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Abstract. A module M with Noetherian dimension is said to satisfy
the small condition, if for any small submodule S of M the Noetherian

dimension of S is strictly less than the Noetherian dimension of M . For

an Artinian module M , this is equivalent to that M is semisimple. In this
article, we introduce and study this concept and observe some basic facts

for modules with this condition. As a main result, it is shown that if M is

a module with finite hollow dimension which satisfies the small condition,
then α ≤ n-dimM ≤ α+ 1, where α = sup{n-dimS : S �M}. Further-

more, if M is a module with Krull dimension and finite hollow dimension,
then α ≤ k-dimM ≤ α + 1, where α = sup{k-dimS : S � M}. Also,

we study the projective cover of modules satisfying the small condition

or with finite hollow dimension.
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1. Introduction

Throughout this paper, all rings are associative with 1 6= 0, and all mod-
ules are unital right modules. The Krull dimension of modules, introduced by
Rentschler and Gabriel [17], then it was extended to modules over noncommu-
tative rings for each ordinal number, by Krause [13]. The dual of this concept,
that is, the Noetherian dimension almost simultaneously, is introduced and
investigated by Karamzadeh [11] and Lemonnier [14]. In 1978, Boyle in [3],
introduced the concept of the large condition and investigated the relationship
between it and the injective hull of a module. Then she introduced the concept
of the semicritical module and obtained some related results about it, see [4].
In this paper, motivated by Boyle works, we define the concepts of small con-
dition and semiatomic modules and provide dual of the existing theorems as
much as possible. In what follows, we list some of the interesting properties
of semicritical modules or modules with the large condition, which are to be
dulalized for semiatomic modules or modules with the small condition.

(1) Every non-zero submodule of a semicritical module is semicritical.
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(2) Every non-zero submodule of a semicritical module has a critical com-
position series.

(3) Every semicritical module satisfies the large condition.
(4) Every uniform submodule of a semicritical module is critical.
(5) If M is an R-module with k-dimM = α, M0 a closed submodule of

M with k-dimM0 < α, and M
M0

satisfies the large condition, then M
satisfies the large condition.

(6) If M is a module with Krull dimension satisfying the large condition
and {Ei : i ∈ I} is the collection of essential submodules of M . Then
k-dimM = sup{k-dim M

Ei
: i ∈ I}+ 1.

(7) If M is a module with finite Goldie dimension and M0 a closed sub-

module of M , then E( M
M0

) ' E(M)
E(M0)

.

Now, let us give a brief outline of this article. In Section 2, we review some nec-
essary preliminaries. Section 3 is devoted to a brief study of modules satisfying
the large condition. It is shown that every dual-local module which satisfies
the large condition is Artinian. Also, if M satisfies the large condition, then
so does every essential submodule of M . In the special case, if E(M) satisfies
the large condition, then so does M . Moreover, if E is an essential submodule
of M with k-dim M

E < k-dimE, then M satisfies the large condition if and only
if E satisfies the large condition. Furthermore, it is proved that an R-module
M is Artinian and satisfies the large condition if and only if it is semisimple
with finite Goldie dimension. In Section 4, we first introduce the concept of
the small condition and semiatomic module and dualize almost all the above 7
basic results for modules which satisfy the small condition. For instance, it is
shown that if M satisfies the small condition, then so does every small quotient
of M . Also, if A is a small submodule of M with n-dimA < n-dim M

A , then

M satisfies the small condition if and only if M
A satisfies the small condition.

It is proved that every local module with the small condition is Noetherian.
Also, if M is Noetherian and satisfies the small condition, then J(M) = 0.
Moreover, if M0 is a coclosed submodule of M which n-dim M

M0
< n-dimM

and M0 satisfies the small condition, then so does M . In particular, it is shown
that if M is a module with finite hollow dimension which satisfies the small
condition, then α ≤ n-dimM ≤ α + 1, where α = sup{n-dimS : S � M}.
Furthermore, if M is a module with Krull dimension and finite hollow dimen-
sion, then α ≤ k-dimM ≤ α + 1, where α = sup{k-dimS : S � M}. Finally,
we study the projective cover of modules satisfying the small condition or with
finite hollow dimension. It is proved that if M0 is a coclosed submodule of an
R-module M with finite hollow dimension and projective cover P (M), then

P ( M
M0

) ' P (M)
P (M0)

.

If M is an R-module, then k-dimM and n-dimM denote the Krull dimension
and Noetherian dimension of M , respectively. It is convenient that, when we
are dealing with the latter dimensions, we may begin our list of ordinals with
−1. Now, we recall some definitions that we need throughout this article. If



The small condition for modules with Noetherian dimension – JMMR Vol. 14, No. 1 (2025) 329

α is an ordinal number, an R-module M is called α-critical if k-dimM = α
and k-dim M

