

INVESTIGATING MODULES WITH PARTIAL ENDOMORPHISMS HAVING µ-SMALL KERNELS

A. EL MOUSSAOUY[®][,](https://orcid.org/0000-0001-9630-4698) A. R. MONIRI HAMZEKOLAEE $^{\circledR}$ \boxtimes , M. ZIANE[®], AND S. ASGARI^C

Article type: Research Article

(Received: 01 May 2024, Received in revised form 23 July 2024) (Accepted: 27 September 2024, Published Online: 28 September 2024)

ABSTRACT. In this paper, we introduce and study the concept of generalized monoform modules $(G - M \text{ modules}, \text{ for short})$ which is a proper generalization of that of monoform modules. We present some of their examples, properties and characterizations. It is shown that over a commutative ring R, the properties monoform, small monoform, $G - M$, compressible, uniform and weakly co-Hopfian are all equivalent. Moreover, we demonstrate that a ring R is an injective semisimple ring iff any R-module is $G - M$. Further, we prove a similar theorem to Hilbert's basis theorem for monoform, small monoform and $G - M$ modules.

Keywords: Monoform modules, Small monoform modules, $G - M$ modules.

2020 MSC: Primary 16D40, 16D10, 16P40.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unitary R -modules. Let L be an R -module, for submodules A and B of L, $A \leq B$ denotes that A is a submodule of B, $A \leq^{\oplus} L$ denotes that A is a direct summand of L, $E(L)$ denotes the injective hull of L and $\text{End}_R(L)$ denotes the ring of endomorphisms of L. The study of modules by properties of their endomorphisms is a classical research subject. In [\[18\]](#page-12-0), Zelmanowitz introduced the concept of monoform modules. Recall that a partial endomorphism of a module M is a homomorphism from a submodule of M into M . A module is monoform if any of its non-zero partial endomorphism is monomorphism. A monoform module is uniform (i.e., any two non-zero submodules have non-zero intersection). A submodule N of L is called a small submodule of L if whenever $N + K = L$ for some submodule K of L, we have $L = K$, and in this case we write $N \ll L$. A module L is called small if it is a small submodule of some module. In [\[11\]](#page-12-1), Inaam Hadi and Hassan Marhun introduced and studied the notion of small monoform modules. An R-module L is called a small monoform module, if any non-zero partial endomorphism of L has a small kernel.

a.monirih@umz.ac.ir, ORCID: 0000-0002-2852-7870

<https://doi.org/10.22103/jmmr.2024.23354.1640> © the Author(s)

ை க

Publisher: Shahid Bahonar University of Kerman

How to cite: A. El Moussaouy, A. R. Moniri Hamzekolaee, M. Ziane, S. Asgari,

Investigating modules with partial endomorphisms having µ-small kernels, J. Mahani Math. Res. 2025; 14(1): 249-262.

Recently, some works have been done concerning some variations of Hopfian, co-Hopfian and also monoform modules see [\[2–](#page-12-2)[4,](#page-12-3) [7\]](#page-12-4).

Motivated by the above-mentioned works, we are interested in introducing a new generalization of monoform modules namely $G - M$ modules. We call a module $L G - M$ if for every non-zero submodule N of L and for each $f \in Hom_R(N, L), f \neq 0$ implies $Ker f \ll u N$. The concept of $G - M$ modules forms a proper generalization of monoform modules (Example [2.2\)](#page-2-0). It is obvious that any small monoform module is $G-M$. Example [2.18](#page-6-0) demonstrates that the converse is false, in general.

Our paper is structured as follows:

In Section 1, we give some known results which we will cite or use throughout this paper.

In Section 2, we present some equivalent properties and characterizations of $G - M$ modules. A non-zero R-module L is called compressible provided for each non-zero submodule N of L there exists a monomorphism $f: L \rightarrow$ N. We have the obvious implications: compressible \Rightarrow monoform \Rightarrow small monoform \Rightarrow G − M. We will see later that under certain conditions the properties monoform, uniform, compressible, small monoform and $G - M$ are coincide (Corollary [2.9\)](#page-4-0). The dual of an R-module L is $Hom_R(L, R)$, this will be denoted by L^* . If the natural map $L \to (L^*)^*$ is bijective, L will be called reflexive. We prove that for a quasi-Frobenius principal ring R , if L is a $G - M$ cosingular R-module, then L is reflexive and $E(L^*)$ is finitely generated (Proposition [2.11\)](#page-4-1). In proposition [2.15,](#page-5-0) we obtain that if L is a fully retractable R-module such that for every $0 \neq N \leq L$, the kernel of any nonzero endomorphism of N is μ -small, then L is $G - M$. In [\[5\]](#page-12-5), we investigated and introduced the concept of μ -Hopfian modules. An R-module L is called μ -Hopfian if every surjective endomorphism of L has a μ -small kernel. We show that for a semisimple quasi-injective R -module L , the properties μ -Hopfian and $G - M$ are equivalent (Proposition [2.16\)](#page-5-1).

In Section 3, we consider the monoform, small monoform and $G - M$ properties of the $R[x]/(x^{n+1})$ -modules $L[x]/(x^{n+1})$.

For a ring R and a right R-module L, let $Z^*(L) = \{x \in L: xR \text{ is small}\}.$ If $Z^*(L) = 0$ (resp., $Z^*(L) = L$), then L is called a noncosingular (resp., cosingular) module (see [\[13\]](#page-12-6)).

