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Abstract. Since the problem of computing the adjacency dimension of

a graph is NP-hard, finding the adjacency dimension of special classes of
graphs or obtaining good bounds on this invariant is valuable. In this pa-

per we determine the properties of each adjacency resolving set of paths.

Then, by using these properties, we determine the adjacency dimension
of broom and double broom graphs.
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1. Introduction

Throughout this paper, we only consider simple graphs. At first, we col-
lect some standard graph-theoretic terminologies and notations in this section,
see [10] and [21]. Locating or resolving sets are introduced as a graph-theoretic
model of robot navigation and have different applications in diverse areas like
network discovery, computer science and chemistry, see [18, 19, 22]. These ap-
plications lead to some graph parameters, like the metric dimension and the
adjacency dimension. Let N denote the set of all positive integers. Given a
connected graph G = (V,E) with vertex set V and edge set E, consider the
function dG : V ×V → N∪{0} where dG(x, y) is the length of the shortest path
between two vertices x and y in G. Clearly, (V, dG) is a metric space and the
diameter of G is understood in this metric. An ordered vertex set S ⊆ V is said
to be a metric generator for G if it is a generator of the metric space (V, dG),
i.e., each point of the space is uniquely determined by its distances from the
elements of S. A minimum metric generator is called a metric basis, and its
cardinality is the metric dimension of G, denoted by dim(G). Motivated by the
problem of uniquely determining the location of an intruder in a network, the
concept of the metric dimension of a graph was introduced by Slater in [24],
where the metric generators were called locating sets. The concept of the metric
dimension of a graph was also introduced independently by Harary and Melter
in [11], where metric generators were called resolving sets. It is straightforward

� a.behtoei@sci.ikiu.ac.ir, ORCID: 0000-0003-2113-0210

https://doi.org/10.22103/jmmr.2024.22886.1576 © the Author(s)
Publisher: Shahid Bahonar University of Kerman

How to cite: E. Hardani, A. Behtoei, The adjacency dimension of some path related trees,

J. Mahani Math. Res. 2025; 14(1): 369-386.

369

https://orcid.org/0009-0003-9664-4985
https://orcid.org/0000-0003-2113-0210
mailto:a.behtoei@sci.ikiu.ac.ir
https://doi.org/10.22103/jmmr.2024.22886.1576


370 E. Hardani, A. Behtoei

to see that when n ≥ 2, for the complete graph Kn and the path Pn we have
dim(Kn) = n−1 and dim(Pn) = 1, respectively. In [2], it is shown that for the
wheel graph we have dim(Wn) = b 2n+2

5 c. This graph parameter was studied
further in a number of other papers including [3,5,12,13,22,25]. Several varia-
tions of metric generators including resolving dominating sets [1], independent
resolving sets [6], local resolving sets [20], 1-locating dominating sets [4], strong
resolving sets [23], etc. have since been introduced and studied. Now consider
the distance function d2 : V ×V → N∪{0}, where d2(x, y) = min{dG(x, y), 2}.
Let S = {s1, s2, ..., sk} be a non-empty ordered subset of V = V (G). For each
v ∈ V (G), the k-tuple ra(v|S) = (d2(v, s1), d2(v, s2), ..., d2(v, sk)) is called the
adjacency representation of v with respect to S, and S is an adjacency resolv-
ing set (or an adjacency generator) for G if for each pair of distinct vertices
v1, v2 ∈ V (G) we have ra(v1|S) 6= ra(v2|S). An adjacency resolving set with
the minimum cardinality is called an adjacency basis and its cardinality is the
adjacency dimension of G which is denoted by adim(G), see [16]. It is easy
to show that S is an adjacency resolving set for G if for each pair of different
vertices x, y ∈ V (G) \ S there exists si ∈ S which is adjacent to exactly one
of these two vertices, that is |NG(si) ∩ {x, y}| = 1, where NG(si) denotes the
neighborhood of the vertex si in G. Therefore, S is an adjacency resolving
set for G if and only if it is an adjacency resolving set for its complement G,
and consequently adim(G) = adim(G). It is well known that almost all graphs
have diameter two. Also, note that for each graph G of diameter at most two,
we have d2(x, y) = dG(x, y) and hence, adim(G) = dim(G). Thus, for almost
all graphs, we can determine their adjacency dimension instead of their metric
dimension. Specially, adim(Kn) = dim(Kn) and adim(Wn) = dim(Wn). This
concept has been studied further by many scientists. Fernau and Rodriguez-
Velazquez in [8] and [9] show that the metric dimension of the corona product
of a graph of order n and some nontrivial graph H equals n times the adjacency
dimension of H, and they prove that the problem of computing the adjacency
dimension is an NP -hard problem. This suggests finding the adjacency dimen-
sion for special classes of graphs or obtaining good bounds on this invariant. By
using the fact dim(Wn) = b 2n+2