N < α, for every non-zero submodule N of M . An R-module M is
said to be critical if it is α-critical for some α, see [6]. Also, if an R-module
M has Noetherian dimension and α is an ordinal, then M is called α-atomic
if n-dimM = α and n-dimN < α, for every proper submodule N of M . An
R-module M is said to be atomic if it is α-atomic for some α, see [12]. A sub-
module E of an R-module M is said to be an essential (or a large) submodule
of M , denoted by E ⊆e M , if for each non-zero submodule A of M , E ∩A 6= 0.
If E is an essential submodule of M , then M is referred to as an essential
extension of E. For any module M , there is a unique (up to isomorphism)
essential injective extension E(M) of M , which is called the injective hull of
M , see [5]. A submodule S of M is called small in M if S + L 6= M for every
proper submodule L of M . We will indicate that S is a small submodule of M
by the notation S � M . Also, a non-zero module M is called hollow if every
proper submodule N of M is small in M , see [15]. A submodule N of M is
said to be closed in M , if it has no proper essential extension in M , see [5].
Moreover, submodule N of a module M is said to be coclosed in M , if N has
no proper submodule K such that N

K �
M
K , see [15]. An R-module M is called

weakly supplemented if for every submodule N of M , there exists a submodule
such as L of M , such that N + L = M and N ∩ L� M , see [15]. The reader
is referred to [2–4] for more details and undefined terms and notations.

2. Preliminaries

In this section, we recall some basic definitions and results that are needed
in the sequel.

Lemma 2.1. [15, Lemma 1.1.1] Let M be a module, K ⊆ N ⊆ M and
H ⊆M . Then

(1) N �M if and only if K �M and N
K �

M
K .

(2) If f : M →M ′ is a homomorphism and N �M , then f(N)�M ′.
(3) If K � N , then K �M .
(4) H +K �M if and only if H �M and K �M .
(5) If M = M1⊕M2 and K1 ⊆M1 and K2 ⊆M2, then K1⊕K2 �M1⊕M2

if and only if K1 �M1 and K2 �M2.
(6) Let N be a direct summand of M . Then K �M if and only if K � N .

Definition 2.2. [15, 1.4] A non-empty family {Ei}i∈I of proper submodules
of an R-module M is called coindependent, if for any k ∈ I and any finite
subset F ⊆ I \ {k}, Ek +

⋂
j∈F Ej = M .

Proposition 2.3. [15, Theorem 3.1.2] For a non-zero module M , the following
are equivalent:

(1) M does not contain an infinite coindependent family of submodules.
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(2) For some n ∈ N, M contains a coindependent family of submodules
{E1, E2, ..., En} such that

⋂n
i=1Ei is small in M and M

Ei
is a hollow

module for every 1 ≤ i ≤ n.
(3) sup{k : M contains a coindependent family of submodules of cardinality

k} = n, for some n ∈ N.
(4) For any descending chain M1 ⊇ M2 ⊇ · · · of submodules of M there

exists j, such that
Mj

Mk
� M

Mk
for all k ≥ j.

(5) There exists a small epimorphism from M to a finite direct sum of n
hollow factor modules. That is, there exists an epimorphism f : M →⊕n

i=1
M
Ni

such that M
Ni

is hollow module for all i, and Ker(f)�M .

Definition 2.4. [15, 3.1] An R-module M is said to have finite hollow di-
mension if it satisfies one of the conditions in the previous proposition. In
particular, if M satisfies condition (2) or (3), then M is said to have hollow
dimension n, written as h-dimM = n. If M = 0, we define h-dimM = 0 and
if M does not have finite hollow dimension, we write h-dimM =∞.

Lemma 2.5. [15, Theorem 3.1.10] Let N be a submodule of an R-module M .

(1) h-dim M
N ≤ h-dimM .

(2) If N �M , then h-dimM = h-dim M
N .

(3) If M has finite hollow dimension and h-dimM = h-dim M
N , then N �

M .
(4) If M has finite hollow dimension, then M is weakly supplemented.

Proposition 2.6. [15, Proposition 1.2.1] Let N be a submodule of an R-
module M . Consider the following assertions:

(1) N is a supplement in M .
(2) N is coclosed in M .
(3) For all K ⊆ N , K �M implies K � N .

Then (1)⇒ (2)⇒ (3) and, if N is a weak supplement in M , then (3)⇒ (1).

We also cite the following fact from part (2′) of the comment which follows [7,
Corollary 13].

Proposition 2.7. If M is an R-module and h-dimM = n, then there exists
coindependent family of submodules {E1, E2, · · · , En}, such that

⋂n
i=1Ei �M

and M⋂n
i=1 Ei

'
⊕n

i=1
M
Ei

such that M
Ei

is hollow for all i = 1, 2, · · · , n.

Definition 2.8. [20, 1.4] Let M be an R-module. The Krull dimension of M ,
denoted by k-dimM is defined by transfinite recursion as follows: If M = 0,
k-dimM = −1. If α is an ordinal number and k-dimM ≮ α, then k-dimM = α
provided there is no infinite descending chain of submodules of M such as

M0 ⊇ M1 ⊇ M2 ⊇ ... such that for each i = 1, 2, ..., k-dim Mi−1

Mi
≮ α. In other

words, k-dimM = α, if k-dimM ≮ α and for each chain of submodules to M
such as M0 ⊇ M1 ⊇ M2 ⊇ ... there exists an integer t, such that for each
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i ≥ t, k-dim Mi−1

Mi
< α. A ring R has the Krull dimension, if as an R-module

has the Krull dimension. It is possible that there is no ordinal α such that
k-dimM = α, in this case we say M has no Krull dimension.

