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Abstract. This study introduces a novel method using the Müntz-Legendre
polynomials for numerically solving fractional optimal control problems.
Utilizing the unique properties of Müntz-Legendre polynomials when deal-
ing with fractional operators, these polynomials are used to approximate
the state and control variables in the considered problems. Consequently,
the fractional optimal control problem is transformed into a nonlinear
programming problem through collocation points, yielding unknown co-
efficients. To achieve this, stable and efficient methods for calculating the
fractional integral and derivative operators of Müntz-Legendre functions
based on three-term recurrence formulas and Jacobi-Gauss quadrature
rules are presented. A thorough convergence analysis, along with er-
ror estimates, is provided. Several numerical examples are included to
demonstrate the efficiency and accuracy of the proposed method.
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1. Introduction
Fractional-order dynamics appear in many areas of science and engineering,

including fluid dynamics, space exploration, signal processing, robotics, and
economics [6, 18, 34]. Recently, it has been shown that many systems can be
better described using fractional differential equations (FDEs) rather than tra-
ditional integer differential equations (IDEs). For more details on fractional
calculus, you can refer to sources such as [16,17,30]. Fractional Optimal Con-
trol Problems (FOCPs) are a type of optimal control problem. These problems
aim to minimize a performance index within a feasible set of control and state
variables, where the system dynamics are described by FDEs. Additional con-
straints, such as final time, can also be included in FOCPs. The dynamics
in these problems can be described by different types of fractional derivatives,
such as Riemann-Liouville fractional derivatives (RLFD) and Caputo fractional
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derivatives (CFD).
Due to the wide range of applications of FOCPs, a lot of effort has been put
into finding solutions, making it an important research area. Since analytical
solutions are often difficult to obtain for most FOCPs, except in special cases,
approximation methods are essential. In recent years, numerical methods have
become the preferred approach for finding approximate solutions to FOCPs
(see [10,12,15,19,25,26,33,35]).
Generally, there are two main categories for addressing FOCPs: indirect and
direct methods. In indirect methods, the necessary optimality conditions of
FOCPs are determined using Pontryagin’s minimum principle [3,25]. In direct
methods, a continuous FOCP is converted into a finite-dimensional nonlinear
programming problem (NLP) by parameterizing the state and/or control vari-
ables [12,13,20,21,29,36]. In [32], a collocation method using Bessel functions is
employed for the numerical solution of FOCPs. Among global direct methods,
pseudospectral methods are very effective for solving FOCPs. These methods
are widely used for solving optimal control problems, such as the Gauss pseu-
dospectral and Radau pseudospectral methods [1, 2, 10, 29]. Moreover, in [10],
a unified framework for solving FOCPs using integral pseudospectral methods
has been provided, and [14] discusses optimal control problems with time delay
in the calculus of variations.
The construction of derivative and integral matrices using classical polyno-
mials, such as Jacobi polynomials, is a key feature of these methods. Given
that problems with fractional operators often yield non-smooth solutions even
when the input data is smooth, existing methods based on classical polyno-
mials typically exhibit low convergence rates. Therefore, in this paper, we
have chosen Müntz-Legendre polynomials to solve fractional optimal control
problems, as they are better suited to fractional integral and derivative opera-
tors. The orthogonal Müntz systems were initially considered by Badalyan [4]
and Taslakyan [31]. Müntz polynomials have a key feature: their fractional
integrals and derivatives can be directly expressed in terms of the same poly-
nomials. This sets Müntz polynomials apart from classical polynomials, which
do not have polynomial forms for their fractional operators. Because of this
important feature, Müntz-Legendre polynomials have been used in various pa-
pers to find numerical solutions for FDEs [8, 9, 23] and FOCPs [7].
kkkkk In recent years, Müntz-Legendre polynomials have been used to solve
various equations involving fractional operators. However, most of these stud-
ies have not focused on the specific computation of the fractional operators
of these polynomials. Instead, they use the explicit forms of Müntz-Legendre
polynomials to obtain operational matrices for fractional integration and dif-
ferentiation. These approaches often lead to instability when constructing the
operational matrices, making the method unsuitable as the number of basis
functions increases. In this work, we address this issue by developing a method
specifically for solving fractional optimal control problems, ensuring stability
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and accuracy even as the number of basis functions increases. Next, we briefly
highlight the main contributions of our development:

• We have developed an effective and stable method for computing frac-
tional integral and derivative operators of Müntz-Legendre functions.

• We have created an efficient numerical method for solving nonlinear
fractional optimal control problems by transforming the given problem
into a nonlinear programming problem.

• We have conducted a convergence analysis and provided error estimates
for the proposed method.

• The method is designed for practical implementation, demonstrating
its robustness and effectiveness in real-world complex problems.

The subsequent sections of this paper are organized as follows: Section 2 pro-
vides a brief overview and some basic definitions and preliminaries of frac-
tional calculus, fractional optimal control problems (FOCPs), and Müntz-
Legendre polynomials. New methods for evaluating fractional operators of
Müntz-Legendre polynomials are presented in Section 3. Section 4 applies
a new method to solve FOCPs, and in Section 5, we compute error bounds
for fractional operators and dynamic systems. Several examples are given to
demonstrate the accuracy of the proposed methods in Section 6. The conclu-
sions are discussed in the final section.

2. Mathematical Preliminaries
2.1. Fractional Calculus. In this section we present some basic definitions
needed in the following parts of the paper. For more detailed information,
interested readers can refer to [17,25].

Definition 2.1. Let f : [a, b] −→ R be a function and α > 0 be a real number.
The RLFI of a function f(t) are defined as [17]:

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a,

and CFD are given according to

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds, t > a,

where n = [α] + 1 and Γ(.) is gamma function.