5 c and by a short and non-constructive proof,

Jannesari and Omoomi in [16] show that adim(Pn) = b 2n+2
5 c for each n ≥ 2.

In the next section we will determine the properties of each adjacency resolving
sets for a path and in a constructive way we will show that adim(Pn) = b 2n+2

5 c,
which is a confirmation of the previous result and moreover, characteizes all
of adjacency basis of each path. Then we use these properties to determine
the adjacency dimension of broom and double broom graphs. Recall that for
integers n ≥ 1 and k ≥ 2, the broom graph Bn,k (see Figure 2) is a tree con-
structed by joining k new pendant vertices to a leaf of an n vertex path, i.e.,
we can assume that

V (Bn,k) = {v1, v2, ..., vn} ∪ {x1, x2, ..., xk},
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and

E(Bn,k) = {v1v2, v2v3, ..., vn−1vn} ∪ {vnx1, vnx2, ..., vnxk}.

Also, the double broom graph Bn,k,k is obtained from a path Pn by joining k
pendant vertices {x1, x2, ..., xk} to v1 and k pendant vertices {x′1, x′2, ..., x′k}
to vn, see Figure 3. To see more results in this subject or related subjects, the
reader is referred to [7, 9, 14–17,21].

2. Adjacency resolving sets of paths

At first, by considering the novel ideas applied in [2], we provide the following
definition which will be applied frequently through the paper.

Definition 2.1. Let Pn be a path with vertex set V (Pn) = {v1, v2, ..., vn}
and edge set E(Pn) = {v1v2, v2v3, ..., vn−1vn}, and S = {vi1 , vi2 , ..., vik} be
a non-empty subset of V (Pn) in which i1 < i2 < · · · < ik. Then, the set
G0 = {v1, v2, ..., vi1−1} is called the left semi-gap, Gk = {vik+1, vik+2, ..., vn}
is called the right semi-gap, and for each 1 ≤ j ≤ k − 1 the set Gj =
{vij+1, vij+2, ..., vij+1−1} is called the j-th gap. Note that a gap or a semi-
gap may be an empty set. Two consequtive gaps (or semi-gaps or a gap and a
semi-gap) are called neighbor of each other.

For example, consider the path P17 in Figure 1 in which
S = {v1, v4, v6, v9, v11, v14, v16} and the elements of S corresponds to the filled
vertices. Thus, we have G0 = ∅, G1 = {v2, v3}, G2 = {v5}, G3 = {v7, v8},
G4 = {v10}, G5 = {v12, v13}, G6 = {v15} and G7 = {v17}.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

P15

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

P16

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

P17

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

P18

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19

P19

Figure 1. An adjacency basis for Pn, 15 ≤ n ≤ 19.

