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Abstract. In this paper, all solvable intransitive permutation groups
with constant movement are classified and we show that they are one of

the following groups: a cyclic p-group, an elementary abelian p-group, a

Frobenius group of order 12 or a Frobenius group of order pq, where p
and q are primes such that p = q(q − 1) + 1.
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1. Introduction

The exploration of permutation groups is a long-standing field with a fas-
cinating background that dates back to the early 19th century, during the
emergence of group theory. The concept of a group was first introduced by
Galois in his examination of the permutations of polynomial equation roots
(leading to the well-known Galois group of the polynomial). Throughout much
of the 19th century, there was significant focus on groups of substitutions, now
commonly referred to as permutation groups. Permutation group theory has
interesting applications in other areas of mathematics, such as combinatorics,
representation theory, number theory, graph theory, etc. Let G be a permu-
tation group on a set Ω without any fixed points in Ω. If the size |Γg − Γ| is
bounded for a subset Γ of Ω and for g ∈ G then the movement of Γ is defined
as

move(Γ) := sup
g
|Γg − Γ|.

If there exists m ∈ N such that move(Γ) ≤ m for all Γ ⊆ Ω then we say that G
has bounded movement m. Moreover, the movement of G is defined as

move(G) := sup
Γ,g
|Γg − Γ|.
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The notion of movement was first introduced in [8]. In the same way, we can
define the movement of g for each g ∈ G, as

move(g) := sup
Γ
|Γg − Γ|.

By Theorem 1 of [8], if G has bounded movement equal to m then Ω is fi-
nite. Also, both the number of G-orbits in Ω and the length of each of them
are bounded above by linear functions of m. So, an upper bound for |Ω| is
obtained. In [3], that upper bound was improved for p ≥ 5, where p is the
least odd prime divisor of |G|. If the movements of all non-identity elements of
G are equal then we say that G has constant movement. Obviously, if G has
constant movement then it has bounded movement. The concept of constant
movement was firstly introduced in [2] and moreover, solvable intransitive per-
mutation groups G with constant movement m having maximum degree were
classified there. Some years later in [4], 2-transitive permutation groups with
abelian stabilizers having constant movement were investigated. Also, primi-
tive permutation groups with constant movement were determined in [5]. In
this paper, we continue these works and classify all solvable intransitive permu-
tation groups G with constant movement m and prove the Theorem 1.1. We
denote by K oH a semidirect product of K and H with normal subgroup K
and for a real number x, bxc is the integer part of x and dxe is the least integer
greater than or equal to x.

Theorem 1.1. Let G be a solvable intransitive permutation group on a set Ω
that has no fixed points on Ω. Let G have constant movement m. Then one of
the following holds:
(i) G is either a cyclic p-group or G ∼= Zdp, for some p prime and d ∈ N;

(ii) G ∼= Z2
2 o Z3;

(iii) G ∼= Zp o Zq, where p and q are primes such that p = q(q − 1) + 1.

The structure of the groups in Theorem 1.1 will be explained in Examples
2.2, 2.4 and 2.5.

2. Preliminaries and Examples

Let G be the permutation group acting on a finite set Ω and 1 6= g ∈ G.

Suppose that g =
s∏
i=1

ci is the disjoint cycle representation of g with |ci| =

li ≥ 2 for all 1 ≤ i ≤ s. Assume that each cycle ci has the representation
ci = (ci1ci2 · · · cili ). Suppose that for each i, we choose bli/2c points from the

cycle ci and put them in a set Γ(g), such that Γ(g)g ∩ Γ(g) = ∅. For instance,
choose

Γ(g) := {c12
, c14

, . . . , c1h1 , c22
, c24

, . . . , c2h2 , ..., cs2 , cs4 , . . . , cshs},

where hi = li−1 if li is odd and hi = li if li is even. In this case, Γ(g) is the set
of every second point of each cycle of g. Note that the determination of Γ(g)
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is not unique, because it depends on the way each cycle is represented. By the
description of Γ(g), we have

|Γ(g)g − Γ(g)| = |Γ(g)| =
s∑
i=1

bli/2c.