The dual Krull dimension, that is Noetherian dimension, of a module is
defined similarly with ascending chains. It is well known that a module has
Krull dimension if and only if it has Noetherian dimension.

We now go on to detail some results on rings and modules with Krull di-
mension (resp., Noetherian dimension) which we will use later in this paper.
All of these are well known and we omit the proofs, instead referring to the
literature for further information.

Lemma 2.9. [6, Lemma 1.1(i)] Let N be a submodule of an R-module M .
Then k-dimM = sup{k-dimN, k-dim M

N }, if either side exists.

Lemma 2.10. [20, Lemma 1.4.5] Let M be an R-module with Krull dimension
such that M is a sum of submodules each of which has Krull dimension at most
α, for some ordinal α. Then k-dimM ≤ α.

Lemma 2.11. [12, Lemma 1.2] Let N be a submodule of an R-module M .
Then n-dimM = sup{n-dimN,n-dim M

N }, if either side exists.

Corollary 2.12. Let M =
⊕n

i=1Mi be an R-module with Noetherian dimen-
sion. Then n-dimM = sup{n-dimMi : 1 ≤ i ≤ n}.

Proposition 2.13. [12, Proposition 2.2(1)] Let M be an α-atomic R-module.
Then every non-zero factor module of M is α-atomic.

3. The large condition for modules

An R-module M with Krull dimension is said to satisfy the large condi-
tion if k-dim M

E < k-dimM , for any essential submodule E of M . The ring
R is said to satisfy the large condition if it satisfies the large condition, as
an R-module, see [3]. We note that if M satisfies the large condition, then
k-dimM = k-dimE, for every essential submodule E of M . An R-module M
is termed semicritical provided there exists a finite collection of submodules
K1, ...,Kn such that M

Ki
is a critical module for all i and

⋂n
k=1Ki = 0, see [4].

Note that every semicritical module M has Krull dimension and every non-
zero submodule N of M is semicritical, see [4, Theorem 2.1].

Example 3.1. (1) Every semiprime ring R with Krull dimension satisfies
the large condition, since k-dimR = sup{k-dim R

E : E ≤e R} + 1,
see [6, Proposition 6.1]. More generally, every semiprime FQS module
(i.e., finitely generated, quasi-projective and self-generator) with Krull
dimension satisfies the large condition, because if M is a semiprime
FQS module with Krull dimension, then k-dimM = sup{k-dim M

E :
E ⊆e M} + 1, see [8, Theorem 4.14]. But the converse of this fact is
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not true in general. For example, R = Z×Z4 is not a semiprime ring.
But, if E ≤e R, then either E = nZ×Z4 or E = Z×Z2 or E = nZ×Z2,
so R

E = Z×Z4

nZ×Z4
' Zn or R

E = Z×Z4

Z×Z2
' Z2 or R

E = Z×Z4

nZ×Z2
' Zn × Z2,

which is Artinian in any case. Therefore, 0 = k-dim R
E < k-dimR = 1

and consequently, R satisfies the large condition.
(2) For every prime number p, Zp∞ as a Z-module does not satisfy the

large condition, because every its factor module is isomorphic to itself.
(3) Z as a Z-module satisfies the large condition, because every non-zero

submodule nZ of Z is essential in it and k-dim Z
nZ = k-dimZn = 0 <

k-dimZ = 1.

The following conditions are equivalent for semisimple modules.

Lemma 3.2. Let M be an R-module. The following statements are equivalent.

(1) M is Artinian and satisfies the large condition.
(2) M is semisimple with finite Goldie dimension.

Proof. (1) =⇒ (2) Assume (1). It suffices to show that Soc(M) = M , where
Soc(M) is the sum of all simple submodules of M . For this, let E be an
essential submodule of M . Thus, k-dim M

E < k-dimM = 0, so M
E = 0, and this

implies that E = M . Thus, M is the only essential submodule of M , that is
Soc(M) = M .
(2) =⇒ (1) Assume (2). Then M is Artinian and has not proper essential
submodule. Hence, M satisfies the large condition.

�

Corollary 3.3. Every semiprime right Artinian ring is a semisimple ring.
More generally, every semiprime Artinian FQS module is a semisimple module.

Proof. Let R be a semiprime right Artinian ring. In view of Example 3.1(1),
R satisfies the large condition, so by the previous lemma, it is a semisimple
ring. Now, if M is a semiprime Artinian FQS module, then by Example 3.1(1),
M satisfies the large condition, so by the previous lemma, it is a semisimple
module. �

Corollary 3.4. Let M be an Artinian module which is not Noetherian. Then
M does not satisfy the large condition.

It is known that, M is an Artinian module with J(M) = 0, if and only if
M is semisimple and Noetherian, see [1, Proposition 10.15], thus we have the
following result.

Corollary 3.5. Let M be an Artinian module with J(M) = 0. Then M
satisfies the large condition.

Remark 3.6. Let M be an R-module which satisfies the large condition. Every
submodule of M does not necessarily satisfy the large condition. For instance,
according to Example 3.1(1), R = Z × Z4 as an R-module satisfies the large
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condition but Z4 as an R-submodule does not satisfy the large condition (note
that, Z4 is an Artinian non-semisimple module).

In what follows, we show that essential submodules of a module with the
large condition satisfy the large condition.