Theorem 2.2. A set B ⊆ V (Pn) = {v1, v2, ..., vn} is an adjacency resolving
set for the path Pn if and only if it satisfies the following five properties:

a) each gap contains at most three vertices and there exists at most one
gap containing three vertices.

b) a gap of size at least two, has no neighboring gap of size bigger than
one nor a neighboring non-empty semi-gap.

c) if there exists a gap with three vertices, then each semi-gap contains at
most one vertex.

d) each semi-gap contains at most two vertices and there is at most one
semi-gap containing two vertices.

e) there exist no neighboring non-empty semi-gaps.

Proof. First, suppose that B ⊆ V (Pn) is an adjacency resolving set for Pn, we
show that five properties (a) to (e) are satisfied.

a) If there exists a gap containing more than three vertices, namely Gi =
{vi+1, vi+2, vi+3, vi+4}, then ra(vi+2|B) = (2, 2, ..., 2) = ra(vi+3|B), which
is a contradiction. Now if there exist two gaps containing three vertices,
namely Gi = {vi+1, vi+2, vi+3} and Gj = {vj+1, vj+2, vj+3}, then ra(vi+2|B) =
(2, 2, ..., 2) = ra(vj+2|B) which is contradiction again.
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b) If there exist two neighboring gaps containing (at least) two vertices, say
Gi = {vi+1, vi+2} and Gi+1 = {vi+4, vi+5}, then NPn

[vi+2] ∩ B = {vi+3} =
NPn

[vi+4] ∩ B which implies that ra(vi+2|B) = ra(vi+4|B), a contradiction.
Now if there exists a gap containing (at least) two vertices which has a neigh-
boring semi-gap, for convenient say G1 = {v3, v4} and G0 = {v1}, then
ra(v1|B) = ra(v3|B) = (1, 2, ..., 2), a contradiction.

c) If there exists a gap containing three vertices and a semi-gap containing
two vertices, for instance Gi = {vi+1, vi+2, vi+3} and G0 = {v1, v2}, then we
get ra(v1|B) = ra(vi+2|B) = (2, 2, ..., 2), contradiction.

d) If there exists a semi-gap containing three vertices, for example G0 =
{v1, v2, v3}, then ra(v1|B) = ra(v2|B) = (2, 2, ..., 2). Also, if there exist two
semi-gaps containing two vertices, namely G0 = {v1, v2} and Gk = {vn−1, vn},
then ra(v1|B) = ra(vn|B) = (2, 2, ..., 2). Both cases lead to a contradiction.

e) If there exist two neighboring non-empty semi-gaps (and hence, |B|=1),
then the final vertex of the left semi-gap and the first vertex of the right semi-
gap have the same adjacency representation with respect to B, a is contradic-
tion.

Now for the converse, suppose that B ⊆ V (Pn) satisfies five conditions (a) to
(e). We show that B is an adjacency resolving set for Pn. Let u, v ∈ V (Pn)\B
be two different vertices. By considering the properties (a) to (e), at most one
vertex in Pn has no neighbor in B i.e., has the representation (2, 2, ..., 2) with
respect to B and hence, it is enough to check the situation that NPn(u)∩B 6= ∅
and NPn(v) ∩ B 6= ∅. If dPn(u, v) ≥ 3, then NPn(u) ∩ NPn(v) = ∅ and hence
NPn

(u)∩B 6= NPn
(v)∩B. If dPn

(u, v) = 1, then u, v are two adjacent vertices
and hence, they form a gap of size two and their unique neighbors in B are
different. Assume that dPn

(u, v) = 2 and hence, u, v has a unique neighbor,
say w. If w ∈ B, then u and v belong to two neighboring gaps (or a gap and a
neighboring semi-gap) and by property (b) at least one of them has a neighbor
in B \ {w}, which implies that NPn(u) ∩ B 6= NPn(v) ∩ B. If w /∈ B, then
u, v, w form a gap of size three and each of u and v has a unique (and different)
neighbor in B, which completes the proof. �

Lemma 2.3. If n ≥ 2, then adim(Pn) ≤
⌊
2n+2

5

⌋
.

Proof. We consider the following five cases (for convenient, Figure 1 provides
a typical example for each case).