A submodule K of L is said to be μ -small in L ($K \ll_{\mu} L$), if $L = K + H$ with L/H is cosingular, then $L = H$, see [\[17\]](#page-12-7). It is clear that if $B \ll L$, then $B \ll_{\mu} L$, but the converse is not true in general, see [\[17,](#page-12-7) Examples and Remarks 2.10].

Let R be a ring and L an R -module. We now state a few well-known preliminary results:

Remark 1.1. (1) Let R be a commutative ring and L an R-module. Then L is monoform if and only if L is uniform prime [\[15\]](#page-12-8).

Investigating modules with partial endomorphisms... – JMMR Vol. 14, No. 1 (2025) 251

- (2) Let R be a commutative ring. Then every compressible R-module is monoform [\[15\]](#page-12-8).
- (3) It is clear that every monoform R-module is a small monoform module. However, the converse in general is not true. \mathbb{Z}_4 is a small monoform Z-module while it is not monoform [\[11\]](#page-12-1).
- (4) Let L be a semisimple R -module. Then the following are equivalent [\[11\]](#page-12-1).
	- (a) L is small monoform;
	- (b) L is monoform;
	- (c) L is simple.

We list some properties of μ -small submodules that will be used in the paper.

Lemma 1.2. ($[17]$) Let L be an R-module.

- (1) Let $X \leq Y \leq L$. Then $Y \ll_{\mu} L$ iff $X \ll_{\mu} L$ and $Y/X \ll_{\mu} L/X$.
- (2) Let $X \leq L$ and $Y \leq L$. Then $X + Y \ll_{\mu} L$ iff $X \ll_{\mu} L$ and $Y \ll_{\mu} L$. Moreover, if X_1 , X_2 , ..., X_n are submodules of L with $X_i \ll_{\mu} L$, \forall $i = 1, ..., n$, then $\sum_{i=1}^{n} X_i \ll_{\mu} L$.
- (3) Let $f: L \to N$ be a homomorphism. If $X \ll_{\mu} L$, then $f(X) \ll_{\mu} N$.
- (4) Let $L = L_1 \oplus L_2$ be a module, $X_1 \leq L_1$ and $X_2 \leq L_2$. Then $X_1 \oplus X_2 \ll_{\mu}$ $L_1 \oplus L_2$ iff $X_1 \ll_{\mu} L_1$ and $X_2 \ll_{\mu} L_2$.
- (5) Let L be a module and let $X \leq Y \leq L$. If $Y \leq^{\oplus} L$ and $X \ll_{\mu} L$, then $X \ll_{\mu} Y$.

Lemma 1.3. ($\langle 5 \rangle$) Let K be a submodule of a module L. Then the following statements are equivalent.

- (1) $K \ll_{\mu} L$.
- (2) If $X + K = L$, then $X \leq^{\oplus} L$ and L/X is semisimple injective.

2. Modules in which every partial endomorphism has a μ small kernel

Definition 2.1. An R-module L is called $G - M$ if for every non-zero submodule N of L and for each $f \in Hom_R(N, L)$, $f \neq 0$ implies $Ker f \ll_\mu N$.

Example 2.2. Let $H = \mathbb{Z}_q$ ^{∞}. Since H is a hollow group, each proper subgroup is μ -small, hence H is a $\hat{G} - M$ group. But H is not monoform because the multiplication by q induces an endomorphism of H which is not a monomorphism.

Theorem 2.3. The following are equivalent for an R -module L :

- (1) L is $G M$.
- (2) For every non-zero partial endomorphism $f \in Hom(N, L)$ where $0 \neq$ $N \leq L$, if there exists $P \leq N$ such that $f(P) = f(N)$, then there exists an injective semisimple direct summand H of N such that $N = H \oplus P$.

Proof. (1) \Rightarrow (2) Assume that $f \in Hom(N, L)$ where $0 \neq N \leq L$ is a non-zero partial endomorphism. If there exists $P \leq N$ such that $f(P) = f(N)$, then $Ker f + P = N$. Since L is $G - M$, $Ker f \ll_{\mu} N$. By Lemma [1.3,](#page-2-1) $N = H \oplus P$ for some injective semisimple $H \leq N$.

 $(2) \Rightarrow (1)$ Let $f \in Hom(N, L)$ where $0 \neq N \leq L$ be a non-zero partial endomorphism and $Ker(f) + P = N$ for some $P \leq N$, where N/P is cosingular. Then $f(P) = f(N)$. By (2), there exists an injective semisimple direct summand H of N such that $N = H \oplus P$, then N/P is noncosingular by [\[13,](#page-12-6) Lemma 4. Thus $N/P = 0$. Therefore $N = P$ and $Ker(f) \ll_{\mu} N$.

 \Box

Proposition 2.4. Every $G - M$ cosingular module is uniform.

Proof. Let L be a $G-M$ cosingular R-module. Suppose there exists a non-zero submodule N of L such that N is not essential in L . So, there exists a relative complement K of N in L such that $N \oplus K$ is essential in L. Let $f : N \oplus K \to L$ define by $f(n+k) = k$ for all $n+k \in N \oplus K$. It is clear that f is well defined and $f \neq 0$. Since L is $G-M$, $Ker f = \{0\} \oplus K \ll u N \oplus K$. So, by Lemma [1.3,](#page-2-1) K is injective semisimple. Thus K is noncosingular by [\[13,](#page-12-6) Lemma 4]. Since L is cosingular, K is also cosingular, then K must be zero. This implies that N is essential in L, contradiction.