Proposition 3.7. Let M be an R-module. If M satisfies the large condition,
then so does every essential submodule of M .

Proof. Assume that M satisfies the large condition and E is an essential sub-
module of M . We show that E satisfies the large condition. To see this, let A
be an essential submodule of E. It suffices to show that k-dim E

A < k-dimE.
According to [5, Proposition 5.6(a)], A is an essential submodule of M , so
k-dim E

A ≤ k-dim M
A < k-dimM = k-dimE.

�

Corollary 3.8. Let M be an R-module. If E(M) satisfies the large condition,
then so does M .

Theorem 3.9. Let E be an essential submodule of M which k-dim M
E <

k-dimE. Then M satisfies the large condition if and only if E satisfies the
large condition.

Proof. In view of Proposition 3.7, it suffices to show that if E satisfies the
large condition, then so does M . To see this, let A be an essential submodule
of M , we must show that k-dim M

A < k-dimM . According to [5, Proposition

5.6(a),(b)], A ∩ E ⊆e E. As E satisfies the large condition thus, k-dim E
A∩E <

k-dimE, and by assumption, k-dimE = k-dimM . Hence, k-dim E
A∩E < k-dimM .

We infer that k-dim A+E
A = k-dim E

A∩E < k-dimM and k-dim M
A+E ≤ k-dim M

E <

k-dimE = k-dimM . Therefore, k-dim M
E = sup{k-dim M

A+E , k-dim A+E
E } <

k-dimM . This completes the proof.
�

Corollary 3.10. Let M be an R-module which E(M) has Krull dimension

and k-dim E(M)
M < k-dimM . Then M satisfies the large condition if and only

if E(M) satisfies the large condition.

Proof. Sufficiency is clear, by Corollary 3.8. Conversely, suppose that M sat-

isfies the large condition. Since M ⊆e E(M) and k-dim E(M)
M < k-dimM , by

the previous theorem, E(M) satisfies the large condition. �

Recall that an R-module M is said to be dual-local, if it has exactly one
minimal submodule A which is contained in all non-zero submodules of M ,
see [9, Definition 2.29]. So, A is simple and A = Soc(M). Clearly, M is a
uniform module.

Lemma 3.11. Let M be a dual-local module which satisfies the large condition.
Then M is Artinian.
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Proof. Let 0 6= A be its only minimal submodule of M . Then A = Soc(M) ⊆e

M implies that k-dim M
A < k-dimM , so by Lemma 2.9, k-dimM = k-dimA = 0.

Therefore, M is Artinian. �

4. The small condition for modules

In this section, we consider the concepts of the small condition and semi-
atomic modules which are the dual concepts of the large condition and semi-
critical modules, respectively.

Definition 4.1. We say that an R-module M with Noetherian dimension
satisfies the small condition if n-dimS < n-dimM , for any small submodule S
of M . In particular, R is said to satisfy the small condition if as an R-module,
it satisfies the small condition.

Recall that if S is a small submodule of M , then M
S is called a small quotient

module of M , see [18, Definition 3.12]. If M satisfies the small condition, then
clearly n-dimM = n-dim M

S , for every small quotient M
S of M .

Example 4.2. (1) Z as a Z-module satisfies the small condition. Because
zero is its the only small submodule and n-dim 0 = −1 < 0 = n-dimZ.

(2) Every atomic module satisfies the small condition. For example, Zp∞

as a Z-module satisfies the small condition. But the converse of this
fact is not true in general, for example Z as a Z-module is not atomic.
However, every hollow module with the small condition is atomic.

Remark 4.3. In view of Lemma 3.2, if M is an Artinian module with the large
condition, then M is Noetherian. Note that the dual of this fact is not true, in
general. For instance, Z as a Z-module is Noetherian with the small condition,
but it is not Artinian.

Definition 4.4. We say that an R-module M is semiatomic if M = Σn
i=1Ai,

for some finite collection of atomic submodules A1, · · · , An.

According to [4, Theorem 2.4], every semicritical module M satisfies the
large condition. The following is the dual of this fact for semiatomicD-modules.
Here, by a D-module, we mean a module M for which the lattice of submodules
is distributive, that is, for all submodules N , K and L of M , N ∩ (K + L) =
(N ∩K) + (N ∩L) or equivalently, N + (K ∩L) = (N +K)∩ (N +L), see [10].

Theorem 4.5. Every semiatomic D-module satisfies the small condition.

Proof. Let M be a semiatomic D-module. Then there exists a finite collection
of atomic modules A1, A2, · · · , An such that M =

∑n
i=1Ai and n is the smallest

integer with this property. If S is a small submodule of M , then S∩Ai ( Ai, for
all i, because if S ∩Ai = Ai, then Ai ⊆ S and since S is a small submodule of
M , by Lemma 2.1(1), Ai is a small submodule of M , a contradiction. Hence,
n-dim (S ∩ Ai) < n-dimAi, because Ai is atomic. But S = S ∩ M = S ∩∑n

i=1Ai =
∑n

i=1(S ∩ Ai), so n-dimS = sup{n-dim (S ∩ Ai) : 1 ≤ i ≤ n} <
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n-dimAi ≤ n-dimM . Therefore, n-dimS < n-dimM and the proof is complete.
�

Note that the converse of the previous theorem does not necessarily hold, in
general. For example, it is easy to check that Z and Z⊕Z as Z-modules satisfy
the small condition but they are not semiatomic.