Case 1. n ≡ 0 (mod 5).
Assume that n = 5k in which k ≥ 1. Let B = {v5i+2, v5i+4 : 0 ≤ i ≤ k− 1}. It
is easy to check that B satisfies properties (a) to (e) in Theorem 2.2 (see P15

in Figure 1) and hence, it is an adjacency resolving set for Pn. Thus

adim(Pn) ≤ |B| = 2k =

⌊
2(5k) + 2

5

⌋
=

⌊
2n + 2

5

⌋
.
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Case 2. n ≡ 1 (mod 5).
Suppose that n = 5k + 1 with k ≥ 1. Let B = {v5i+2, v5i+4 : 0 ≤ i ≤ k− 1}. B
satisfies the five properties of Theorem 2.2 (see P16 in Figure 1) and hence, it
is an adjacency resolving set for Pn. Thus

adim(Pn) ≤ |B| = 2k =

⌊
2(5k + 1) + 2

5

⌋
=

⌊
2n + 2

5

⌋
.

Case 3. n ≡ 2 (mod 5).
Assume that n = 5k + 2, k ≥ 1 and let B = {v5i+1, v5i+4 : 0 ≤ i ≤ k − 1} ∪
{v5k+1}. By Theorem 2.2, B is an adjacency resolving set for Pn. Thus

adim(Pn) ≤ |B| = 2k + 1 =

⌊
2n + 2

5

⌋
.

Case 4. n ≡ 3 (mod 5).
Suppose that n = 5k + 3, k ≥ 1, and let B = {v5i+1, v5i+4 : 0 ≤ i ≤ k − 1} ∪
{v5k+1}. Theorem 2.2 implies that B is an adjacency resolving set and, hence

adim(Pn) ≤ |B| = 2k + 1 =

⌊
2n + 2

5

⌋
.

Case 5. n ≡ 4 (mod 5).
With the assumption n = 5k + 4, k ≥ 1, let B = {v5i+1, v5i+4 : 0 ≤ i ≤ k}.
Since B is an adjacency resolving set for Pn, see Theorem 2.2, we get

adim(Pn) ≤ |B| = 2k + 2 =

⌊
2n + 2

5

⌋
.

Now the proof is complete. �

Theorem 2.4. Let Pn be a path of order n ≥ 2. Then we have

adim(Pn) =

⌊
2n + 2

5

⌋
.

Proof. By using Lemma 2.3 we see that adim(Pn) ≤
⌊
2n+2

5

⌋
. Thus, in order

to complete the proof, it is sufficient to show that adim(Pn) ≥
⌊
2n+2

5

⌋
. As-

sume that B ⊆ V (Pn) is an adjacency basis for Pn. We want to show that
|B| ≥ b 2n+2

5 c. Consider the following two cases.

Case i. |B| is an even integer.
Assume that |B| = 2l, where l ∈ N. First assume that both relating semi-gaps
are empty. Thus, we have 2l−1 = l+(l−1) gaps. By considering the property
(b) in Theorem 2.2 and by the Pigeonhole Principle, there exist at most l gaps
with at least 2 vertices. By property (a) in Theorem 2.2, at most one of them
may contains three vertices. Thus,

n− 2l = n− |B| = |V (Pn) \B| ≤ l × 2 + (l − 1)× 1 + 1 = 3l.
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This implies that n ≤ 5l and hence,

|B| = 2l =

⌊
10l + 2

5

⌋
≥
⌊

2n + 2

5

⌋
.

Next, assume that there exists just one non-empty semi-gap. Note that by
property (d) in Theorem 2.2 this non-empty semi-gap contains at most two
vertices, and if it contains two vertices then by property (c) each gap contains
at most two vertices. By property (b) the neighboring gap of this semi-gap
contains at most one vertex. Hence, there exist at most l−1 gaps of size bigger
than one. Thus

n− 2l = n− |B| = |V (Pn) \B| ≤ (l − 1)× 2 + l × 1 + 1 + 1 = 3l.