We discuss the different characteristics of fractional integrals and derivatives,
highlighting a few of them [17]. As evident below, applying the RLFI and
CFD operators to power functions results in power functions of the same form.
Assuming α > 0 and β > −1, the following identities hold

aI
α
t (t− a)β =

Γ(β + 1)

Γ(β + α+ 1)
(t− a)β+α,(1)
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and

c
aD

α
t (t− a)β =

{
0, α = 0, 1, . . . , n− 1,
Γ(α+1)

Γ(β−α+1) (t− a)β−α, β > n− 1.
(2)

Moreover, If f(t) ∈ Cn[a, b] the fractional integrals and derivatives have the
following properties [24]

aI
α
t (

c
aD

α
t )f(t) = f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k,(3)

and

aI
α−β
t (caD

α
t )f(t) =

c
aD

α
t f(t), α > β > 0.(4)

2.2. Fractional Optimal Control Problems. In this paper, we suppose
that n − 1 < α < n be a real number, Ω = [0, T ], and the state and control
variable x, u : Ω −→ R, let F,G : [0,∞) × R2 −→ R are continuously differ-
entiable, the general form of FOCPs can be introduced as minimize the cost
functional

J = ϕ(T, x(T )) +

∫ T

0

F (t, x(t), u(t))dt, t ∈ [0, T ],(5)

subject to the system dynamics

Ax(n)(t) +B c
0D

α
t x(t) = G(t, x(t), u(t)),(6)

(7)

with A,B ̸= 0 and the initial condition x(0) = x0 . Also ϕ(t, x(t)) is called the
final function.

2.3. The Müntz -Legendre Polynomials. Let the complex sequence Λ =
{λ0, λ1, . . .} be such that Re(λi) > −1/2 for every i = 0, 1, . . .. The Müntz
polynomials can be expressed on the interval (0, 1] in power form as (see [5,22])

Pk(t) := Pk(t; Λk) =

k∑
i=0

Ck,it
λi , Ck,i =

∏k−1
j=0 (λi + λ̄j + 1)∏k
j=0,j ̸=i(λi − λj)

.(8)

In this paper, the case λi = iα is considered and then the Müntz -Legendre
polynomials on the interval [0, T ] are represented by the formula

Lk(t;α) =

k∑
i=0

Ck,i(
t

T
)iα, Ck,i =

(−1)k−i

αki!(k − i)!

k−1∏
j=0

((i+ j)α+ 1).(9)
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It can be shown that ∫ T

0

Lk(t)Li(t)dt =
T

2kα+ 1
δki.

We denote the corresponding Müntz- Legendre by M =
⋃∞

n=0 Mn,α, where
Mn,α is defined by

Mn,α = span {1, tα, ..., tnα} ,=

{
n∑

k=0

ckt
kα : ck ∈ R

}
, t ∈ [0, T ] .

It can be shown that the Müntz- Legendre polynomials of the form
∑n

k=0 ckt
kα

with real coefficients are completeness and dense in L2(0, 1) [5, 22]. Now, the
function f(t) which belong to L2(0, T ), may be expressed in terms of Müntz-
Legendre polynomials as

f(t) =

∞∑
i=0

fiLi(t;α)

where the coefficients are given by

fi = (2iα+ 1)

∫ T

0

f(t)Li(t;α)dt, i = 0, 1, 2, . . .(10)

Due to the substantial increase in the coefficients Cn,k with growing n, the
direct evaluation of Müntz-Legendre polynomials using the power form (9)
can pose challenges, as highlighted in [22]. The explicit form (9) becomes
increasingly unstable and deficient, particularly for larger values of n. For

Figure 1. The coefficients of Müntz- Legendre polynomials
for L100(t;

1
2 ).

example, in Fig. 1, for n = 100 and α = 1
2 , we can see how the coefficients

of the Müuntz-Legendre polynomials (C100,k) increase very quickly. Therefore,
we cannot use the form (9) in practical problems such as FDEs and FOCPs
that require a large n for approximating their solutions. In the paper [9], an
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efficient technique based on a three-term recurrence relation is proposed, which
is derived from the following.

Lk(t;α) = P
0, 1

α−1

k (2(
t

T
)α − 1), k = 0, 1, . . . ,(11)

where Pα,β
n (t) with parameters α, β > −1 are well known Jacobi polynomials

defined on the interval [−1, 1]. An immediate consequence is the recurrence
relation of Müntz-Legendre polynomials, we have

L0(t;α) = 1, L1(t;α) = ( 1
α + 1)( t

T )
α − 1

α ,
Lk+1(t;α) = (ak(2(

t
T )

α − 1)− bk)Lk(t;α)− ckLk−1(t;α), k = 1, 2, . . . ,

(12)

where

ak =
(2k + 1

α )(2k + 1
α + 1)

2(k + 1)(k + 1
α )

, bk =
(2k + 1

α )(
1
α − 1)2

2(k + 1)(k + 1
α )(2k + 1

α − 1)
,

ck =
k(2k + 1

α )(k + 1
α − 1)

(k + 1)(k + 1
α )(2k + 1

α − 1)
.

The stability and efficiency of the recurrence formulas are demonstrated in

0 10 20 30 40 50 60 70 80 90 100

n

10-20

100

1020

1040

E
rr

or

By power form
By three -term form

X: 100
Y: 1.119e-12

Figure 2. Absolute error for the approximation of Ln(t,
1
2 )

for t = 1 and t = 1− 10−16.

Fig. 2, where the absolute error of Ln(t, 1/2) is plotted for t = 1 and t = 1− ε
(ε = 10−16) for n = 1, 2, . . . , 100. Nevertheless, we can obtain

| Ln(1,
1

2
)− Ln(1− ε,

1

2
) |≈ |εL′

n(1,
1

2
)| = ε

n(n+ 2)

2
,

3. Numerical Evaluation of Fractional Operators of Ln(t;α)
If Lk(t;α) is defined by (9), then the RLFI and CFD of Lk(t;α) for k =

0, 1, . . . according to (1) can be expressed in the following forms:

0I
α
t Lk(t;α) =

∑k
i=0 D

1
k,i(

t
T )

(i+1)α, D1
k,i =

Γ(1+iα)
Γ(1+(i+1)α)Ck,i,

c
0D

α
t Lk(t;α) =

∑k
i=1 D

2
k,i(

t
T )

(i−1)α, D2
k,i =

Γ(1+iα)
Γ(1+(i−1)α)Ck,i.