Lemma 4.6. Let N be a submodule of an R-module M which n-dimN =
n-dimM . If M satisfies the small condition, then so does N .

Proof. Let S be a small submodule of N . By Lemma 2.1(3), S is a small
submodule of M , so n-dimS < n-dimM = n-dimN . Therefore, N satisfies the
small condition. �

Remark 4.7. In general, every quotient module of a module with the small con-
dition does not need to satisfy the small condition, however for small quotients
we have the following proposition. For example, it is easy to see that Z36 as a
Z-module does not satisfy the small condition, we note that 6Z36, 12Z36, 18Z36

are the only non-zero small submodules of Z36.

Proposition 4.8. Let M be an R-module. If M satisfies the small condition,
then so does every small quotient of M .

Proof. Let S be a small submodule of M . By Lemma 2.11, n-dimM =
n-dim M

S . By Lemma 2.1(1), if N
S �

M
S , then N �M , so n-dimN < n-dimM .

Hence n-dim N
S ≤ n-dimN < n-dimM = n-dim M

S , which completes the
proof. �

Theorem 4.9. Let A be a small submodule of an R-module M with n-dimA <
n-dim M

A . Then M satisfies the small condition if and only if M
A satisfies the

small condition.

Proof. In view of the previous proposition, it suffices to show that if M
A satisfies

the small condition, then so does M . To see this, let S be a small submodule
of M . By Lemma 2.1(1,4), A+S

A � M
A thus, n-dim A+S

A < n-dim M
A , then

n-dim S
A∩S < n-dim M

A . Moreover, n-dim (A ∩ S) ≤ n-dimA < n-dim M
A , by

assumption, n-dim M
A = n-dimM . So n-dimS = sup{n-dim S

A∩S ,n-dim (A ∩
S)} < n-dim M

A = n-dimM , which completes the proof. �

Recall that ifM is anR-module, S = EndR(M) the ring ofR-endomorphisms
of M , then an R-submodule X of M is called fully invariant provided it is also
an S-submodule of M , or equivalently, f(X) ⊆ X, for every f ∈ S, see [9].
Also, an R-module M is called a duo module provided every submodule of M
is fully invariant. A source of duo modules is provided by uniserial modules
(see [16, Theorem 1.2]). A module M is called uniserial if, for all submodules
L and N of M , either L ⊆ N or N ⊆ L, see [16].
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In the following, we investigate one condition under which a finite direct sum
of modules satisfying the small condition, also satisfies the small condition.

Theorem 4.10. Let M =
⊕n

i=1Mi be a duo module. If every Mi satisfies the
small condition, then so does M .

Proof. It suffices to prove the theorem for n = 2. Let M = M1 ⊕M2, such
that M1 and M2 be submodules of M with the small condition and K be a
small submodule of M . Since M is a duo module, K = A1 ⊕ A2, such that
A1 = K ∩M1 ⊆ M1 and A2 = K ∩M2 ⊆ M2, see [16, Lemma 2.1]. Hence,
A1 �M1 and A2 �M2, by Lemma 2.1 (5). Since M1 and M2 satisfy the small
condition, so n-dimA1 < n-dimM1 and n-dimA2 < n-dimM2, thus n-dimK =
sup{n-dimA1,n-dimA2} < sup{n-dimM1,n-dimM2} = n-dimM1 ⊕ M2 =
n-dimM . Therefore, n-dimK < n-dimM and consequently, M satisfies the
small condition. �

Theorem 4.11. Let M =
⊕n

i=1Mi satisfies the small condition. Then:

(1) There exists at least one i such that Mi satisfies the small condition.
(2) For every 1 ≤ i ≤ n, either Mi or M

Mi
satisfies the small condition.

(3) There exists a submodule N of M which N satisfies the small condition
and n-dim M

N < n-dimM .

Proof. (1) On the contrary, assume that none of the Mi’s satisfy the small
condition. By Lemma 4.6, n-dimMi < n-dimM , so by Corollary 2.12,
n-dimM = sup{n-dimMi : for all i, 1 ≤ i ≤ n} < n-dimM , that is,
n-dimM < n-dimM , which is impossible.

(2) Let Mi does not satisfy the small condition. Then, by Lemma 4.6,
n-dimMi < n-dimM , so n-dimM = sup{n-dimMi, n-dim M

Mi
} =

n-dim M
Mi

, by Lemma 2.11. Hence by Lemma 4.6, M
Mi

satisfies the

small condition. Similarly, let M
Mi

does not satisfy the small condi-

tion. Then by Lemma 4.6, n-dim M
Mi

< n-dimM , so n-dimM =

sup{n-dimMi, n-dim M
Mi
} = n-dimMi, by Lemma 2.11. Hence, by

Lemma 4.6, Mi satisfies the small condition.
(3) Put X = {Mi : n-dimMi = n-dimM, 1 ≤ i ≤ n} and Y = {Mi :

n-dimMi < n-dimM, 1 ≤ i ≤ n}. Let N =
⊕

Mi∈X Mi and K =⊕
Mi∈Y Mi, so M = N ⊕K. By Corollary 2.12, n-dimN = n-dimM

and n-dimK < n-dimM . Therefore, by Lemma 4.6, N satisfies the
small condition. Also, n-dim M