Therefore n ≤ 5l and hence, b 2n+2
5 c ≤ |B|.

Finally, assume that both semi-gaps are non-empty. Similar to the previous
situation, there exist at most l− 1 gaps containing at least two vertices, and if
there exist a semi-gap of size two, then no gap of size three exists. Thus,

n− 2l = n− |B| = |V (Pn) \B| ≤ 2(l − 1) + 1(l) + 2 + 1 = 3l + 1,

which implies that n ≤ 5l + 1 and⌊
2n + 2

5

⌋
≤
⌊

10l + 2 + 2

5

⌋
= 2l = |B|.

Case ii. |B| is an odd integer.
Assume that |B| = 2l + 1, where l ∈ N and hence, we have 2l gaps. First
assume that both relating semi-gaps are empty.

By considering two properties (a) and (b) of Theorem 2.2 and by the Pi-
geonhole Principle, there exist at most l gaps with at least 2 vertices. Since at
most one of them may contains three vertices, we have

n− (2l + 1) = n− |B| = |V (Pn) \B| ≤ 2l + 1l + 1 = 3l + 1.

This means that n ≤ 5l + 2 and hence,⌊
2n + 2

5

⌋
≤
⌊

10l + 4 + 2

5

⌋
= 2l + 1 = |B|.

Next, assume that there exists just one non-empty semi-gap. Then, there
exist at most l gaps containing at least two vertices. Also, a gap of size three
and a semi-gap of size two may not occur at the same time. Thus

|V (Pn) \B| = n− |B| ≤ 2(l) + 1(l) + 1 + 1 = 3l + 2.

Thus n ≤ 5l + 3 and b 2n+2
5 c ≤ |B|.
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Finally, assume that there exist two non-empty semi-gaps. Thus there exist
at most l − 1 gaps containing at least two vertices and we have

n− (2l + 1) = n− |B| = |V (Pn) \B| ≤ 2(l − 1) + 1(l + 1) + 2 + 1 = 3l + 2,

which implies that n ≤ 5l + 3 and b 2n+2
5 c ≤ |B|.

Hence, in all of these situations we have adim(Pn) = |B| ≥ b 2n+2
5 c and there-

fore

adim(Pn) =

⌊
2n + 2

5

⌋
,

as desired. �

Note that if we add a pendant edge to a non-leaf vertex of P4, then the
adjaceny dimension of the resulting 5-vertex graph is 2 = b 2×5+2

5 c but it is
not (isomorphic to) P5. The following result will be applied frequently for
determining the adjacency dimension of broom and double broom trees.

Theorem 2.5. Let Pn be a path with n ≥ 3 vertices and n ≡ 1 or 3 (mod 5).
Then for each (ordered) adjacency basis B of Pn, there exists a vertex in V (Pn)
whose adjacency representation with respect to B is (2, 2, ..., 2).

Proof. Let B be an (ordered) adjacency basis of Pn and assume on the contrary
that for each v ∈ V (Pn), ra(v|B) 6= (2, 2, ..., 2). Thus, by Theorem 2.2, each
gap contains at most two vertices and each semi-gap contains at most one
vertex. We first investigate the case n ≡ 1 (mod 5). Let n = 5k + 1, where
k ≥ 1. Therefore,

|B| = adim(Pn) =

⌊
2n + 2

5

⌋
= 2k.

By considering Theorem 2.2, and similar to the proof of Theorem 2.4, we
see that:
i) If both semi-gaps are empty, then

n− 2k = n− |B| = |V (Pn) \B| ≤ 2(k) + 1(k − 1) = 3k − 1,

which implies that |B| ≥ 2k + 2. This contradicts the fact |B| = 2k.
ii) If exactly one semi-gap is empty, then

n− 2k = |V (Pn) \B| ≤ 2(k − 1) + 1(k) + 1 = 3k − 1,

which implies that |B| ≥ 2k + 2, a contradiction.
iii) If both semi-gaps are non-empty, then

n− 2k ≤ 2(k − 1) + 1(k) + 2 = 3k,

and hence, |B| ≥ 2k + 1, a contradiction.
Since each of these situations leads to a contradiction, the proof is completed
for the case n ≡ 1 (mod 5).
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Now suppose that n ≡ 3 (mod 5). Let n = 5k + 3 where k ≥ 0. Hence,

|B| = adim(Pn) =

⌊
2n + 2

5

⌋
= 2k + 1.