(13)
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Also, according to (1), we should have 0D
α
t Lk(t;α) = c

0D
α
t Lk(t;α), and

c
0D

α
t Lk(t;α) ∈ Mk−1,α and 0I

α
t Lk(t;α) ∈ Mk+1,α.

Once again, we observe that the coefficients D1k, i and D2k, i become very large
with increasing n, and direct evaluation of fractional operators of Lk(t, α) can
encounter issues. In this section, we propose stable numerical methods for
evaluating the values of fractional operators of Müntz-Legendre polynomials,
which are essential for solving FOCPs in the subsequent sections. In [9], a
numerical method is introduced for evaluating c

0D
αtLk(t;α)

Theorem 3.1. Let 0 < α < 1 be a real number and t ∈ [0, T ]. Then the
representation

c
0D

α
t Lk(t;α) =

1+kα
αΓ(1−α)Tα

∫ 1

0
(1− x

1
α )−αP

1, 1
α

k−1(2(
t
T )

αx− 1)dx

= 1+kα
αΓ(1−α)Tα

∑⌈ k
2 ⌉

i=1 ωi,αP
1, 1

α

k−1(2(
t
T )

ατi,α − 1),
(14)

holds true.

The weight function w(x;α) = (1 − x
1
α )−α remains nonclassical, and there

are no explicit formulas for calculating nodes and weights to evaluate (14). A
technique employing the Chebyshev algorithm is provided for obtaining nodes
τi,α and weights ωi,α. Nevertheless, this algorithm is generally acknowledged
for its numerical instability. In numerous instances, the modified Chebyshev
algorithm has been introduced as an alternative to stabilize the computation.
However, it’s worth noting that the tendency to become ill-conditioned poses a
limitation [11], particularly for larger k (see Fig. 3). In order to improve that,
Let x = zα and using [?]

P
1, 1

α

k−1(2(
t

T
)α − 1) =

k−1∑
j=0

ĉk−1,jLk(t;α) = ĈkLk(t;α),

where ĉk−1,j is obtained as

ĉk−1,j =
k!(2j + 1

α )Γ(j +
1
α )

j!Γ(k + 1
α + 1)

k−j−1∑
m=0

(−1)m
Γ(k + j +m+ 1

α + 1)

m!(k − j −m− 1)!(m+ j + 1)Γ(m+ 2j + 1
α + 1)

.

Then we can obtain
c
0D

α
t Lk(t;α) =

1+kα
Γ(1−α)Tα

∫ 1

−1
w−α,α−1(z)P

1, 1
α

k−1(2(
z+1
2T t)α − 1)dz,

= 1+kα
Γ(1−α)Tα

∑⌈ k
2 ⌉

j=1 ω
α
j P

1, 1
α

k−1(2(
τα
j +1

2T t)α − 1)

= 1+kα
Γ(1−α)Tα Ĉk

∑⌈ k
2 ⌉

j=1 ω
α
j Lk(t

τα
j +1

2 ;α),

(15)

where w−α,α−1(z) = (1 − z)−α(1 + z)α−1 represents a Jacobi weight function
over (−1, 1), and ωα

j and ταj are Jacobi-Gauss-type nodes and their correspond-
ing weights, the formula loses its utility with increasing k. As the coefficients
ĉk−1,i become very large (distinct from the growth of D2

k,i), achieving precise
evaluations of c

0D
α
t Lk(ti;α) for large k becomes challenging. It’s noteworthy
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that this formula maintains better stability compared to (13) and (14) (see Fig.
3). Similarly, we can evaluate 0I

α
t Lk(t;α) using the following expression:

0I
α
t Lk(t;α) =

1

Γ(α)
(
t

2
)α

∫ 1

−1

w0,α−1(z)Lk(t
z + 1

2
;α)dz

=
1

Γ(α)
(
t

2
)α

⌈ k
2 ⌉∑

j=1

ω̂α
j Lk(t

τ̂αj + 1

2
;α),

where τ̂αj and ω̂α
j are nodes and weights corresponding w0,α−1(z).

In the subsequent sections, we introduce an alternative approach for assessing
RLFI and CFD, which proves to be more suitable and significantly stable.
This is achieved by employing a three-term recurrence relation (12). We have
c
aD

α
t t

αLk(t;α) ∈ Mk,α then

c
aD

α
t t

αLk(t;α) =

k∑
i=0

Γ(1 + (i+ 1)α)

Γ(1 + iα)
Ck,it

iα =

k∑
i=0

D3
k,it

iα,

we can obtain the coefficients ξk,j (j = 0, 1, . . . , k) such as

c
0D

α
t t

αLk(t;α) =

k∑
j=0

ξk,jLj(t;α).

For computing ξk,j we have the triangular system that it can be solved by
(k + 1) recursive elimination steps of the form

ξk,k =
D3

k,k

Ck,k
,

ξk,j =
D3

k,j −
∑k

i=j+1 Ci,jξk,i

Cj,j
, j = k − 1, k − 2, . . . , 0

This algorithm requires (k + 1)2 flops and it is easy to check the ξk,j are
much smaller than D2

k,j . Finally by using three- term recurrence (12), we can
compute left CFD as follows

c
0D

α
t L0(t;α) = 0, c

0D
α
t L1(t;α) =

1
Tα (1 +

1
α )Γ(1 + α),

c
0D

α
t Lk+1(t;α) =

2ak

Tα (c0D
α
t t

αLk(t;α))− (ak + bk)
c
0D

α
t Lk(t;α)− ck

c
0D

α
t Lk−1(t;α)

= 2ak

Tα

∑k
j=0 ξk,jLj(t;α)− (ak + bk)

c
0D

α
t Lk(t;α)− ck

c
0D

α
t Lk(t;α),

k = 1, 2, . . .