It was shown in Lemma 2.1 of [7] that the above value is an upper bound for
|Γg − Γ|, when Γ is an arbitrary subset of Ω.

As a straightforward consequence, we have the following result.

Lemma 2.1. Let G be a permutation group on a set Ω. If g ∈ G has a cycle

decomposition g =
s∏
i=1

ci, where the cycle ci has length li, then move(g) =

s∑
i=1

bli/2c.

Proof. For each Γ ⊆ Ω, the inequality |Γg−Γ| ≤
s∑
i=1

bli/2c holds by Lemma 2.1

of [7]. Hence, move(g) ≤
s∑
i=1

bli/2c. As move(g) ≥ |Γ(g)g − Γ(g)|, we conclude

the desired result. �

Now in the following examples, we explain the structure of the groups ap-
pearing in Theorem 1.1.

Example 2.2. Let p be a prime, d a natural number, G := Zdp, t := (pd −
1)/(p − 1), and H1, . . . ,Ht be the subgroups of index p in G. Consider Ωi :=
{Hig | g ∈ G} be the right cosets of Hi in G and Ω := Ω1 ∪ · · · ∪ Ωt. Since
each non-identity element g ∈ G lies in (pd−1− 1)/(p− 1) of the subgroups Hi,
the action of it as a permutation on Ω has p(pd−1− 1)/(p− 1) fixed points and
pd−1 orbits of length p. So, move(g) = pd−1(p−1)/2 := m if p is odd and 2d−1

if p = 2. Therefore, G has constant movement equal to m.
Note that by Theorem 1.2 of [2], this family of groups attains the maximum
degree n = d2mp/(p− 1)e+ t− 1.

Before giving the second example, it is necessary to state a remark.

Remark 2.3. ( [1]) Let G act as a permutation group on a set Ω and g ∈ G.
Assume that Γ ⊆ Ω and Ω is the disjoint union of G-invariant sets Ω1 and Ω2.
Set Γi := Γ ∩ Ωi and suppose that for i = 1, 2, gi be the permutation on Ωi
induced by g, respectively. Since |Γg − Γ| = |Γg11 − Γ1|+ |Γg22 − Γ2|, we have

moveΩ(g) =

2∑
i=1

max{|Γgii \ Γi||Γi ⊆ Ωi} = moveΩ1(g1) + moveΩ2(g2).

Example 2.4. Let G1 := Z2
2 and G2 := Z3 be permutation groups on the sets

Ω1 = {1, 2, 3, 4} and Ω2 = {5, 6, 7} respectively, where G1 = 〈(1 2)(3 4), (1 3)(2 4)〉
and G2 = 〈(1 2 3)(5 6 7)〉. Set Ω := Ω1 ∪ Ω2. Then G := G1 oG2 acts on Ω as
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a permutation group with t = 2 orbits. Also, every non-identity element of G
splits into two cycles of length 2 or into two cycles of length 3. Therefore, G
has constant movement m = 2. Note that, G acts Frobeniusly on the set Ω1.

Example 2.5. Let q and p := q(q − 1) + 1 be two odd prime numbers and G
be a Frobenius group of order pq with kernel K ∼= Zp acting on a set Ω1 of size
p. Suppose that Ω2 is a set of size q and β is a cycle of length q in it. Assume
that γ := βγ1 · · · γq−1, where γi (1 ≤ i ≤ q − 1) are q − 1 disjoint cycles of
length q on Ω1. Let H = 〈γ〉 and K = 〈α〉, where α is a cycle of length p in
Ω1. Then H ∼= Zq and, for an integer r, the group G := K oH given by the
following relations:

αp = γq = 1, γ−1αγ = αr, rq ≡ 1(mod p);

is a permutation group on Ω := Ω1 ∪ Ω2 with t = 2 orbits such that Zp acts
regularly on Ω1. Since each non-identity element of G has q cycles of length q

or one cycle of length p, G has constant movement m = q(q−1)
2 . Obviously, G

in its action on the set Ω1 is a Frobenius group.
In particular, for q = 3, we can consider Ω1 = {1, ..., 7}, Ω2 = {1′, 2′, 3′},
α = (1 · · · 7) and γ = (1′2′3′)(2 3 5)(4 7 6). Then, G := 〈α, γ〉 ∼= Z7 o Z3 is a
permutation group with t = 2 orbits on a set Ω := Ω1 ∪Ω2 of size 10, in which
every 1 6= g ∈ G has 3 cycles of size 3 or is a cycle of size 7 and therefore, in
both cases, it has movement 3.