Similarly, By using Theorem 2.2 and the proof of Theorem 2.4, we see that:
i) If both semi-gaps are empty, then

n− 2k − 1 ≤ 2(k) + 1(k) = 3k,

and hence, |B| ≥ 2k + 3, which contradicts the fact |B| = 2k + 1.
ii) If exactly one semi-gap is empty, then n− 2k− 1 ≤ 2(k) + 1(k) + 1 = 3k + 1
and hence, |B| ≥ 2k + 2, a contradiction.
iii) If both semi-gaps are non-empty, then n−2k−1 ≤ 2(k−1)+1(k+1)+2 =
3k + 1 and |B| ≥ 2k + 2, a contradiction.
The proof is completed. �

Note that if n 6≡ 1 or 3 (mod 5), then there exists an (ordered) adjacency
basis for the path Pn in which no vertex received the adjacency representation
(2, 2, ..., 2), see Figure 1. Also, in these cases, if we replace the first element of
B with v3, then the adjacency representation of v1 will be (2, 2, ..., 2). Thus,
the converse of Theorem 2.5 is not valid in general.

3. Adjacency dimension of Bn,k and Bn,k,k′

By using the previous results, in the following we will determine the adja-
cency dimension of brooms and double brooms.

Lemma 3.1. If n ≥ 1 and k ≥ 2, then

adim(Bn,k) ≤ k +

⌊
2n + 2

5

⌋
− 1.

Proof. By using the previous notations, since x1, x2, ..., xk are twin vertices
(i.e., vertices with the same neighbors), at least k − 1 of them must belong
to each adjacency resolving set (in fact, two twin vertices not in an ordered
set S will have the same adjacency representations with respect to S). Let
W0 = {x1, x2, ..., xk−1}. By the division algorithm, there exist integers t, r
such that n = 5t + r with t ≥ 0 and 0 ≤ r ≤ 4. Now regarding the value of r,
consider the following cases (Figure 2 provides an illustration for each case):
if n = 5t, then let W1 = {v5i+1, v5i+3 : 0 ≤ i ≤ t− 1},
if n = 5t + 1, then let W1 = {v5i+2 : 0 ≤ i ≤ t− 1} ∪ {v5i−1 : 1 ≤ i ≤ t},
if n = 5t + 2, then let W1 = {v5i+1, v5i+4 : 0 ≤ i ≤ t− 1} ∪ {vn−1},
if n = 5t + 3, then let W1 = {v5i+1, v5i+4 : 0 ≤ i ≤ t− 1} ∪ {vn−2},
if n = 5t + 4, then let W1 = {v5i+1, v5i+4 : 0 ≤ i ≤ t− 1} ∪ {vn−3, vn−1}.

It is easy to check that in each of these cases we have |W1| = b 2n+2
5 c. Also,

by using Theorem 2.2 we can see that in each case, the set W = W0 ∪W1 is an
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adjacency resolving set for Bn,k and hence,

adim(Bn,k) ≤ |W | = |W0|+ |W1| = (k − 1) +

⌊
2n + 2

5

⌋
.

�

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
x1

x2

x3B10,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
x1

x2

x3B11,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
x1

x2

x3B12,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13
x1

x2

x3B13,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14
x1

x2

x3B14,3

Figure 2. An adjacency basis for the broom graph Bn,3, 10 ≤
n ≤ 14.