(16)

In below, we try to give a similar method to evaluate 0I
α
t Lk(t;α). Since

0I
α
t t

αLk(t;α) ∈ Mk+2,α, so we can write

0I
α
t t

αLk(t;α) = t2α
k∑

i=0

Γ(1 + (i+ 1)α)

Γ(1 + (i+ 2)α)
Ck,it

iα = t2α
k∑

i=0

D4
k,it

iα = t2α
k∑

j=0

ξ̂k,jLj(t;α),
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where it can be possible that we compute ξ̂j like ξj by replacing D4
k,i instead

D3
k,i. Now, by using three- term recurrence, for k = 1, 2, . . ., we have

0I
α
t L0(t;α) =

1

Γ(1 + α)
tα, 0I

α
t L1(t;α) =

1

Tα
(1 +

1

α
)
Γ(1 + α)

Γ(1 + 2α)
t2α − 1

αΓ(1 + α)
tα,

0I
α
t Lk+1(t;α) =

2ak
Tα

(0I
α
t t

αLk(t;α))− (ak + bk)0I
α
t Lk(t;α)− ck 0I

α
t Lk−1(t;α)

=
2ak
Tα

t2α
n∑

j=0

ξ̂k,jLj(t;α)− (ak + bk)0I
α
t Lk(t;α)− ck 0I

α
t Lk−1(t;α).

Here, we present a new efficient method for fractional operators of Müntz-
Legendre polynomials.

c
0D

α
t t

αLk(t;α) =
1

Γ(1− α)

∫ t

0

(t− s)−α(sαLk(s;α))
′ds

= 1
Γ(1−α)

∫ t

0
(t− s)−α(αsα−1Lk(s;α) + sαL′

k(s;α))ds

= α
Γ(1−α)

∫ t

0
t−α(1− s

t )
−α sα−1

tα−1 t
α−1Lk(s;α)ds

+ 1
Γ(1−α)

∫ t

0
t−α(1− s

t )
−α sα−1

tα−1 t
α−1sL′

k(s;α)ds

= αEk

Γ(1−α)

∫ 1

0
(1− θ)−αθα−1Lk(tθ;α)dθ

+ Ak

Γ(1−α)

∫ 1

0
(1− θ)−αθα−1Lk(tθ;α)dθ

= αEk+Ak

Γ(1−α)

∫ 1

−1
w−α,α−1(z)Lk(t

1+z
2 ;α)dz

= αEk+Ak

Γ(1−α)

∑⌈ k
2 ⌉

j=1 ω
α
j Lk(t

1+τα
j

2 ;α),

(17)

where s = tθ, z = 2θ− 1, Ak and Ek kth row of matrix A and identity matrix,
respectively. Also, for RLFI we can conclude the following result

0I
α
t t

αLk(t;α) =
1

Γ(α)
(
t

2α
)2

∫ 1

−1

wα−1,α(z)Lk(t
1 + z

2
;α)dz

=
1

Γ(α)
(
t

2α
)2

⌈ k
2 ⌉∑

j=1

ω̆α
j Lk(t

1 + τ̆αj
2

;α).

Similarly to (16), employing a three-term recurrence, we can derive stable meth-
ods for evaluating RLFI and CFD. These methods will be instrumental in solv-
ing FOCPs, as discussed in the subsequent section. Additionally, to compute
the values of L(m)(t;α) for t ∈ (0, T ], we can express it as follows:

L
(m)
0 (t;α) = 0, L

(m)
1 (t;α) =

α+ 1

Tα
(α− 1)(α− 2) . . . (α−m+ 1)tα−m,

L
(m)
k+1(t;α) =

2ak
Tα

(

m∑
i=0

(
n
i

)
α(α− 1)(α− 2) . . . (α− i+ 1)tα−iL

(m−i)
k (t;α))

− (ak + bk)L
(m)
k (t;α)− ckL

(m)
k−1(t;α), k,m = 1, 2, . . .

It is easy to generalize these results to the general case n− 1 < α < n. In Fig.
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Figure 3. Absolute error for the approximation of
c
0D

α
t Ln(t,

1
2 ) for t = 1 and t = 1− 10−16 obtained from differ-

ent methods.

3 (left), the absolute error for c
0D

α
t Lk(t;

1
2 ) when t = 1, 1 − ε computed using

three methods (15), (16) and (17) are demonstrated. Also at right, we show
the error for 4 methods that are introduced in [7, 9, 23] and power form (13).

4. Numerical Method For Solving FOCPs
In this subsection, we propose a new strategy based on the Müntz- Legendre

polynomials for solving FOCPs. In this way, we consider the following FOCPs

J = ϕ(T, x(T )) +

∫ T

0

f(t, x(t), u(t))dt, t ∈ [0, T ],

s.t Ax(k)(t) +B c
0D

α
t x(t) = g(t, x(t)) + a(t)u(t), k < α < k + 1, k = 0, 1, . . .

x(i) = xi, i = 0, 1, . . . , k

(18)

By the Müntz- Legendre basis, we approximate y(t) := c
0D

α
t x(t) as

y(t) ≈ yn(t) =

n∑
j=0

yjLj(t;α),(19)

where

yj = (2jα+ 1)

∫ T

0

Lj(t;α)
c
0D

α
t x(t)dt.

Now, by taking β = k in (4) and using (3), we represent the x(t) and x(k)(t)
in the forms

x(t) = 0I
α
t

c
0D

α
t x(t) +

∑k
i=0

xi

i! t
i = 0I

α
t y(t) +

∑k
i=0

xi

i! t
i,

x(k)(t) = c
0D

k
t x(t) = 0I

α−k
t

c
0D

α
t x(t) = 0I

α−k
t y(t).

(20)
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We compute the control function u(t) from the system dynamic and use (19)
and (20)

u(t) =
1

a(t)
(Ax(k)(t) +B c

0D
α
t x(t)− g(t, x(t))

= 1
a(t) (A 0I

α−k
t y(t) +By(t)− g(t,0 I

α
t y(t) +

∑k
i=0

xi

i! t
i)).