 \Box

Recall that a non-zero right R -module L is called prime, if whenever N is a non-zero submodule of L and A is an ideal of R such that $NA = 0$, then $LA = 0.$

Example 2.5. It is clear that a simple module is $G-M$ prime. But in general, the converse is not true. For example, $\mathbb Z$ is a $G-M$ prime $\mathbb Z$ -module. However, Z is not simple.

Definition 2.6. [\[10\]](#page-12-9). Let L be an R -module. Then L is called weakly co-Hopfian if every its injective endomorphism has an essential image.

Recall that an Artinian principal ideal ring is a left and right Artinian, left and right principal ideal ring.

Theorem 2.7. Let R be an Artinian principal ideal ring and L be a cosingular R-module. Then the following statements are equivalent:

- (1) L is $G M$ prime;
- (2) *L* is simple.

Proof. (1) \Rightarrow (2) Suppose L is a $G - M$ prime module. Since L is cosingular, so L is uniform by Proposition [2.4.](#page-3-0) Thus L is weakly co-Hopfian. As R is an Artinian principal ideal ring, then by [\[1,](#page-12-10) Theorem 3.8], L is finitely generated. Hence there exists an epimorphism $g: R \to L$ such that $R/ann_R(L) \cong L$. Since L is a prime module, $ann_R(L)$ is a prime ideal of R. Hence $ann_R(L)$ is maximal in R as R is Artinian. Thus L is a simple module.

Investigating modules with partial endomorphisms... – JMMR Vol. 14, No. 1 (2025) 253

 $(2) \Rightarrow (1)$ It is clear.

Example 2.8. Every compressible R-module is $G-M$. In general, the converse is not true. For example, \mathbb{Q} is a $G - M \mathbb{Z}$ -module. But it is not compressible because $Hom_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}) = \{0\}.$

Corollary 2.9. Let R be an Artinian principal ideal ring and L be a prime cosingular R-module. Then the following statements are equivalent:

- (1) L is $G M$;
- (2) *L* is monoform;
- (3) L is small monoform;
- (4) *L* is compressible;
- (5) *L* is uniform;
- (6) L is weakly co-Hopfian.

Proof. (1) \Rightarrow (2) By Theorem [2.7,](#page-3-1) L is a simple module, then L is monoform. $(2) \Rightarrow (1)$ It is clear.

 $(1) \Leftrightarrow (3)$ By [\[17\]](#page-12-7), if L is cosingular and if $K \leq L$, then $K \ll L$ if and only if $K \ll_{\mu} L$. Therefore L is $G - M$ iff L is a small monoform module.

 $(1) \Rightarrow (4)$ By (1) , we obtain that L is a uniform prime finitely generated module hence, by [\[15,](#page-12-8) Lemma 26.2.9], L is compressible.

 $(4) \Rightarrow (1)$ By Remark [1.1,](#page-0-0) every compressible module is monoform, then it is $G - M$.

 $(2) \Rightarrow (5)$ It is clear.

 $(5) \Rightarrow (2)$ Suppose that L is a uniform module. According to the proof of $(1) \Rightarrow (2)$, L is simple. Thus, L is monoform.

 $(5) \Rightarrow (6)$ It is clear.

 $(6) \Rightarrow (5)$ Assume that L is a weakly co-Hopfian module. Then L is simple. Thus, L is uniform.

 \Box

 \Box

Corollary 2.10. Let R be an Artinian principal ideal ring and L a $G - M$ cosingular R-module. Then $\text{End}(L)$ is a local ring.

Proof. Since L is a finitely generated module over an Artinian ring, by Theo-rem [2.7,](#page-3-1) L is of finite length. And since L is uniform, L is indecomposable of finite length. Thus, $End(L)$ is a local ring.

 \Box

Proposition 2.11. Let R be a principal quasi-Frobenius ring and L a $G - M$ cosingular R-module. Then the following statements hold:

- (1) *L* is reflexive.
- (2) L^* and $E(L^*)$ are finitely generated.

Proof. 1) According to Theorem [2.7,](#page-3-1) L is a finitely generated R-module. Thus, by $[12,$ Theorem 15.11], L is reflexive.

2) Since R is Artinian and L^* is finitely generated, $E(L^*)$ is finitely generated.

Proposition 2.12. Let L be a $G - M$ module and f be a surjective endomorphism of L, $N \leq L$. Then $f(N) \ll_{\mu} L$ if and only if $N \ll_{\mu} L$.

Proof. \Rightarrow) Let $N + Y = L$ with L/Y cosingular for some $Y \leq L$. Then $f(N) + f(Y) = L$. Since the class of cosingular R-modules is closed under homomorphic images, $L/f(Y)$ is cosingular. Then $f(Y) = L$ as $f(N) \ll_u L$. This implies that $Ker f + Y = L$. Being L a $G-M$ module implies $Ker f \ll_{\mu} L$. Hence $Y = L$. Therefore $N \ll_{\mu} L$. \Leftarrow) By Lemma [1.2.](#page-2-2)

 \Box

Definition 2.13. (14) A module L is said to be fully retractable if for any non-zero submodule N of L and every non-zero $g \in Hom_R(N,L)$ we have $Hom_R(L, N)g \neq 0.$

Example 2.14. According to [\[14\]](#page-12-12), \mathbb{Z}_4 is a fully retractable \mathbb{Z} -module.

Proposition 2.15. Let L be a fully retractable R-module such that for every non-zero submodule N of L , the kernel of any non-zero endomorphism of N is μ -small. Then L is $G - M$.

