1 < 1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incomparable.
Assume that any element of the set {o1, a1, b1, c1} is incomparable with any
element of the set {o2, a2, b2, c2}. Consider the operations →,  given by the
tables

→ o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

 o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

Then A=(A,≤,→, , 1) is a proper pseudo-BCK algebra. Since (a1 →
b1) → (a1 → o1) = b1 → o1 = a1, (b1 → a1) → (b1 → o1) = a1 → a1 = 1,
a1 6= 1, we get pseudo-BCK algebra A that is not a pseudo CKL-algebra.

Proposition 4.5. Let L be a pseudo CKL-algebra. Then at1 b and at2 b are
upper bound {a, b}, respectively, for any a, b ∈ L.

Proof. By Proposition4.2(1), we get a ≤ a t1 b and a ≤ a t2 b for all a, b ∈ L.
Since L is a pseudo CKL-algebra. Then for any a, b ∈ L, we get

b→ (a t1 b) = b→ ((a→ b) b) = (a→ b) (b→ b) = (a→ b) 1 = 1,
b (a t2 b) = b ((a b)→ b) = (a b)→ (b b) = (a b)→ 1 = 1,
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i.e.,b ≤ a t1 b, b ≤ a t2 b.
Hence, a t1 b and a t2 b are upper bound {a, b}, respectively, for any a, b ∈

L. �

Example 4.6. In Example 3.6, we know that L is a pseudo KL-algebra. at2b =
(a b)→ b = c→ b = b. We can get an upper bound that at2 b is not {a, b}.

Proposition 4.7. Let L be a pseudo CKL-algebra,
(1) If L is t1-commutative, then x t1 y is the l.u.b.{x, y}, for all x, y ∈ L;
(2) If L is t2-commutative, then x t2 y is the l.u.b.{x, y}, for all x, y ∈ L.

Proof. (1) Let x, y ∈ L. According to Proposition 4.5, x t1 y is an upper
bound {x, y}. Let z be another upper bound {x, y}, i.e. x ≤ z and y ≤ z. We
will prove that x t1 y ≤ z. Indeed, applying Lemma 3.9(2) and taking into
consideration that L is satisfied y t1 z = z t1 y we have

x t1 y → z = x t1 y → y t1 z = x t1 y → z t1 y = ((x→ y) y)→ ((z →
y) y).

According to Proposition 4.2(5) we have (b → c)  (a → c) ≥ a → b, (b  
c)→ (a c) ≥ a b and replacing a with z → y, b with x→ y and c with y
we get

((x→ y) y)→ ((z → y) y) ≥ (z → y) (x→ y) ≥ x→ z.

Hence x t1 y → z ≥ x → z = 1(since x ≤ z). It follows that x t1 y → z = 1,
thus x t1 y ≤ z. We conclude that x t1 y is the l.u.b.{x, y}.

(2) Similar to (1), We conclude that x t2 y is the l.u.b.{x, y}. �

Let L be a pseudo CKL-algebra. If L is t1-commutative and t2-commutative,
we denote a ∨ b = a t1 b = a t2 b (since a t1 b and a t2 b are the l.u.b.{a, b}).

Corollary 4.8. Let L be a pseudo CKL-algebra. Then
(1) If L is t1-commutative, then x t1 y ≤ x t2 y, y t2 x for all x, y ∈ L;
(2) If L is t2-commutative, then x t2 y ≤ x t1 y, y t1 x for all x, y ∈ L.

Proof. (1) According to Proposition 4.5, x t2 y and y t2 x are upper bounds
{x, y}. By Proposition 4.7, xt1y is the l.u.b. {x, y}, thus xt1y ≤ xt2y, yt2x.

(2) Similar to (1). �

Corollary 4.9. Let (L,→, , 1) be a pseudo CKL-algebra with t1-commutative
and t2-commutative and d be a derivation. Then the following hold for all
a, b ∈ L,
(cpcld1) d(a→ b) = (a→ d(b)) ∨ (d(a)→ b);
(cpcld2) d(a b) = (a d(b)) ∨ (d(a) b).

Proof. Since (L,→, , 1) be a pseudo CKL-algebra with t1-commutative and
t2-commutative, we can get a ∨ b = a t1 b = b t1 a = a t2 b = b t2 a.
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According to Definition 3.10 and 3.11, we get: d(a→ b) = (a→ db)t2(da→
b) = (da→ b)t2(a→ db) = (a→ db)∨(da→ b), d(a b) = (a db)t1(da 
b) = (da b) t1 (a db) = (a db) ∨ (da b).

Therefore, d(a → b) = (a → db) ∨ (da → b), d(a  b) = (a  db) ∨ (da  
b). �

Proposition 4.10. Let (L,→, , 1) be a pseudo CKL-algebra and d be a
derivation. Then: x ≤ d(x) for all x ∈ L.