(21)

Utilizing (20) and (21), we can determine the approximation of x(t), x(k)(t)
and u(t) as follows

x(t) ≈ xn(t) = 0I
α
t yn(t) +

k∑
i=0

xi

i!
ti =

n∑
j=0

yj 0I
α
t Lj(t;α) +

k∑
i=0

xi

i!
ti,

u(t) ≈ un(t) =
1

a(t)
(A

n∑
j=0

yj 0I
α−k
t Lj(t;α)+B

n∑
j=0

yjLj(t;α)−g(t,

n∑
j=0

yj 0I
α
t Lj(t;α)+

k∑
i=0

xi

i!
ti),

x(k)(t) ≈ x(k)
n (t) =

n∑
j=0

yj 0I
α−k
t Lj(t;α),

and substituting (20) and (21) into the performance index J gives

J = ϕ(T, 0I
α
T y(t) +

k∑
i=0

xi

i!
T i) +

∫ T

0

f(t, 0I
α
t y(t)

+

k∑
i=0

xi

i!
ti,

1

a(t)
(A 0I

α−k
t y(t) +By(t)− g(t, 0I

α
t y(t) +

k∑
i=0

xi

i!
ti))dt.

So, by using the above approximations and the Legendre -Gauss quadrature,
the performance index can be approximated by n+1 variables yj , j = 0, 1, . . . , n
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as follow

Jn(y0, y1, . . . , yn) = ϕ(T,

n∑
j=0

yj 0I
α
TLj(t;α) +

k∑
i=0

xi

i!
T i)

+

∫ T

0

f(t,

n∑
j=0

yj 0I
α
t Lj(t;α) +

k∑
i=0

xi

i!
ti,

1

a(t)
(A

n∑
j=0

yj 0I
α−k
t Lj(t;α)

+B

n∑
j=0

yjLj(t;α)− g(t,

n∑
j=0

yj 0I
α
t Lj(t;α) +

k∑
i=0

xi

i!
ti))dt

= ϕ(T,

n∑
j=0

yj 0I
α
TLj(t;α) +

k∑
i=0

xi

i!
T i)

+
T

2

∫ 1

−1

f(
T

2
(τ + 1),

n∑
j=0

yj 0I
α
τ Lj(

T

2
(τ + 1)α) +

k∑
i=0

xi

i!
(
T

2
(τ + 1))i,

1

a(T2 (τ + 1))
(A

n∑
j=0

yj 0I
α−k
τ Lj(

T

2
(τ + 1);α) +B

n∑
j=0

yjLj(
T

2
(τ + 1);α)

− g(
T

2
(τ + 1),

n∑
j=0

yj 0I
α
τ Lj(

T

2
(τ + 1);α) +

k∑
i=0

xi

i!
(
T

2
(τ + 1))i))dt

= ϕ(T,

n∑
j=0

yj 0I
α
TLj(t;α) +

k∑
i=0

xi

i!
T i)

+
T

2

N∑
m=0

ωmf(
T

2
(τm + 1),

n∑
j=0

yj 0I
α
τmLj(

T

2
(τm + 1)α) +

k∑
i=0

xi

i!
(
T

2
(τm + 1))i,

1

a(T2 (τm + 1))
(A

n∑
j=0

yj 0I
α−k
τm Lj(

T

2
(τm + 1);α) +B

n∑
j=0

yjLj(
T

2
(τm + 1);α)

− g(
T

2
(τm + 1),

n∑
j=0

yj 0I
α
τmLj(

T

2
(τm + 1);α) +

k∑
i=0

xi

i!
(
T

2
(τm))),

where t = T
2 (τ +1), τ ∈ [−1, 1] and {τm, ωm}Nm=0 be a set of Legendre - Gauss

type nodes and weights. In this way, the FOCPs can transform into nonlinear
programming (NLP) that we can obtain the necessary conditions, according to
differential calculus

∂Jn(y0, y1, . . . , yn)

∂yj
= 0, j = 0, 1, . . . , n.
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The above nonlinear equations can be solved by Newton’s iterative or fmin-
search in MATLAB and determine the optimization values of yj to approxi-
mate y(t), finally we can approximate the state x(t) and the control u(t) by
(20) and (21) respectively.

Remark 4.1. The above approach which restricted to special case of dynamics
system, it is also applicable to FOCPs which dynamic constraints are described
as

Ax(k)(t) +B c
0D

α
t x(t) = g(t, x(t), u(t)), k ≥ 0,

it will be possible by applying the Lagrange multiplier technique.

5. Error Bounds for The Approximate Fractional Operators
In the ensuing text, we present upper bounds for estimating errors. The

convergence of pseudospectral methods for IOCPs and FOCPs has been dis-
cussed in [7,19,20,29]. Furthermore, in [?], efficient implementation procedures
for the Müntz-Galerkin method have been developed, accompanied by optimal
error estimates.
Let Πn,α : L2(0, 1) −→ Mn,α be the orthogonal projection defined as (Πn,αu−
u, vn) = 0 vn ∈ Mn,α, where u is an element of L2(0, 1). Following its
definition, we have:

(Πn,α)u(x) = un(x) =

n∑
k=0

ukLk(t;α),

where uj is given by (10). It can be demonstrated that (Πn,α)u(x) serves as
the best approximation to u(x) within Mn,α (refer to [?]). Additionally, we
can define the weighted Sobolev space in the interval (0, 1]:

B1
α =

{
u | u ∈ L2, ∂tu ∈ L2

w

}
,

equipped with the norm and semi-norm

∥ u ∥B1
α
= (∥ u ∥2L2 + ∥ ∂tu ∥2L2

w
)

1
2 , | u |B1

α
=∥ ∂tu ∥L2

w
.