Proof. Let $0 \neq N \leq L$ and $f : N \to L$ such that $f \neq 0$. Since L is fully retractable, there exists $g: L \to N$, $g \neq 0$. Consider

$$
N \xrightarrow{f} L \xrightarrow{g} N
$$

We have $gf \neq 0$ as L is fully retractable. By hypothesis, $Ker(gf) \ll_{\mu} N$. Since $Ker f \subseteq Ker(gf)$, according to Lemma [1.2,](#page-2-2) $Ker f \ll_{\mu} N$. It follows that L is $G - M$.

 \Box

Proposition 2.16. Let L be a semisimple quasi-injective R-module. Then the following statements are equivalent:

- (1) L is $G M$;
- (2) L is μ -Hopfian.

Proof. (1) \Rightarrow (2) Is clear.

 $(2) \Rightarrow (1)$ Let $0 \neq N \leq L$ and $f : N \to L$ such that $f \neq 0$. Since L is quasi-injective, there exists $g \in End_R(L)$ such that $gi = f$ where i is the inclusion map. Hence, $g(x) = f(x)$ for each $x \in N$ and so $Ker f \leq Ker g$. Since L is μ -Hopfian, $Kerg \ll_{\mu} L$. So $Ker f \ll_{\mu} L$. On the other hand, $Ker f \leq N$ and L is semisimple, then N is a direct summand of L . Hence, by Lemma [1.2,](#page-2-2) $Ker f \ll_{\mu} N$. This shows that L is $G - M$.

 \Box

Corollary 2.17. If R is a semisimple ring, then every R-module is $G - M$.

Proof. By [\[5,](#page-12-5) Theorem 2.10] and Proposition [2.16.](#page-5-1)

It is obvious that every small monoform module is $G - M$. The following example shows that the converse is false, in general.

Example 2.18. Let R be a semisimple ring. According to Corollary [2.17,](#page-6-1) $R^{(\mathbb{N})}$ is $G-M$. But the kernel of every non-zero endomorphism of $R^{(\mathbb{N})}$ is not small by [\[5,](#page-12-5) Example 2.11]. Thus $R^{(\mathbb{N})}$ is not a small monoform module.

A ring R is a right GV -ring if every simple R -module is either projective or injective. In [\[16\]](#page-12-13), the authors proved that every simple module is small if and only if R is a right GV -ring. It follows directly from [\[16,](#page-12-13) Theorem 3.1], that R is a right GV -ring if and only if R has no simple (semisimple) injective R-module.

Corollary 2.19. Let R be a right GV-ring and L an R-module. Then the following statements are equivalent:

- (1) L is $G M$;
- (2) L is small monoform.

Proof. (1) \Rightarrow (2) Let L be a G-M module, N be a non-zero submodule of L and $f \in Hom(N, L)$ be a non-zero partial endomorphism. Assume $Ker f + K = N$ for some $K \leq N$. As L is a $G-M$ module, $Ker f \ll_{\mu} N$. Then by Theorem [2.3,](#page-2-3) $N = K \oplus H$ for some injective semisimple submodule H of N. By hypothesis, $H = 0$. This implies that $N = K$ and so $Ker f \ll N$. Hence L is a small monoform module.

 $(2) \Rightarrow (1)$ Is clear.

 \Box

Definition 2.20. (9) A right Goldie ring is a ring R that has finite uniform dimension as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of R

Proposition 2.21. Let R be a prime right Goldie ring which is not a right primitive (e.g. a commutative domain which is not a field) and L a semisimple R-module. Then the following assertions are equivalent:

- (1) L is $G M$;
- (2) *L* is monoform;
- (3) L is small monoform;
- (4) *L* is simple.

Proof. $(2) \Leftrightarrow (3) \Leftrightarrow (4)$ By Remark [1.1.](#page-0-0)

 $(1) \Rightarrow (2)$ Let N be a non-zero submodule of L and $f \in Hom(N, L)$ a non-zero partial endomorphism. Since L is $G - M$, $Ker f \ll_{\mu} N$. As R is a prime right Goldie ring which is not a right primitive ring, N is cosingular

by $[13, Corollary 9]$ $[13, Corollary 9]$, and it is semisimple as L is semisimple, hence the only μ -small submodule of N is zero. So $Ker f = 0$, this completes the proof. $(2) \Rightarrow (1)$ Is clear.

Lemma 2.22. For an R-module L, consider the following statements.

- (1) L is $G M$.
- (2) For every right R-module Y, if there is an epimorphism $L \to L \oplus Y$, then Y is semisimple injective. Then $(1) \Rightarrow (2)$.

Proof. (1) \Rightarrow (2) Let $g: L \to L \oplus Y$ be a surjective homomorphism, and let $\pi : L \oplus Y \to L$ the natural projection. It is obvious that $Ker(\pi g) =$ $g^{-1}(0 \oplus Y)$. Since L is $G - M$, $Ker(\pi g) \ll_{\mu} L$. According to Lemma [1.2,](#page-2-2) $0 \oplus Y = g[g^{-1}(0 \oplus Y)] = g(Ker(\pi g)) \ll_{\mu} L \oplus Y$. Thus $Y \ll_{\mu} Y$ by Lemma [1.2.](#page-2-2) Therefore, Y is semisimple injective by Lemma [1.3.](#page-2-1)

 \Box

 \Box

In the following, we characterize the class of rings R for which every (free) R- module is $G - M$.

Theorem 2.23. Let R be a ring. The following assertions are equivalent:

- (1) R is semisimple:
- (2) Any R-module is $G M$;
- (3) Any projective R-module is $G M$;
- (4) Any free R-module is $G M$.

Proof. (1) \Rightarrow (2) By Corollary [2.17](#page-6-1)

 $(2) \Rightarrow (3) \Rightarrow (4)$ Clear.