Theorem 3.2. Let Bn,k be a broom graph in which n ≥ 1 and k ≥ 2. Then

adim(Bn,k) = k +

⌊
2n + 2

5

⌋
− 1.

Proof. From Lemma 3.1 we obtain adim(Bn,k) ≤ k +
⌊
2n+2

5

⌋
− 1. Hence, to

complete the proof, it is sufficient to show that adim(Bn,k) ≥ (k−1)+ b 2n+2
5 c.

Let B be an adjacency basis for Bn,k and hence, adim(Bn,k) = |B|. Thus, it is
sufficient to show that |B| ≥ (k− 1) + b 2n+2

5 c. Since x1, x2, ..., xk are twin ver-
tices, we must have |B∩{x1, x2, ..., xk}| ≥ k−1. Without loss of generality, as-
sume that {x1, x2, ..., xk−1} ⊆ B. We claim that |B ∩ {v1, v2, ..., vn}| ≥ b 2n+2

5 c
and this completes the proof. Consider the following two cases.
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Case 1. vn ∈ B.
In this case, each vertex in {v1, v2, ..., vn} is resolved by vertices in B∩{v1, v2, ..., vn}
and hence, B ∩ {v1, v2, ..., vn} is an adjacency resolving set for the induced n-
vertex path on {v1, v2, ..., vn}. This implies that

|B ∩ {v1, v2, ..., vn}| ≥ adim(Pn) =

⌊
2n + 2

5

⌋
,

as desired.

Case 2. vn /∈ B.
Assume that xk ∈ B. If ra(vn−1|B) 6= (2, 2, ..., 2), then removing xk from B and
replacing it with vn leads to an adjacency basis for Bn,k which satisfies Case 1,
and the proof is complete. If ra(vn−1|B) = (2, 2, ..., 2), then removing xk from
B and replacing it with vn−1 leads to a basis for Bn,k in which vn /∈ B and xk /∈
B. Thus, here after we can assume that vn /∈ B and xk /∈ B. Hence, ra(xk|B) =
(2, 2, ..., 2) and vertices v1, v2, ..., vn−1 are resolved by B∩{v1, v2, ..., vn−1}, and
except xk no vertex in Bn,k has the adjacency representation (2, 2, ..., 2). This
implies that

|B ∩ {v1, v2, ..., vn−1}| ≥ adim(Pn−1) =

⌊
2(n− 1) + 2

5

⌋
=

⌊
2n

5

⌋
.

When n ≡ r (mod 5) with r ∈ {0, 1, 3}, we have b 2n5 c = b 2n+2
5 c and hence,

|B ∩ {v1, v2, ..., vn}| ≥ b
2n + 2

5
c,

as desired. Suppose that n ≡ 2 or 4 (mod 5). Thus, b 2n+2
5 c = b 2n5 c + 1.

Since n ≡ 2 or 4 (mod 5) we see that (n − 1) ≡ 1 or 3 (mod 5). Since B ∩
{v1, v2, ..., vn−1} adjacently resolves v1, v2, ..., vn−1, if |B ∩ {v1, v2, ..., vn−1}| =
b 2n5 c, then B ∩ {v1, v2, ..., vn−1} is a basis for the (induced) path Pn−1 and
Theorem 2.5 implies that among v1, v2, ..., vn−1 there exists a vertex with adja-
cency representation (2, 2, ..., 2), which is a contradiction because ra(xk|B) =
(2, 2, ..., 2). Therefore,

|B ∩ {v1, v2, ..., vn}| ≥
⌊

2n

5

⌋
+ 1 =

⌊
2n + 2

5

⌋
,

as desired, and this completes the proof. �

Note that the star graph Sm is an m-vertex tree with m− 1 leaves, B1,k =
Sk+1 and B2,k = Sk+2. Hence, the following result is a confirmation of Theorem
3.2.

Corollary 3.3. We have adim(Sk+1) = adim(B1,k) = k−1 and adim(Sk+2) =
adim(B2,k) = k.