N = n-dimK < n-dimM .
�

Recall that Jacobson radical J(M) of an R-module M is the sum of all
its small submodules. In particular, the Jacobson radical J(R) of R, is the
intersection of all maximal right ideals of R. If J(R) = 0, then R is said to be
a Jacobson semisimple ring (Jacobson semisimple rings are also referred to as
J-semisimple rings and they are sometimes called semiprimitive rings).
It is clear that every module M with J(M) = 0, satisfies the small condition.
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Lemma 4.12. Let M be a Noetherian module which satisfies the small condi-
tion. Then J(M) = 0.

Proof. Let S be a small submodule of M . Then n-dimS < n-dimM , but M is
Noetherian, that is, n-dimM = 0 and this implies that n-dimS = −1. Thus,
the only small submodule of M is zero, therefore J(M) = 0. �

Recall that an R-module M is local if it has exactly one maximal submodule
that contains all of its proper submodules. Also, a ring R is called local if it
has only one maximal right ideal, see [9].

Theorem 4.13. Let R be a ring.

(1) If R is right Noetherian, then R satisfies the small condition if and
only if R is a Jacobson semisimple ring.

(2) If R is local and non-Noetherian, then it does not satisfy the small
condition.

Proof. (1) Using the previous lemma, it is clear.
(2) Let m be the only maximal right ideal of R. Clearly, n-dim R

m = 0.
Moreover, n-dimR 6= 0, because R is not Noetherian, according to
Lemma 2.11, n-dimR = n-dimm. But m = J(R) is a small right ideal
of R, so R does not satisfy the small condition.

�

Corollary 4.14. Let M be a local module which satisfies the small condition.
Then M is Noetherian.

Let M be a module with k-dimM = α and M0 be a closed submodule of M
with k-dimM0 < α. If M

M0
satisfies the large condition, then so does M , see [3].

In what follows, we prove the dual of this fact.

Proposition 4.15. Let M be an R-module and M0 be a coclosed submodule
of M with n-dim M

M0
< n-dimM . If M0 satisfies the small condition, then so

does M .

Proof. Let S be a small submodule of M and n-dimM = α. By Lemma
2.1(1), S ∩ M0 � M and hence, by Proposition 2.6, S ∩ M0 � M0, thus
n-dim (S ∩M0) < n-dimM0. But, n-dimM0 = n-dimM = α, by Lemma 2.11,
so n-dim (S ∩ M0) < α. As S

S∩M0
' S+M0

M0
, it follows that n-dim S

S∩M0
=

n-dim S+M0

M0
≤ n-dim M

M0
< α. Therefore, according to Lemma 2.11, n-dimS <

α. Consequently, M satisfies the small condition. �

We recall that if M is an R-module, then a finite chain of submodules M =
M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0) of M is said to be atomic if each factor module
Mi

Mi+1
is atomic, see [12].

Theorem 4.16. Let M be a semiatomic R-module. Then:

(1) M has Noetherian dimension.
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(2) Every non-zero factor module of M is semiatomic.
(3) Every non-zero factor module of M has atomic chain.

Proof. Since M is semiatomic, there exists a finite collection of atomic modules
A1, A2, · · · , An, such that M =

∑n
i=1Ai.

(1) It is obvious.
(2) Let B be a proper submodule of M . By Proposition 2.13, Ai

Ai∩B is

atomic, and hence Ai+B
B is atomic, because Ai

Ai∩B '
Ai+B

B . Now, we

have M
B =

∑n
i=1 Ai+B

B =
∑n

i=1
Ai+B

B . This implies that M
B is semi-

atomic.
(3) Let N be a proper submodule of M and consider the chain 0 6= M

N =∑n
i=1 Ai+N

N ⊇
∑n

i=2 Ai+N

N ⊇ · · · ⊇ N
N = 0. Now, if

N+A1+···+Aj

N 6=
N+A1+···+Aj+Aj+1

N , then
N+A1+···+Aj+Aj+1/N

N+A1+···+Aj/N
' N+A1+···+Aj+Aj+1

N+A1+···+Aj
'

Aj+1

(N+A1+···+Aj)∩Aj+1
. By Proposition 2.13,

Aj+1

(N+A1+···+Aj)∩Aj+1
is atomic.

Thus, after identifying equal members of the above sequence, we have
an atomic chain.

�

It is easy to check that every quotient module of a D-module is a D-module.
Also, every uniform submodule of a semicritical module is critical and every
non-zero submodule of a semicritical module satisfies the large condition, see [4,
Theorems 2.1, 2.4, Corollary 2.3]. The following result is the dual of this fact
for a semiatomic D-module.

Theorem 4.17. Let M be a semiatomic D-module. Then:

(1) Every quotient module of M satisfies the small condition.
(2) Every hollow quotient module of M is atomic.