 $(4) \Rightarrow (1)$ Let $L = R^{(\mathbb{N})}$, by (4) L is a $G - M$ R-module. Since $L \cong L \oplus L$, L is semisimple injective by Lemma [2.22.](#page-7-0) Therefore R is a semisimple ring.

 \Box

Proposition 2.24. Every non-zero submodule of a $G - M$ module is $G - M$.

Proof. Let N be a non-zero submodule of a $G - M$ module L. For any 0 \neq $K \leq N$, let $f: K \to N$ be a non-zero partial endomorphism of N, then $if \neq 0$ where $i : N \to L$ is the inclusion mapping. Since L is $G - M$, $Ker(i f) \ll_{\mu} K$, hence $Ker f \ll_{\mu} K$, and so N is $G - M$.

Remark 2.25. Let $\pi : \mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$, where π is the natural projection. However $\mathbb{Z}/12\mathbb{Z}$ is not a $G - M$ Z-module as $\overline{0} \neq f = 4\overline{x} \in \text{End}(\mathbb{Z}/12\mathbb{Z})$ and $Ker f = \leq$ $\overline{3}$ > is not μ -small in $\mathbb{Z}/12\mathbb{Z}$.

(1) Let $L = \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$. Each of $\mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/4\mathbb{Z}$ is a $G - M$ module (because every of each is small monoform). Since $L \cong \mathbb{Z}/12\mathbb{Z}$. Then the direct sum of $G - M$ modules is not necessarily $G - M$.

(2) Since $\mathbb Z$ is a $G-M \mathbb Z$ -module and $\mathbb Z/12\mathbb Z$ is not $G-M \mathbb Z$ -module. Then the homomorphic image of $G - M$ module is not necessarily $G - M$.

Proposition 2.26. Let L be a Noetherian R-module. Then L is $G - M$ iff any non-zero 3-qenerated submodule of L is $G - M$.

Proof. \Rightarrow Clear from Proposition [2.24.](#page-7-1)

 \Leftarrow) Suppose that any non-zero 3-generated submodule of L is $G-M$. Let N be a non-zero submodule of L and $f: N \to L$ such that $f \neq 0$. If $Ker f = 0$ then $Ker f \ll_{\mu} N$. If $Ker f \neq 0$, let $x \in Ker f$. Let $y \in N$ and $z = f(y)$. Consider $P = Rx + Ry + Rz$ is a 3-generated submodule of L. Let $H = Rx + Ry$ and $h = f |_H: H \to P$. By hypothesis P is $G - M$, hence $Ker h \ll_\mu H \le N$. But $x \in \text{Kerh}$, so $\lt x \gt \subseteq \text{Kerh} \ll_{\mu} N$. Since L is Noetherian, Kerf is finitely generated, hence $Ker f = \sum_{i=1}^{n} Rx_i$, for some $x_i \in L$, $1 \leq i \leq n$. We have $\langle x_i \rangle \langle \langle \mu \rangle N$ for every $1 \leq i \leq n$. Thus according to Lemma [1.2,](#page-2-2) $Ker f = \sum_{i=1}^{n} Rx_i \ll_{\mu} N$. Therefore L is $G - M$.

 \Box

Corollary 2.27. Let R be an Artinian principal ideal ring and L α weakly co-Hopfian R-module. Then the following are equivalent:

- (1) L is $G M$.
- (2) Any non-zero 3-generated submodule of L is $G M$.

Proof. By [\[1,](#page-12-10) Theorem 3.8], L must be finitely generated. Then L is a Noetherian since R is an Artinian principal ideal ring. Thus by Propostion [2.26](#page-8-0) the result is obtained.

3. Properties of Polynomial Extensions

In [\[6\]](#page-12-15), we have recalled the definitions of the modules $L[x]$ and $L[x]/(x^{n+1})$. Every element of $L[x]$ is a formal sum as $e_0 + e_1x + ... + e_kx^k$ with $k \ge 0$ and $e_i \in L$. This sum that is denoted by $\sum_{i=1}^k e_i x^i$ $(e_0 x^0)$, is the element $e_0 \in L$. The addition is defined by adding the corresponding coefficients. The structure of $R[x]$ -module is given by

$$
\left(\sum\nolimits_{i=0}^k\gamma_ix^i\right).\left(\sum\nolimits_{j=0}^ze_jx^j\right)=\sum\nolimits_{t=0}^{k+z}a_tx^t,
$$

where $a_t = \sum_{i+j=t} \gamma_i e_j$, for any $\gamma_i \in R$, $e_j \in L$.

Any $P \in L[x]$ can be written under the form $\left(\sum_{i=k}^{l} e_i x^i\right)$ with $l \geq k \geq 0$, $e_i \in L, e_k \neq 0$ and $e_i \neq 0$. In this case we say that k is the order of P, l is the degree of P , e_k is the initial coefficient of P , and e_l as the leading coefficient of P.