3. Main results

LetG be a solvable intransitive permutation group on a set Ω with fix(G) = ∅
and having constant movement. The cycle structure of elements of a permuta-
tion group with constant movement is known by [2].

Lemma 3.1. (Lemma 3.6 of [2]) Let G be a permutation group on a set Ω
of size n with constant movement m and let 1 6= g ∈ G. Then, all non-trivial
cycles of g have the same size and the order of g is either an odd prime or a
power of 2.

Now, we give two definitions which are needed in the rest of the paper.

Definition 3.2. A group G, in which every non-identity element has prime
power order, is called an EPPO-group.
For example, consider the alternating group A6. The orders of elements of this
group are 2,3,4,5. So, it is an EPPO-group.

The complete classification of finite EPPO-groups is given in Lemma 0.4
of [9].

Definition 3.3. Suppose that G is a finite group and there exists a normal
series 1CN CK CG of G such that N is the Frobenius kernel of K and K

N is

the Frobenius kernel of G
N . Then, G is called a 2-Frobenius group.

One of the known 2-Frobenius groups is the symmetric group S4. Consider
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the normal series 1 C Z2
2 C A4 C S4. Then, one can easily check that S4 is

2-Frobenius.

Before starting the proof of Theorem 1.1, we state the basic facts for Frobe-
nius groups.

Lemma 3.4. [6] Let G be a Frobenius group with kernel K and complement
H. Then,
(i) K is nilpotent. Also, if |H| is even then K is abelian.
(ii) Sylow p-subgroups of H are cyclic for odd primes p and are cyclic or gen-
eralized quaternion groups for p = 2.

Note that the converse of the above lemma is not necessarily true. For example,
consider the Dicyclic group Dic5 of order 20, which is the semidirect product
of the cyclic groups Z5 and Z4. This group satisfies conditions (i) and (ii), but
is not a Frobenius group, because the center of this group is of size 2.

Now we are ready to start the proof of Theorem 1.1.
Let G be a solvable intransitive permutation group with constant movement
m and t > 1 orbits on a set Ω of size n which has no fixed points on Ω. By
Lemma 3.1, G is an EPPO-group. If G is solvable then, by Lemma 0.4 of [9],
G is a p-group, a Frobenius group or a 2-Frobenius group and the order of G
is of the form pαqβ for two primes p and q and integers α and β. We discuss
each case separately. First, suppose that G is a p-group.

Proposition 3.5. G is a p-group with constant movement if and only if it is
either cyclic or the group described in Example 2.2.

Proof. Suppose that d is a natural number and G is a p-group of order pd with
constant movement m acting on a set Ω. Let |Ω| = n and let t > 1 be the
number of G-orbits.
First, we consider the case where p = 2. If G is cyclic then it is isomorphic to
Z2d = 〈x1 · · ·xt〉, where each xi is a cycle of length 2d. So, it has t orbits and
has constant movement m = t2d−1. Assume that G is non-cyclic. Let g ∈ G.
If k is the length of a nontrivial cycle in the cycle decomposition of g and s is
the number of 〈g〉-orbits on Ω then

l := |supp(g)| = sk = 2s(
k

2
) = 2sbk

2
c = 2 move(g) = 2m.