Proof. (1) In view of Theorems 4.16(2) and 4.5, it is evident.
(2) Let N be a submodule of M such that M

N is hollow. It suffices to prove

the n-dim L
N < n-dim M

N , for every proper submodule L
N of M

N . Since
M
N is hollow, L

N is a small submodule of it. As M is a semiatomic

D-module, by the part (1), M
N satisfies the small condition. Hence

n-dim L
N < n-dim M

N and the proof is complete.
�

It is known that ifM is a module with Krull dimension and α = sup{k-dimM
E :

E ⊆e M}, then α ≤ k-dimM ≤ α + 1, see [6, Corollary 1.5]. The following is
devoted to modules with Krull dimension which have finite hollow dimension.

Theorem 4.18. Let M be an R-module with Krull dimension which has finite
hollow dimension. Then α ≤ k-dimM ≤ α + 1, where α = sup{k-dimS : S �
M}.



The small condition for modules with Noetherian dimension – JMMR Vol. 14, No. 1 (2025) 339

Proof. Since k-dimM = sup{k-dimN : N is a submodule of M}, it follows that
α ≤ k-dimM . It suffices to show that k-dimM ≤ α + 1. Let M1 ⊇ M2 ⊇ · · ·
be a descending chain of submodules of M . As M has finite hollow dimension,
by Proposition 2.3(4), there exists an integer k such that Mk

Mi
� M

Mi
, for every

i ≥ k. But Mi

Mi+1
⊆ Mk

Mi+1
implies that Mi

Mi+1
� M

Mi+1
. By Lemma 2.5(4),

M is weakly supplemented, so there exists a submodule A of M such that

Mi+1+A = M and Mi+1∩A�M . Let B = Mi+1∩A, so M
Mi+1

= Mi+1+A
Mi+1

' A
B .

By applying Lemma 2.1(1, 2, 3), for all small submodules S
Mi+1

of M
Mi+1

there

exists a small submodule S′

B �
A
B ⊆

M
B such that S

Mi+1
' S′

B , then S′ �
M . Therefore, k-dim S

Mi+1
= k-dim S′

B ≤ k-dimS′ ≤ α for all S
Mi+1

� M
Mi+1

specially, k-dim Mi

Mi+1
≤ α < α+ 1. It follows that k-dimM ≤ α+ 1.

�

Proposition 4.19. Let M be an R-module with finite hollow dimension and
M0 ⊆M1 ⊆M2 ⊆ · · · be any ascending chain of submodules of M . Then there
exists an integer k such that Mi

Mk
� M

Mk
for all i ≥ k.

Proof. By Lemma 2.5(1), h-dim M
Mi+1

≤ h-dimM < ∞. Thus, there exists

an integer k such that h-dim M
Mk

= h-dim M
Mi

= h-dim M/Mk

Mi/Mk
for all i ≥ k.

Therefore, by Lemma 2.5(3), Mi

Mk
� M

Mk
. �

Theorem 4.20. Let M be an R-module with Noetherian dimension and finite
hollow dimension. Then n-dimM ≤ α+ 1, where α = sup{n-dimS : S �M}.

Proof. Assume, to the contrary, that n-dimM > α + 1. So, there exists an

ascending chain M1 ⊆ M2 ⊆ · · · of submodules of M such that n-dim Mi+1

Mi
≥

α+ 1, for all i. By the previous proposition, there exists an integer k such that
Mi

Mk
� M

Mk
for every i ≥ k. If Mk � M , then Mi � M for every i ≥ k. Thus,

n-dimMi ≤ α, so n-dim Mi+1

Mi
≤ α, which is impossible. Now, assume that

Mk 6�M . By applying Lemma 2.5(4), M is weakly supplemented, hence there
exists a submodule A of M such that, A + Mk = M and B = A ∩Mk � M .
We have M

Mk
' A

B . Now, by Lemma 2.1(1, 2, 3), we infer that, for all small

submodules S
Mk

of M
Mk

, there exists a submodule S′

B � A
B ⊆

M
B such that

S
Mk
' S′

B , then S′ � M . Consequently, n-dim S
Mk

= n-dim S′

B ≤ n-dimS′ ≤ α,

that is, every small submodule of M
Mk

has Noetherian dimension less than or

equal to α. Hence, n-dim Mi+1

Mi
= n-dim Mi+1/Mk

Mi/Mk
≤ n-dim Mi+1

Mk
≤ α, which is

a contradiction. �

The following is a dual version [6, Corollary 1.5].

Corollary 4.21. Let M be an R-module with finite hollow dimension which
satisfies the small condition. Then α ≤ n-dimM ≤ α+1, where α = sup{n-dimS :
S �M}.
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Corollary 4.22. Let M be an R-module with finite hollow dimension which
satisfies the small condition. If the Noetherian dimension of M is a limit
ordinal, then n-dimM = sup{n-dimS : S �M}.

Recall that an epimorphism f : M → N is called small if Ker(f)�M . Ob-
viously, K � M if and only if the canonical projection g : M → M

K is a small
epimorphism, see [15]. A projective cover of an R-module M is a projective
module P (M) together with a small epimorphism f : P (M)→M , see [19, Def-
inition 19.4]. We note that every module does not necessarily have a projective
cover. For example, Zp∞ and Q as Z-modules have no projective cover, be-
cause they have no maximal submodule, see [2, Proposition 7.2.8]. According
to Theorem 4.16(2), it is clear that if P (M) is a semiatomic module, then so
does M .