Theorem 5.1. Consider α > 0 and w(t) = t2−α(1 − tα). The derivatives of
Müntz-Legendre functions, denoted as {∂tLn(t;α)}, are mutually orthogonal in
L2
w(0, 1), and ∫ 1

0

w(t)∂tLn(t;α)∂tLm(t;α)dt =
nα(nα+ 1)

2nα+ 1
δnm.(22)
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Proof. By using ∂tLn(t;α) = (nα+ 1)tα−1P
1, 1

α
n−1(2t

α − 1) and orthogonality of
Jacobi functions, we have∫ 1

0

w(t)∂tLn(t;α)∂tLm(t;α)dt

=

∫ 1

0

w(t)(nα+ 1)tα−1P
1, 1

α
n−1(2t

α − 1)(mα+ 1)tα−1P
1, 1

α
m−1(2t

α − 1)dt

= (nα+ 1)(mα+ 1)

∫ 1

0

tα(1− tα)P
1, 1

α
n−1(2t

α − 1)P
1, 1

α
m−1(2t

α − 1)dt

=
(nα+ 1)(mα+ 1)

α

∫ 1

0

(1− τ)τ
1
αP

1, 1
α

n−1,1(τ)P
1, 1

α
m−1,1(τ)dτ

=
nα(nα+ 1)

2nα+ 1
δnm,

where τ = tα. □

Lemma 5.2. For 0 < α < 1 and any u ∈ Mn,α, we have

∥∂tu∥L2
w
≤

√
nα(nα+ 1)∥u∥L2 .(23)

Proof. For any u ∈ Mn,α, we can write

u(t) =

n∑
k=0

ukLk(t;α), uk = (2kα+ 1)

∫ 1

0

u(t)Lk(t;α)dt.(24)

Thus, leveraging the orthogonality of Müntz-Legendre polynomials,

∥u∥2L2 =

n∑
k=0

|uk|2

2kα+ 1
.

By differentiating (24) and utilizing (22), we can derive:

∥u∥2L2
w
=

n∑
k=1

n∑
j=1

ukuj(∂tLk(t;α), ∂tLj(t;α)) =

n∑
k=1

kα(kα+ 1)

2kα+ 1
|uk|2

≤ nα(nα+ 1)∥u∥2L2 .

□

Theorem 5.3. Let 0 < α < 1 and c
0D

kα
t u(t) ∈ C (0, 1] for k = 0, 1, . . . , n+ 1,

then the error bound can be represented as follows

∥Πn,αu− u∥L2 ≤ κα,1

Γ((n+ 1)α+ 1)
√
(2(n+ 1)α+ 1)

,(25)

and

∥∂t(Πn,αu− u)∥L2
w
≤

κα,1

√
nα(nα+ 1)

Γ((n+ 1)α+ 1)
√
(2(n+ 1)α+ 1)

,(26)

where κα,1 is a positive constant such that |c0D
(n+1)α
t u(t)| < κα,1, x ∈ (0, 1].
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Proof. By the definition of the best approximation Πn,αu, we can write

∥Πn,αu− u∥L2 ≤ ∥u− vn∥L2 , ∀vn ∈ Mn,α.

We consider the Generalized Taylors formula vn(t) =
∑n

k=0

c
0D

kα
t u(t)(0)

Γ(kα+1) tkα, it
is easy to obtain

|u(t)−
n∑

k=0

c
0D

kα
t u(t)(0)

Γ(kα+ 1)
tkα| ≤ t(n+1)α

Γ((n+ 1)α+ 1)
κα,1,

then

∥ Πn,αu− u ∥2L2≤∥ t(n+1)α

Γ((n+ 1)α+ 1)
κα,1 ∥2L2 =

κ2
α,1

Γ((n+ 1)α+ 1)2

∫ 1

0

t2(n+1)αdt

=
κ2
α,1

Γ((n+ 1)α+ 1)2(2(n+ 1)α+ 1)
,

By taking the square roots, the inequality (25) can be obtained. Also, by using
Lemma (5.2), we can conclude the second inequality. □

The next Theorem gives the error bounds for left RLFI and left and right
CFD are introduced in Section 2.

Theorem 5.4. Under the conditions of Theorem 5.3,

∥ 0I
α
t Πn,αu− 0I

α
t u ∥L2 ≤ κα,1

Γ(1 + α)Γ((n+ 1)α+ 1)
√
(2(n+ 1)α+ 1)

,

∥ c
0D

α
t Πn,αu− c

0D
α
t u ∥L2 ≤ κα,2

Γ(nα+ 1)
√
(2nα+ 1)

,

∥ c
tD

α
1Πn,αu− c

tD
α
1 u ∥L2 ≤ κα,2

Γ(nα+ 1)
√
(2nα+ 1)

,

where |c0Dnα
t u(t)| < κα,2, x ∈ (0, 1].

Proof. For the first inequality, By using the convolution Theorem, we have

∥ u ∗ v ∥Lp≤∥ u ∥1∥ v ∥Lp .

Then we have the following relations

∥ 0I
α
t Πn,αu−0 I

α
t u ∥L2 =∥ 1

Γ(α)

∫ t

0

(t− s)α−1(u(s)−Πn,αu(s))ds ∥L2

=∥ 1

Γ(α)
tα−1 ∗ (u(t)−Πn,αu(t)) ∥L2

≤∥ Πn,αu(t)− u(t) ∥L2

1

Γ(α)

∫ 1

0

tα−1dt

≤ κα,1

Γ(1 + α)Γ((n+ 1)α+ 1)
√
(2(n+ 1)α+ 1)
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Since Πn,α
c
0D

α
t u ∈ Mn−1,α, according to Theorem (5.3) , the second inequality

can be obtained easily. Finally, one can verify that left and right CFD satisfy
c
tD

α
1 u(t) =

c
0 Dα

y u(y), where y = 1− t, so we can obtain the last inequality. □

Theorem 5.5. Let {ti}ni=0 be the collocation points and the conditions of
Theorem 5.3, there is a constant κα,3 such that

max
t∈[t1,tn−1]

| u(t)−Πn,αu(t) |≤ κα,3(
1 +

√
nα(nα+ 1)