So, every non-identity element in G moves exactly the same number of points
in Ω. Thus, m = l/2 and |fix(g)| = n− l. By Burnside’s lemma,

t =
1

|G|
∑
g∈G
|fix(g)| = 1

2d
(n+ (2d − 1)(n− l)) = n− l +

l

2d
. (1)

So, |G| = 2d | l. If G is an elementary abelian 2-group then G is isomorphic to
the direct product of cyclic groups of order 2, say Gi. Suppose that each Gi
acts on a set Ωi of size 2ti. Thus, we have t = t1 + · · ·+ td and n = 2t. By (1),
we conclude that 2dt = l(2d − 1). Since t ≤ 2d − 1, we have l ≤ 2d. Therefore,
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l = 2d, t = 2d − 1, m = 2d−1, n = 2(2d − 1) and G is the group mentioned in
Example 2.2.
Suppose now that G is not an elementary abelian 2-group. Also, suppose that
s is a natural number and G is isomorphic to the product of t copies of a non-
abelian 2-group H of order 2s in its regular representation. So, G acts on a set
Ω of size n = 2st and has movement m = 2s−1t. By (1), 2s(2st−1) = (2s−1)2st.
But, this equality holds if and only if t = 1, which is not possible.
Now assume that G is a p-group (p 6= 2) with constant movement m. By
Lemma 3.1, G is of exponent p. If G is cyclic then G ∼= Zp = 〈x1 · · ·xt〉, where
each xi is a cycle of length p. So, it has t orbits and has constant movement
m = t(p − 1)/2. Assume that G is abelian and non-cyclic. Then, G is an
elementary abelian p-group of order pd. By a similar argument mentioned
above, we conclude that l = pd, t = (pd − 1)/(p − 1), m = pd−1(p − 1)/2,
n = p(pd − 1)/(p − 1) and G is the group mentioned in Example 2.2. Finally,
suppose that G is non-abelian. Suppose that s is a natural number and G is
isomorphic to the product of t copies of a non-abelian p-group H of order ps in
its regular representation. So, G acts on a set Ω of size n = pst. By a similar
argument, we have l = pst and ps(pst − 1) = (ps − 1)pst. But, this equality
holds only for t = 1, which is impossible.

Conversely, if G is the group described in Example 2.2 then it was shown
there that G has constant movement m = pd−1(p−1)/2. Also, it is shown in the
above argument that if G is a cyclic p-group then it has constant movement. �

Proposition 3.6. Let G be a Frobenius group with constant movement. Then,
(i) If G has even order then it is the group mentioned in Example 2.4.
(ii) If G has odd order then it is the group mentioned in Example 2.5.

Proof. (i) Let G be a Frobenius group of even order and K := O2(G) and
P := Op(G) be the largest normal 2-subgroup and normal p-subgroup of G,
respectively. Then, by Lemma 0.4 of [9], G is isomorphic to groups K o Zpα ,
P o Z2β or P o Q2β for some natural numbers α, β. Note that Q2β has only
regular faithful representation.
Case 1: Suppose that G ∼= KoZpα . Since G has constant movement, it can not
have elements of orders p2, p3, . . . , pα. So, in this case, G ∼= K oZp. We prove
that p = 3 and K ∼= Z2

2. Assume that K is a permutation group on a set Ω1 of
size 2β and Ω2, . . . ,Ωt be the other orbits of G such that |Ω2| = · · · = |Ωt| = p.

Set Ω :=
⋃t
i=1 Ωi. Then,

t2βp =
∑
g∈G
|fix(g)| = 2β + (t− 1)p+ (2β − 1)(t− 1)p+ (2βp− 2β)(

2β − 1

p
).

This equality holds if and only if 2β = p+ 1. Let g and h be a 2-element and
a p-element of G, respectively. Since G has constant movement m,

2β−1 = move(g) = move(h) = (t− 1)
p− 1

2
+

2β − 1

p

p− 1

2
= t

(p− 1)

2
.
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Thus, p+ 1 = 2β = t(p− 1). Since t = p+1
p−1 is an integer, p = 3, t = 2 and so,

G ∼= Z2
2 o Z3 as defined in Example 2.4 that is the case (ii) of Theorem 1.1.