Proposition 4.23. Let M be an R-module with projective cover P (M). There
is a one-one correspondence between small submodules of M and small sub-
modules of P (M).

Proof. Since P (M) is the projective cover of M , then there exists an epimor-

phism f : P (M) → M such that P (M)
Ker(f) ' M and Ker(f) � P (M). Let S be

a small submodule of M . It can be defined an isomorphism g : M → P (M)
Ker(f)

such that g(S) = N
Ker(f) �

P (M)
Ker(f) , and hence, by Lemma 2.1(1,2), N � P (M).

Now, we assume that L� P (M). Since Ker(f) is a small submodule of P (M),

by Lemma 2.1(1, 4), L + Ker(f) � P (M) and L+Ker(f)
Ker(f) � P (M)

Ker(f) ' M , and

hence we are done. �

Lemma 4.24. Let M and M ′ be isomorphic modules with projective covers
P (M) and P (M ′), respectively. Then P (M) ' P (M ′).

Proof. Let f : P (M) → M is a small epimorphism and g : M → M ′ is an
isomorphism. Thus gf : P (M)→M ′ is a small epimorphism, see [19, 19.3(1)].
It follows that P (M) is a projective cover of M ′, and by [2, Proposition 7.2.2],
P (M) ' P (M ′). �

Using Proposition 4.8, can be adapted to prove the following result.

Proposition 4.25. Let M be an R-module with projective cover P (M).

(1) If P (M) satisfies the small condition, then so does M .

(2) Let P (M)
S 'M for small submodule S of P (M) and n-dimS < n-dimM .

Then M satisfies the small condition if and only if P (M) satisfies the
small condition.

Proposition 4.26. Let M be an R-module with projective cover P (M). Then
P (M) = P (M

S ), for every small submodule S of M .
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Proof. Let f : P (M) → M be a small epimorphism and g : M → M
S be

the canonical projection. Thus, by [19, 19.3(1)], gf : P (M) → M
S is a small

epimorphism. Consequently, P (M) is a projective cover of M
S .

�

By Lemma 2.5(2) and the previous proposition, the following fact is evident.

Proposition 4.27. Let M be an R-module with projective cover P (M). Then
h-dimM = h-dimP (M).

Theorem 4.28. Let M be an R-module with finite hollow dimension and pro-
jective cover P (M). Then P (M) '

⊕n
i=1 P (Ki) in which Ki is hollow for all

1 ≤ i ≤ n.

Proof. Since M has finite hollow dimension, by Proposition 2.7, there exists
a coindependent collection of submodules {N1, N2, · · · , Nn} such that S =⋂n

i=1Ni � M , M
S '

⊕n
i=1

M
Ni

and M
Ni

is hollow. Now, by Proposition 4.26

and [19, 19.5 (5)], we have P (M) = P (M
S ) ' P (

⊕n
i=1

M
Ni

) =
⊕n

i=1 P ( M
Ni

) and
the proof is complete.

�

Corollary 4.29. Let M be an R-module with finite hollow dimension and
projective cover P (M).

(1) If every hollow projective module has Noetherian dimension, then so
does M .

(2) If every hollow projective module is atomic, then M is semiatomic.
Moreover, if M is a D-module, then M satisfies the small condition.

Proof. In view of the previous theorem, we have P (M) '
⊕n

i=1 P (Ki) in which
Ki is hollow for all 1 ≤ i ≤ n.

(1) By hypothesis P (Ki) has Noetherian dimension, so by Corollary 2.12,

P (M) has Noetherian dimension. Since P (M)
S ' M for some S �

P (M), thus M has Noetherian dimension.
(2) By hypothesis P (Ki) is atomic, thus P (M) is semiatomic. Conse-

quently, by Theorem 4.16(2), P (M)
S ' M is semiatomic for some S �

P (M). Now, if M is D-module, by Theorem 4.5, M satisfies the small
condition.

�

If M is a module with finite Goldie dimension and M0 is a closed submodule

of M , then E( M
M0

) ' E(M)
E(M0)

, see [3, Lemma 2.3]. The following is a dual of this

fact for modules with finite hollow dimension.

Proposition 4.30. Let M be an R-module with finite hollow dimension and
projective cover P (M) and M0 be a coclosed submodule of M . Then P ( M

M0
) '

P (M)
P (M0)

.
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Proof. By Lemma 2.5(4), M is weakly supplemented, so there exists a submod-
uleK ofM such thatM0+K = M andM0∩K �M , hence P (M) = P ( M

M0∩K ),

by Proposition 4.26. Moreover, by Proposition 2.6, M0∩K �M0, so P (M0) =
P ( M0

M0∩K ). Now, we have M
M0∩K = M0+K

M0∩K '
M0

M0∩K ⊕
K

M0∩K '
M
K ⊕

M
M0

. Hence,

Lemma 4.24 and [19, 19.5 (5)] imply that P (M) = P ( M
M0∩K ) ' P (M

K )⊕P ( M
M0

).

But, by Lemma 4.24, P (M
K ) = P (M0+K

K ) ' P ( M0

M0∩K ) = P (M0). Therefore,

P (M) ' P (M0)⊕ P ( M
M0

) and we infer that P ( M
M0

) ' P (M)
P (M0)

. �
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