Γ((n+ 1)α+ 1)
√

(2(n+ 1)α+ 1)
)

Proof. Let d =
√
tn−1 − t1 and using Gagliardo-Nirenberg interpolation in-

equality (see appendix B of [?]), we have the following inequality

max
t∈[t1,tn−1]

| u(t)−Πn,αu(t) |≤
1

d
∥ Πn,αu(t)− u(t) ∥L2(t1,tn−1)

+ d ∥ ∂t(Πn,αu(t)− u(t)) ∥L2(t1,tn−1)

≤ 1

d
∥ Πn,αu(t)− u(t) ∥L2(0,1) +dM1 ∥ ∂t(Πn,αu(t)− u(t)) ∥L2

w(0,1)

≤ κα,3(
1 +

√
nα(nα+ 1)

Γ((n+ 1)α+ 1)
√

(2(n+ 1)α+ 1)
),

where κα,3 =
κα,1 max(1,d2M1)

d and

M2
1 = max

x∈[x1,xn−1]

1

t2−α − t2
=

1

t2−α
1 − t21

= max(
1

t2−α
1 − t21

,
1

t2−α
n−1 − t2n−1

).

□

In the following Theorem, we give the upper bound of the system dynamics
for the introduced methods. For this, we define

En,α = x(t)− xn,α,

where xn,α represents a numerical solution obtained using introduced method.

Theorem 5.6. Under the conditions of theorem 5.3 and G(t, x(t), u(t)) =
g(t, x(t)) + a(t)u(t) as a system dynamics for FOCP introduced in (6) is Lips-
chitz, with the Lipschitz constant η, then the error bound En,α for (6) is given
by

∥ En,α ∥L2≤ 2max(η,M2)κα,1

Γ(1 + α)Γ((n+ 1)α+ 1)
√
2(n+ 1)α+ 1

,

where | a(t) |≤ M2.
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Proof. Taking the left RLFI of both side of the c
0D

α
t x(t) = g(t, x(t) + a(t)u(t),

again by using (25), we can get

∥ En,α ∥L2 =∥ x(t) + x0 −
1

Γ(α)

∫ t

0

(t− s)α−1(g(s,Πn,αx(s)) + a(s)Πn,αu(s))ds ∥L2

=∥ 1

Γ(α)

∫ t

0

(t− s)α−1(g(s,Πn,αx(s)) + a(s)Πn,αu(s)− g(s, x(s))− a(s)u(s))ds ∥L2

≤ 1

Γ(α)
∥ tα−1 ∥1∥ g(t,Πn,αx(t))− g(t, x(t)) + a(t)Πn,αu(t)− a(t)u(t) ∥L2

≤ 1

Γ(1 + α)
(η ∥ x(t)−Πn,αx(t) ∥L2 +M2 ∥ u(t)−Πn,αu(t) ∥L2)

≤ 2max(η,M2)κα,1

Γ(1 + α)Γ((n+ 1)α+ 1)
√

2(n+ 1)α+ 1

□

Remark 5.7. It is important to note that we can find upper bound for general
system dynamics by imposing some extra conditions.

6. Applications and Numerical Results
In this section, we showcase the capability and efficiency of the introduced

approaches. To achieve this goal, we provide several numerical examples for
various cases and apply the introduced method to solve them. The MATLAB
function fsolve is employed for solving the nonlinear systems. In cases where
the exact solution x(t) and u(t) are known, the dependence of approximation
errors on the discretization parameter n is estimated in the 2-norm, as follows:

Ex =

√√√√ n∑
k=0

(xn(tk)− x(tk))2,

Eu =

√√√√ n∑
k=0

(un(tk)− u(tk))2,

Where xn(t) and un(t) are the obtain solution by using the proposed methods
and x(t) and u(t) are the exact solutions. Also, with increasing n, the linear
system obtained from methods going to be ill- posed, then we use the proper
numerical method to compute the solution of it.

Example 6.1. (Linear time -invariant problem) Consider the following linear
time invariant FOCP in which 0 < α < 1. The problem is to find and optimal
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(x∗(t), u∗(t)) that minimize the cost function [1,29]

J =
1

2

∫ 1

0

(x2(t) + u2(t)),

s.t. c
0D

α
t x(t) = −x(t) + u(t),

and x(0) = 1.

For this problem, we have the exact solution in the case of α = 1 as follows

x(t) = cosh(
√
2t) + ρ sinh(

√
2t),

u(t) = (1 +
√
2ρ) cosh(

√
2t) + (

√
2 + ρ) sinh(

√
2t),

where

ρ = −cosh(
√
2) +

√
2 sinh(

√
2)√

2 cosh(
√
2) + sinh(

√
2)

.

We obtain the numerical solutions x(t) and u(t) for various values of α with
n = 4. The results are depicted in Fig. 4 (right-column). Additionally, Fig.
4 (left-column) displays the state and control variables obtained by [7], where
the Jacobi-Gauss points were chosen. It is evident that this choice struggles to
approximate these functions near 0 and 1. As α approaches 1, the solutions
of the FOCP converge to those of the IOCP. In Fig. 5, numerical results
for this problem with α = 0.8 obtained by the present method with various
values of n at specific points t ∈ [0, 1] are presented. To provide an overview
of the convergence rate, we plot Ex and Eu as functions of the discretization
parameter n for our method and the method introduced in [7] in Fig. 6 (right
and left, respectively). Their method exhibits semiconvergence; for small n,
the method converges and then abruptly starts to diverge. The accuracy and
convergence of the method are illustrated by increasing the correct decimal
places of the approximations, as shown in Tables 1-2. Furthermore, we obtain
the value of the cost function J = 0.17190925809 for α = 0.95 and n = 5.

Example 6.2. As a second example, we study another FOCP as follows [7]

min J =

∫ 1

0

((u(t)− t)2 + (x(t)− tα+1

Γ(α+ 2)
− tα

Γ(α+ 1)
)2dt,

s.t c
0D

α
t x(t) = u(t) + 1, x(0) = 0,

where the optimal solution to this problem is (x∗(t), u∗(t)) = ( tα+1

Γ(α+2)+
tα

Γ(α+1) , t).