Case 2: Suppose that G ∼= P o Z2β or G ∼= P oQ2β for some natural number
β. Since P is of exponent p, we conclude that P ∼= Zdp for some natural number

d by Lemma 3.4. Since G has constant movement, p
d−1(p−1)

2 = 2β−1. But this

happens only when d = 1 and p = 2β+1. So, G ∼= ZpoZp−1 or G ∼= ZpoQp−1.

By a similar argument mentioned above, we conclude that 2β−1 = t (p−1)
2 . It

implies that t = 1, which is a contradiction. Therefore, there is no group which
satisfies in this case.
(ii) Suppose that G = P o Q is a Frobenius group of odd order pαqβ . By
part(2) of Lemma 0.4 of [9], Q is cyclic. Since G doesn’t have elements of
orders q2, q3, ..., qβ , we have |Q| = q. Suppose that Q = 〈y〉, where y = y1 · · · yk
and |yi| = q for all 1 ≤ i ≤ k. Since G has constant movement and P acts
regularly on a set Ω1 of size pα, pα−1(p−1

2 ) = k q−1
2 . On the other side, we

have pα − 1 = (k − 1)q. So, k − q = pα−1 − 1. Assume that q − 1 = u. Then,
k = u+ pα−1 and this implies that (u+ pα−1)u = pα− pα−1. But the equation
u2 + pα−1u − (pα − pα−1) = 0 has solution if ∆ = p2(α−1) + 4pα − 4pα−1 is a
square integer. If α > 3 then (pα−1 +2p−3)2 < ∆ < (pα−1 +2p−2)2, which is
not possible. If α = 3 then ∆ = p4 + 4p3 − 4p2 = p2(p2 + 4p− 4) can not be a
square. If α = 2 then ∆ = 6p2 − 4p ≡ 2p2 ≡ 2 (mod 4), which is not possible.
So, α = 1 and we have (k − 1)q = k(q − 1). But this equality holds if k = q

and therefore, p = q(q − 1) + 1, m = q(q−1)
2 and G has two orbits, one of them

is of length p = q(q − 1) + 1 and the other is of length q. So, G is a Frobenius
group with kernel Zp and complement Zq, in which Zq is generated by q cycles
of length q are described in Example 2.5. So, the case (iii) of Theorem 1.1 is
attained. �

Proposition 3.7. There is no 2-Frobenius group with constant movement.

Proof. Suppose that G = PQR is a 2-Frobenius group with constant movement
m. Since P oQ and QoR are Frobenius groups with constant movement, they
are isomorphic to groups Z2

2 oZ3 or ZpoZp (for p = q(q−1)+ 1) by preceding
argument. By part(2) of Lemma 0.4 of [9], we see that the first case does not
occur. Suppose that P oQ ∼= ZpoZq and QoR ∼= ZqoZr in which p, q, r are
primes such that p = q(q−1)+1 and q = r(r−1)+1. Since r = p or r = q, we
have p(p2 − p+ 1) = 1 or q2 − 2q + 1 = 0 that is impossible. Therefore, there
is no group satisfying in this case. �

Now, Theorem 1.1 follows from Propositions 3.5-3.7.

4. Conclusion

In this paper, we investigate solvable intransitive permutation groups with
constant movement. We show that they are one of the following groups: a
cyclic p-group, an elementary abelian p-group Zdp, the Frobenius group Z2

2 oZ3
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or the Frobenius group Zp o Zq, where p and q are two primes such that
p = q(q− 1) + 1. The structure of these groups are described in Examples 2.2,
2.4 and 2.5.
For future works, one can use parts (3) and (4) of Lemma 0.4 of [9] to verify
non-solvable intransitive permutation groups with constant movement. It was
stated there that if G is simple, then G ∼= L2(q), q = 5, 7, 8, 9, 17; L3(4),
Sz(8) or Sz(32) and if G is non-solvable and non-simple, G ∼= M10, or G has
an elementary abelian 2-subgroup P , P is normal in G and G/P ∼= L2(q),
q = 5, 8; Sz(8) or Sz(32).
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