Proof. Since (L,→, , 1) is a pseudo CKL-algebra and d is a derivation. Then
for all x ∈ L
x  dx = x  d(1 → x) = x  ((1 → dx) t2 (d1 → x)) = x  (dx t2 x) =
x ((dx x)→ x) = (dx x)→ (x x) = (dx x)→ 1 = 1;
x  dx = x  d(1 → x) = x  ((d1 → x) t2 (1 → dx)) = x  (x t2 dx) =
x ((x dx)→ dx) = (x dx)→ (x dx) = 1;
Similarly, we can get x→ dx = 1.

Hence x ≤ dx for all x ∈ L. �

Theorem 4.11. Let L be a pseudo CKL-algebra and d be an contractive deriva-
tion. We get that d is an identity derivation.

Proof. By Proposition 4.10 and Definition 3.22(2), we can get dx = x. �

Proposition 4.12. Let L be a pseudo CKL-algebra and d be a derivation.
Then
(1) if L is t1-commutative and d is isotone, then dx t1 dy ≤ d(x t1 y), for all
x, y ∈ L;
(2) if L is t2-commutative and d is isotone, then dx t2 dy ≤ d(x t2 y), for all
x, y ∈ L.

Proof. (1) From x ≤ x t1 y and y ≤ x t1 y we get dx ≤ d(x t1 y) and
dy ≤ d(x t1 y). Hence d(x t1 y) is an upper bound {dx, dy}. Since L is t1-
commutative, according to Proposition 4.7, dx t1 dy is the lower upper bound
{dx, dy}. Hence dx t1 dy ≤ d(x t1 y), for all x, y ∈ L.

(2) Similar to (1). �

Proposition 4.13. Let L be a pseudo CKL-algebra and let dr ∈ PLD(r)(L).
Then the following holds
(a) drx→ y ≤ drx→ dry ≤ x→ dry = dr(x→ y),for all x, y ∈ L.
(b) drx y ≤ drx dry ≤ x dry = dr(x y),for all x, y ∈ L.

Proof. (a) By Proposition 4.10, we get x ≤ drx and y ≤ dry, using Proposition
3.7 and Lemma 2.7, we have drx→ y ≤ drx→ dry, drx→ dry ≤ x→ dry. It
follows that: drx → y ≤ drx → dry ≤ x → dry = 1 → (x → dry) = ((drx →
y) (x→ dry))→ (x→ dry) = (drx→ y) t2 (x→ dry) = dr(x→ y).
(b) Similar to (a). �
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Proposition 4.14. Let L be a pseudo CKL-algebra and d1, d2 are idempotent
and isotone derivations and d1 ≤ d2. (i.e.d1x ≤ d2x, for all x ∈ L). Then
d2 ◦ d1 = d2.

Proof. Let x ∈ L. By Proposition 4.10, d2x ≤ d2d1x = (d2◦d1)(x), so d2 ≤ d2◦
d1. Moreover, since d1x ≤ d2x we have d2d1x ≤ d2d2x = d2x, i.e. d2 ◦ d1 ≤ d2.

Hence d2 ◦ d1 = d2. �

Definition 4.15. Let L be a pseudo L-algebra and I be a non-empty subset
of L. Then I is called a preideal of L if
(I1) 1 ∈ I;
(I2) If x ∈ I and x→ y ∈ I or x y ∈ I, then y ∈ I.

Example 4.16. In Example 3.26, we can easily check that I = {1,m, n} is a
preideal of L.

Theorem 4.17. Let L be a pseudo CKL-algebra and d be a derivation. Then
every Fixd(L) is an preideal.

Proof. (i) Since d1 = 1, we get 1 ∈ Fixd(L);
(ii) According to Proposition 4.10, we get y ≤ dy, x→ y ≤ x→ dy.
Let x ∈ Fixd(L), x→ y ∈ Fixd(L)
x→ y = d(x→ y) = (x→ dy) t2 (dx→ y) = (x→ dy) t2 (x→ y) = x→ dy;
When x = 1, we have 1→ y = 1→ dy, y = dy.
Hence, y ∈ Fixd(L). We can get every Fixd(L) is an ideal. �

Definition 4.18. Let L be a pseudo L-algebra. A non-empty subset I of L is
said to be a d-invariant if d(I) ⊆ I where d(I) = {d(x) | x ∈ I}.

Example 4.19. Let L be a pseudo L-algebra and d be a derivation. We can
easily check that L is a d-invariant.

Example 4.20. In Example 3.29, we can easily check that I = {a, b, 1} is a
d-invariant, where d is d3(x).

Theorem 4.21. Let L be a pseudo CKL-algebra and d be a derivation. Then
every preideal I is a d-invariant.

Proof. Let I be a perideal of L and y ∈ d(I). Then y = d(x) for some x ∈ I.
By Proposition 4.10, x ≤ d(x), we can get x → d(x) = x  d(x) = 1. Then
x → y = x → d(x) = 1 ∈ I, x  y = x  d(x) = 1 ∈ I, which implies y ∈ I.
Thus d(I) ⊆ I. Hence I is a d-invariant. �

Proposition 4.22. Let dr be an isotone right derivation of a pseudo CKL-
algebra. If dr is idempotent, then Ker(dr) is a preideal of L.