Let n be any positive integer and

$$
I_{n+1} = \{0\} \cup \{P; 0 \neq P \in R[x], \text{ order of } P \geq n+1\}.
$$

Hence $I_{n+1} \leq R[x]$. The quotient ring $R[x]/I_{n+1}$ is truncated at degree $n +$ 1. For that $R[x]/I_{n+1}$ is said to be the truncated polynomial ring. Since R has an identity element, $I_{n+1} = (x^{n+1})$. Even when R does not have an

identity element, the ring $R[x]/I_{n+1}$ denoted by $R[x]/(x^{n+1})$. Every element of $R[x]/(x^{n+1})$ can be written under the form $(\sum_{i=0}^{n} \gamma_i x^i)$ with $\gamma_i \in R$. Let

$$
D_{n+1} = \{0\} \cup \{P; 0 \neq P \in L[x], \text{ order of } P \geq n+1\}.
$$

Hence $D_{n+1} \leq L[x]$. As $I_{n+1}L[x] \subset D_{n+1}$, we see that $R[x]/(x^{n+1})$ acts on $L[x]/D_{n+1}$. The module $L[x]/D_{n+1}$ denoted by $L[x]/(x^{n+1})$. The action of $R[x]/(x^{n+1})$ on $L[x]/(x^{n+1})$ is given by

$$
(\sum_{i=0}^{n} \gamma_i x^i) . (\sum_{j=0}^{n} e_j x^j) = \sum_{\mu=0}^{n} a_{\mu} x^{\mu},
$$

where $a_{\mu} = \sum_{i+j=\mu} \gamma_i e_j$, for any $\gamma_i \in R$, $e_j \in L$.

Any non-zero element $P \in L[x]/D_{n+1}$ can be written uniquely under the form $(\sum_{i=k}^{n} e_i x^i)$ with $n \geq k \geq 0$, $e_i \in L$, $e_k \neq 0$. In this case we say that k is the order of P, e_k is the initial coefficient of P .

Similarly we define the $R[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ -module $L[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1}).$

Lemma 3.1. Let $g: N \to L[x]/(x^{n+1})$ be a non-zero partial endomorphism, where $0 \neq N \leq L[x]/(x^{n+1})$ and n is a positive integer. If $g(h(x)) \neq 0$ for $h(x) = \sum_{j=0}^{n} \overline{m_j} x^j \in N$, then $o(h(x)) \leq o(g(h(x)))$, where $o(h(x))$ represent the order of $h(x)$. For instance when g is injective, we have that $o(h(x)) =$ $o(g(h(x)))$.

Proof. We have that $g(m) = \sum_{j=0}^{n} m_j x^j$ for any $m \in H$, where H is the non-zero submodule of N which is generated by the constant polynomials of *N*. Therefore $g(mx^k) = x^k(\sum_{j=0}^n m_j x^j) = \sum_{j=0}^{n-k} m_j x^{j+k}$, where $0 \leq k \leq$ *n*. Clearly, $o(\sum_{j=0}^n m_j x^j) \leq o(g(\sum_{j=0}^n m_j x^j))$, that is $o(h(x)) \leq o(g(h(x)))$. In case g is injective, suppose $g(mx^k) = \sum_{j=k+1}^n m_j x^j$, then we get that $g(mx^n) = g(x^{n-k}(mx^k)) = x^{n-k} \sum_{j=k+1}^n m_j x^j = 0$, thus $m = 0$. So $o(h(x)) =$ $o(g(h(x))).$

 \Box

Theorem 3.2. $L[x]/(x^{n+1})$ is a monoform $R[x]/(x^{n+1})$ -module iff L is monoform R-module.

Proof. \implies) Let $f : N \to L$ be any non-zero partial endomorphism of L where $0 \neq N \leq L$, then $g: N[x]/(x^{n+1}) \to L[x]/(x^{n+1})$ defined by $g(\sum_{i=0}^{n} a_i x^i)$ \sum $\neq N \leq L$, then $g: N[x]/(x^{n+1}) \to L[x]/(x^{n+1})$ defined by $g(\sum_{i=0}^{n} a_i x^i) =$
 $\sum_{i=0}^{n} f(a_i)x^i$ is a non-zero partial endomorphism of $L[x]/(x^{n+1})$ with $0 \neq$ $N[x]/(x^{n+1}) \le L[x]/(x^{n+1})$ and $Kerg = (Kerf)[x]/(x^{n+1})$. Since $L[x]/(x^{n+1})$ is monoform, $Kerg = 0$ then $Ker f = 0$. Hence L is monoform.

 \Leftarrow) Let $g: N \to L[x]/(x^{n+1})$ be a non-zero partial endomorphism of $L[x]/(x^{n+1})$, where N is a non-zero submodule of $L[x]/(x^{n+1})$ and $\tau : H \to N$ is the inclusion map, where H is the non-zero submodule of N generated by the constant polynomials of N. Define $p_i: L[x]/(x^{n+1}) \to L$ by $p_i(\sum_{j=0}^n m_j x^j) =$ $m_i, i = 0, 1, ..., n$. We can prove that $p_i g \tau \neq 0$, else, there exists $0 \neq m \in H$ such that $p_i g \tau(m) = 0$, hence $p_i g \tau(m) = p_i g(m) = p_i (\sum_{j=0}^n m_j x^j) = m_i = 0$,

then $o(m) = 0 < o(q(m))$, contradiction with Lemma [3.1.](#page-9-0) Since H is a non-zero submodule of L and L is monoform, then $Ker(p_i q \tau) = 0$.

Let $x \in \text{Ker } g$, so $g(x) = 0$ implies $p_i g \tau(x) = p_i g(x) = 0$. Hence $x \in$ $Ker(p_i g\tau)$. It follows that $Ker g \subseteq Ker(p_i g\tau) = 0$. Thus $Ker g = 0$ and so $L[x]/(x^{n+1})$ is monoform.

 \Box

Theorem 3.3. $L[x]/(x^{n+1})$ is a small monoform $R[x]/(x^{n+1})$ -module iff L is a small monoform R-module.