The estimated solutions for various values of α with n = 3, and the values
of Ex and Eu obtained by our method (on the right) and those introduced
in [7](on the left) are illustrated in Figs. 7-8, respectively. Additionally, we
demonstrate the increase in the number of correct decimal places of the ap-
proximate solutions in Tables 3-4. We achieved a numerical cost function of
J ≈ 0 for any α and n = 5.
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Table 1. Approximate solution of x(t) for α = .9 with differ-
ent n and t.

Table 2. Approximate solution of u(t) for α = .9 with differ-
ent n and t.

Table 3. Approximate solution of x(t) for α = .8 with differ-
ent n and t.
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Figure 4. Approximate solution of x(t) and u(t) for some α
obtained by our method (right-column) and [7] (left-column).

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

x(
t)

n=2
n=3
n=4
n=5

0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

u(
t)

n=2
n=3
n=4
n=5

Figure 5. The behavior of x(t) and u(t) for α = .8 with
different values of n.

Example 6.3. ( Nonlinear time -variant problem) We consider the following
nonlinear FOCP with fixed final time: Find the control u∗(t) and the state x∗(t)
which minimizes the performance index [25]

J =

∫ 1

0

(tu(t)− (α+ 2)x(t))2dt,
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Figure 6. The errors Ex and Eu obtained by our method
(right) and [7] (left).

Figure 7. Approximate solution of x(t) and u(t) for different
values of α.

subject to the dynamic system

x′(t) +c
0 D

α
t x(t) = u(t) + t2,

and the boundary conditions

x(0) = 0, x(1) =
2

Γ(3 + α)
.

The solution is given by

(x∗(t), u∗(t)) = (
2tα+2

Γ(α+ 3)
,

2tα+1

Γ(α+ 2)
).
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Figure 8. The errors Ex and Eu obtained by our method
(right) and [7] (left).

Table 4. Approximate solution of u(t) for α = .8 with differ-
ent n and t.

The problem is solved for different values of n and α. Fig. 9 shows the exact
and approximate state x and the control u as a function of t for n = 4 and
different values of α. Also in Fig. 10, the numerical solution x(t) and u(t)
at α = .7 for different values of n = 2, 3, 4, 5 are plotted. In this example
we take α = .7 and the errors Ex and Eu are shown in Fig. 11. In Tables
5-6, we provide the approximated solution for x(t) and u(t) for α = .8 and
with different values n to show the correct decimal of the approximations. The
numerical cost function J ≈ 0 for any α and n = 5 is obtained.
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Figure 9. Exact and approximation solutions of x(t) and u(t)
for different values of α.

Figure 10. The behavior of x(t) and u(t) for α = .7 with
different values of n.

Example 6.4. Consider the following nonlinear FOCP [20]

minimum J =

∫ 1

0

(x(t)− t2) + (u(t) + t4 − 20

9Γ(.9)
t.9)2dt,

c
0D

1.1
t x(t) = t2x(t) + u(t),

x(0) = x′(0) = 0.

For this problem x∗(t) = t2 and u∗(t) = 20
9Γ(.9) t

.9 − t4. This problem has
been numerically solved by applying a method which we introduced in section
5. In Fig. 12, the state variable x(t) and the control variable u(t) are plotted
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Figure 11. The errors Ex and Eu for α = .7, .8, .9.

Table 5. Approximate solution of x(t) for α = .8 with differ-
ent n and t.

for various of α around 1.1 and n = 4. The value J ≈ 0 for any α and n = 5 is
obtained for the cost function.

Example 6.5. Let us consider the following FOCP that minimize [36]

J =

∫ 1

0

(−2e1+t2+x(t) + e2(1+t2+x(t)) + 8

√
t

π
u(t)− 2u(t)sin(1 + t2)

+ u2(t) + 16
t

π
− 8

√
t

π
sin(1 + t2) + sin2(1 + t2) + 1)dt,
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Table 6. Approximate solution of u(t) for α = .8 with differ-
ent n and t.

Figure 12. Approximate solutions for n = 5 and different
values of α.

with the given system dynamics and boundary conditions
c
0D

1.5
t x(t) = sin(x(t)) + u(t),

x(0) = −1 x′(0) = 0.

The exact solution for the pair of control and state functions is

(x∗(t), u∗(t)) = (−t2 − 1,−4

√
t

π
+ sin(1 + t2)).
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Table 7. Absolute error of the state and the control functions
for Examples 4 and 5

Fig. 13 displays the exact and approximation solution for x(t) and u(t) for
α = 1.5, n = 5 and some others α around 1.5. The value J ≈ 0 for α = 1.5
and n = 5 is obtained for the cost function. Also, we can see the absolute error
of the state and control functions for some t ∈ (0, 1) and n = 4 in Table 7 for
Example 6.4 and 6.5.

Figure 13. Approximate solutions for n = 5 and different
values of α.

7. Conclusion
In this paper, we introduced an innovative method called the Müntz- Le-

gendre In conclusion, this study introduces the innovative method using Müntz-
Legendre polynomials as a promising approach for effectively solving FOCP.
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By leveraging the robust properties of Müntz polynomials, this method aims to
achieve both efficiency and stability in the numerical evaluation of fractional
operators. Through a comprehensive analysis of error bounds and rigorous
convergence analysis, the reliability and convergence properties of the Müntz-
Legendre polynomials have been established. Additionally, numerical exam-
ples have been provided to demonstrate the method’s effectiveness in solving
FOCPs, highlighting its accuracy and computational efficiency. The proposed
method contributes significantly to the advancement of numerical techniques
for fractional calculus applications, with potential implications across various
engineering and scientific domains. Future research could focus on further re-
fining the method and exploring its applicability in more complex systems,
thereby expanding its scope and impact in the field.
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