Proof. Clearly, 1 ∈ Ker(dr). Let x ∈ Ker(dr) and x→ y ∈ Ker(dr). Then we
have 1 = dr(x → y) = x → dry, 1 = dr(x  y) = x  dry from Proposition
4.13(1), which means x ≤ dry. Hence we get 1 = drx ≤ d2ry = dry, i.e.,
dry = 1. This implies y ∈ Ker(dr). This completes the proof. �
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Theorem 4.23. Let L be a pseudo L-algebra and d be a derivation on L. Then
the following are equivalent
(a) d(x→ y) = dx→ y or d(x y) = dx y for all x, y ∈ L;
(b) d is the identity derivation.

Proof. (a)⇒ (b) Indeed, dx = d(1→ x) = d1→ x = 1→ x = x for all x ∈ L,
i.e. dx = x. Similarly for dx = d(1 x) = d1 x = 1 x = x for all x ∈ L,
i.e. dx = x. Hence, d is the identity derivation.
(b)⇒ (a) Obviously. �

Proposition 4.24. Let (L,→, , 1) be a pseudo KL-algebra with negation and
d be an isotone derivation on L. Then we have: if x ≤ y, then d(x−) ≥ d(y−),
d(x∼) ≥ d(y∼) for all x, y ∈ L.

Proof. If x ≤ y, then x → 0 ≥ y → 0. Since d is an isotone derivation,
therefore, d(x−) ≥ d(y−); If x ≤ y, then x 0 ≥ y  0. Since d is an isotone
derivation, therefore, d(x∼) ≥ d(y∼). �

Theorem 4.25. Let (L,→, , 1) be a pseudo CKL-algebra with negation and
d be a derivation on L. Then the following are aquivalent
(a) d is an ideal derivation and d2 = d;
(b) d(x)→ d(y) = d(x)→ y, d(x) d(y) = d(x) y, for all x, y ∈ L

Proof. (a)⇒ (b) According to Proposition 4.11, we can get dx = x. Therefore,
(b) is true.
(b) ⇒ (a) Assume that d(x) → d(y) = d(x) → y, d(x)  d(y) = d(x)  y, for
all x, y ∈ L. Then d(x)→ d(x) = d(x)→ x = 1, d(x) d(x) = d(x) x = 1,
which implies d(x) ≤ x for all x ∈ L. Thus d is contractive. Moreover, for all
x, y ∈ L, let x ≤ y, we have d(x) ≤ x ≤ y. It follows that d(x) → y = d(x) →
d(y) = 1, d(x)  y = d(x)  d(y) = 1, which implies d(x) ≤ d(y). Hence d is
isotone. Therefore, d is an ideal derivation on L. Finally, by Proposition 4.11,
we get d(x) = x for all x ∈ L. Therefore, d2 = d. �

Proposition 4.26. Let (L,→, , 1) be a pseudo CKL-algebra and d be an
ideal derivation. Then we have: for all x, y ∈ L, if y ≤ x−, then dx ≤ y∼; if
y ≤ x∼, then dx ≤ y−.

Proof. For all x, y ∈ L, assume that y ≤ x−. By Proposition 4.2(2) and
Proposition 3.7, we get x ≤ x−∼ ≤ y∼. According to Proposition 4.10 and d is
an ideal derivation, dx ≤ dy∼ = y∼; Similarly, we can get dx ≤ dy− = y−. �

5. Conclusion

The article focuses on the concept of derivations on pseudo L-algebras, which
serve as a valuable tool for studying pseudo L-algebraic structure. By utilizing
derivations on pseudo L-algebras, the article establishes the connection be-
tween the identity derivation and the ideal derivation. It is proven that while
the identity derivation is indeed the ideal derivation, the reverse is not true.
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Additionally, the article presents several findings regarding the derivation of
pseudo CKL-algebras, which contribute to the understanding and analysis of
pseudo L-algebras. These results offer practical insights for further research
on pseudo L-algebras. The article acknowledges that the current definition of
derivation for pseudo L-algebras is provided only for a specific case. However,
when we replace t1 with t2 in (pld1) and t2 with t1 in (pld2), we will obtain
a new definition of the left derivative. Similarly, we can also obtain a new def-
inition of the right derivative. So, can this new definition of the left and right
derivatives better study pseudo L-algebras? This would also be meaningful. In
recent years, many scholars have devoted themselves to combining various log-
ical algebras with derivation theory. For example, BCI-algebra, BCC-algebra,
BCK-algebra, etc. We have found that due to the different properties of alge-
bras themselves, the different properties of algebraic derivations are also pre-
sented. As a classical type of logical algebra, pseudo L-algebra can serve as the
research foundation for other logical algebras. Currently, there are still many
derivations in logical algebras that have not been considered. Therefore, in the
future, we can try to study derivations in other logical algebras.
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