Proof. \implies) Let $f : N \to L$ be any non-zero partial endomorphism of L where $0 \neq N \leq L$, then $g: N[x]/(x^{n+1}) \rightarrow L[x]/(x^{n+1})$ defined by $g(\sum_{i=0}^{n} a_i x^i)$ $\sum_{i=0}^{n} f(a_i) x^i$ is a non-zero partial endomorphism of $L[x]/(x^{n+1})$ with $0 \neq$ $N[x]/(x^{n+1}) \le L[x]/(x^{n+1})$ and $Kerg = (Kerf)[x]/(x^{n+1})$. Since $L[x]/(x^{n+1})$ is small monoform $Kerg \ll N[x]/(x^{n+1})$, then $Ker f \ll N$. Hence L is a small monoform module.

 \Leftarrow) Let $g: N \to L[x]/(x^{n+1})$ be a non-zero partial endomorphism of $L[x]/(x^{n+1})$, where N is a non-zero submodule of $L[x]/(x^{n+1})$ and $\tau : H \to N$ is the inclusion map, where H is the non-zero submodule of N generated by the constant polynomials of N. Define $p_i: L[x]/(x^{n+1}) \to L$ by $p_i(\sum_{j=0}^n m_j x^j) =$ $m_i, i = 0, 1, ..., n$. We can prove that $p_i g \tau \neq 0$, else, there exists $0 \neq m \in H$ such that $p_i g \tau(m) = 0$, hence $p_i g \tau(m) = p_i g(m) = p_i (\sum_{j=0}^n m_j x^j) = m_i = 0$, then $o(m) = 0 < o(g(m))$, contradiction with Lemma [3.1.](#page-9-0) Since H is a non-zero submodule of L and L is small monoform, then $Ker p_i g\tau \ll H$.

Let $x \in Ker g$, so $g(x) = 0$ implies $p_i g(x) = p_i g(x) = 0$. Hence $x \in$ $Ker(p_i g\tau)$. It follows that $Ker g \subseteq Ker(p_i g\tau) \ll H \leq N$. Thus $Ker g \ll N$ and so $L[x]/(x^{n+1})$ is a small monoform module.

$$
\qquad \qquad \Box
$$

Lemma 3.4. ([\[8,](#page-12-16) Lemma 2.1]). Let $K \ll L$. Then $K[x]/(x^{n+1}) \ll L[x]/(x^{n+1})$ as $R[x]/(x^{n+1})$ -modules, where $n \geq 0$.

Theorem 3.5. $L[x]/(x^{n+1})$ is a $G - M R[x]/(x^{n+1})$ -module iff L is a $G - M$ R-module.

Proof. \implies) Let $f : N \to L$ be any non-zero partial endomorphism of L where N be a non-zero submodule of L, then $g: N[x]/(x^{n+1}) \to L[x]/(x^{n+1})$ defined by $g(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n f(a_i) x^i$ is a non-zero partial endomorphism of $L[x]/(x^{n+1})$ with $0 \neq N[x]/(x^{n+1}) \leq L[x]/(x^{n+1})$ and $Kerg = (Kerf)[x]/(x^{n+1})$. Suppose that $Ker f + H = N$ for some $H \leq N$ with $Z^*(N/H) = N/H$, thus

$$
(Ker(f))[x]/(x^{n+1}) + H[x]/(x^{n+1}) = N[x]/(x^{n+1}).
$$

We show that $Z^*(\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ = $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$. Let $h = \sum_{i=0}^n m_i x^i \in \frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ $\frac{N[x]/(x)}{H[x]/(x^{n+1})}$. As N/H is cosingular, m_iR is small for every $0 \leq i \leq n$. Then according to Lemma [3.4,](#page-10-0) $(m_iR)[x]/(x^{n+1})$ is small, hence $(hR)[x]/(x^{n+1})$ is small. Then

 $Z^*(\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ = $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$ $\frac{N[x]/(x^{n+1})}{H[x]/(x^{n+1})}$. Since $Kerg \ll_{\mu} N[x]/(x^{n+1}), N[x]/(x^{n+1}) =$ $H[x]/(x^{n+1})$ and so $N = H$. Thus $Ker f \ll_{\mu} N$ and L is $G - M$.

 \Leftarrow) Let $g: N \to L[x]/(x^{n+1})$ be a non-zero partial endomorphism of $L[x]/(x^{n+1})$, where N is a non-zero submodule of $L[x]/(x^{n+1})$ and $\tau : H \to N$ is the inclusion map, where H is the non-zero submodule of N generated by the constant polynomials of N. Define $p_i: L[x]/(x^{n+1}) \to L$ by $p_i(\sum_{j=0}^n m_j x^j) =$ $m_i, i = 0, 1, ..., n$. We can prove that $p_i g \tau \neq 0$, else, there exists $0 \neq m \in H$ such that $p_i g \tau(m) = 0$, hence $p_i g \tau(m) = p_i g(m) = p_i (\sum_{j=0}^n m_j x^j) = m_i = 0$, then $o(m) = 0 < o(g(m))$, contradiction with Lemma [3.1.](#page-9-0) Since H is a non-zero submodule of L and L is $G - M$, then $Ker p_i g \tau \ll_\mu H$.

Let $x \in \text{Ker } g$, so $g(x) = 0$ implies $p_i g(x) = p_i g(x) = 0$. Hence $x \in$ $Ker(p_i g\tau)$. It follows that $Ker g \subseteq Ker(p_i g\tau) \ll_{\mu} H \leq N$. Thus by Lemma [1.2,](#page-2-2) $Kerg \ll_{\mu} N$ and so $L[x]/(x^{n+1})$ is $G-M$.

Corollary 3.6. $L[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ is a $G-M R[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1})$ module iff L is a $G - M$ R-module.

 \Box

Proof. We use the induction, the ring isomorphism $(R[x_1, ..., x_{k-1}]/(x_1^{n_1+1}, ..., x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \simeq R[x_1, ..., x_k]/(x_1^{n_1+1}, ..., x_k^{n_k+1}),$ and $(R[x_1, ..., x_{k-1}]/(x_1^{n_1+1}, ..., x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1})$ -module isomorphism $(L[x_1,...,x_{k-1}]/(x_1^{n_1+1},...,x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1})\simeq L[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1})$ \Box

Open Problems

- (1) What is the structure of rings whose finitely generated modules are $G - M$ modules?
- (2) Let R be a ring with identity, and M a $G M$ module. Is $M[X, X^{-1}]$ $G - M$ module in $R[X, X^{-1}]$ -module?
- (3) Let R be a $G-M$ ring and $n \geq 1$ an integer. Is the matrix ring $M_n(R)$ $G - M?$

Acknowledgements

The authors would like to express their sincere thanks for the referee for his/her helpful suggestions and comments.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- [1] Barry, M., Diop, P. C. (2010). Some properties related to commutative weakly FGIrings. JP Journal of algebra, number theory and application. 19(2), 141-153.
- [2] El Moussaouy, A. (2025). Jacobson monform modules. Journal of Algebraic Systems 12(2), 372-390. DOI:10.22044/JAS.2023.12495.1668
- [3] El Moussaouy, A., Moniri Hamzekolaee, A. R., Ziane, M. (2022). Jacobson Hofian modules. Algebra and Discrete Mathematics $33(1)$, 116-127. DOI:10.12958/adm1842
- [4] El Moussaouy, A., Moniri Hamzekolaee, A. R., Khoramdel, M., Ziane, M. (2022). Weak Hopfcity and singular modules.Ann Univ Ferrara 68(1), 69-78. DOI: 10.1007/s11565- 021-00383-5.
- [5] El Moussaouy, A., Ziane, M. (2020). Modules in which every surjective endomorphism has a µ-small kernel. Ann Univ Ferrara 66, 325-337. DOI: 10.1007/s11565-020-00347-1
- [6] El Moussaouy, A., Ziane, M. (2022). Notes on generalizations of Hopfian and co-Hopfian modules. Jordan Journal of Mathematics and Statistics 15(1), 43-54. Doi : https://doi.org/10.47013/15.1.4
- [7] El Moussaouy, A., Ziane, M. (2024). Notes On T-Hopfcity of modules. International Journal of Mathematics and Computer Sciences 19(2), 307-310.
[8] Gang, Y., Zhong-kui, L. (2010). Notes on
- Y., Zhong-kui, L. (2010). Notes on Generalized Hopfian and Weakly co-Hopfian Modules. Comm. Algebra. 38, 3556-3566. https://doi.org/10.1080/00927872.2010.488666
- [9] Goldie, A.W. (1958). The structure of prime rings under ascending chain conditions. Proc. London Math. Soc. 8(4), 589–608. https://doi.org/10.1112/plms/s3-8.4.589
- [10] Haghany, A., Vedadi, M.R. (2001). Modules whose injective endomorphisms are essential. J. Algebra 243(2), 765-779. https://doi.org/10.1006/jabr.2001.8851
- [11] Inaam Hadi M. A., Marhoon K. H. (2014). Small monoform modules. Ibn Al-Haitham Journal for pure and applied science. $27(2)$, 229-240.
- [12] Lam, T. Y. (1999). Lectures on Modules and Rings, Springer-Verlag New York. https://doi.org/10.1007/978-1-4612-0525-8
- [13] Ozcan, A. C. (1998). Some characterizations of V-modules and rings, Vietnam Jomnal of Mathematics. 26, 253-258.
- [14] Rodrigues, V. S., Santana, A. A. (2009). A note on a problem due to Zelmanowitz, Algebra Discrete Math. 3, 85-93.
- [15] Smith, P. F. (2006). Compressible and related modules, Abelian groups, rings, modules and homological algebra, Lect. Notes Pure Appl. Math. 249, 295-313.
- [16] Talebi, Y., Moniri Hamzekolaee, A. R., Hosseinpour, M., Harmanci, A. Ungor, B. (2019). Rings for which every cosingular module is projective, Hacet. J. Math. Stat. 48(4), 973– 984. DOI : 10.15672/HJMS.2018.586
- [17] Wasan, K., Enas, M. K. (2018). On a Generalization of small submodules. Sci.Int.(Lahore), 30(3), 359-365.
- [18] Zelmanowitze, J.M. (1986). Representation of Rings With Faithful Polyform Modules, Comm. Algebra, 14(6), 1141-1169. https://doi.org/10.1080/00927878608823357

Abderrahim El Moussaouy Orcid number: 0000-0001-9630-4698 Department of Mathematics University of Mohammed First Oujda, Morocco Email address: a.elmoussaouy@ump.ac.ma

Ali Reza Moniri Hamzekolaee Orcid number: 0000-0002-2852-7870 Department of Mathematics University of Mazandaran Babolsar, Iran Email address: a.monirih@umz.ac.ir

M'Hammed Ziane Orcid number: 0000-0001-9630-4698 Department of Mathematics University of Mohammed First Oujda, Morocco Email address: ziane12001@yahoo.fr

Samira Asgari Orcid number: 0009-0007-2852-3259 Department of Mathematics University of Mazandaran Babolsar, Iran Email address: s.asgari03@umail.umz.ac.ir