Lemma 3.4. If n ≥ 1 and k ≥ 2, then

adim(Bn,k,k) ≤ 2k +

⌊
2n− 1

5

⌋
− 1.
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Proof. As before, assume that

V (Bn,k,k) = {v1, v2, ..., vn} ∪ {x1, x2, ..., xk} ∪ {x′1, x′2, ..., x′k},

in which {v1, v2, ..., vn} induces an n-vertex path, each pendant vertex xi is
adjacent to v1 and, each pendant vertex x′j is adjacent to vn (see Figure 3).
Note that {x1, x2, ..., xk} are twin vertices and similarly, {x′1, x′2, ..., x′k} are
twins. At first, we want to show that adim(Bn,k,k) ≤ 2k + b 2n−15 c − 1. When
n ∈ {1, 2, 3, 4} let

W =



{x1, x2, ..., xk, x
′
1, x
′
2, ..., x

′
k−1} n=1

{v1, x1, x2, ..., xk−1, x
′
1, x
′
2, ..., x

′
k−1} n=2

{v1, v3, x1, x2, ..., xk−1, x
′
1, x
′
2, ..., x

′
k−1} n=3

{v1, v3, x1, x2, ..., xk−1, x
′
1, x
′
2, ..., x

′
k−1} n=4.

It can be easily seen that when n ∈ {1, 2, 3, 4}, the relating set W is an
adjacency resolving set for Bn,k,k and hence,

adim(Bn,k,k) ≤ |W | = 2k − 1 +

⌊
2n− 1

5

⌋
.

Now assume that n ≥ 5. Let X0 = {x1, x2, ..., xk−1} and X ′0 = {x′1, x′2, ..., x′k−1}.
Consider the following cases (see Figure 3 for more details in each case).

Case 1. n ≡ 0 (mod 5).
Suppose that n = 5t in which t ≥ 1 and let Y0 = {v5i+1, v5i+3 : 0 ≤ i ≤ t− 1}.
It is straightforward to check that W = X0 ∪X ′0 ∪Y0 is an adjacency resolving
set for Bn,k,k (for instance see B10,3,3 in Figure 3). Hence,

adim(Bn,k,k) ≤ |W | = |X0|+ |X ′0|+ |Y0| = 2(k−1)+2t = (2k−1)+

⌊
2n− 1

5

⌋
.

Case 2. n ≡ 1 or 2 (mod 5).
Thus n = 5t + r in which t ∈ N, r ∈ {1, 2} and, b 2n−15 c = 2t. Let Y0 =
{v5i+1, v5i+3 : 0 ≤ i ≤ t− 1} ∪ {vn−1}. Then by a simple investigation we
can see that W = X0 ∪X ′0 ∪ Y0 is an adjacency resolving set for Bn,k,k. Thus,

adim(Bn,k,k) ≤ |W | = 2(k−1)+(2t+1) = (2k−1)+2t = (2k−1)+

⌊
2n− 1

5

⌋
.

Case 3. n ≡ 3 or 4 (mod 5).
Let n = 5t+ r in which t ∈ N, r ∈ {3, 4} and, Y0 = {v5i+1, v5i+3 : 0 ≤ i ≤ t}.
It is not hard to check that W = X0 ∪X ′0 ∪ Y0 is an adjacency resolving set



The adjacency dimension of some path related trees – JMMR Vol. 14, No. 1 (2025) 381

for Bn,k,k and hence,

adim(Bn,k,k) ≤ |W | = 2(k − 1) + 2(t + 1) = (2k − 1) +

⌊
2n− 1

5

⌋
.

Therefore, in all of cases we see that adim(Bn,k,k) ≤ 2k + b 2n−15 c − 1. �

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
x′1
x′2
x′3

x1

x2

x3 B10,3,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
x′1
x′2
x′3

x1

x2

x3 B11,3,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
x′1
x′2
x′3

x1

x2

x3 B12,3,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13
x′1
x′2
x′3

x1

x2

x3 B13,3,3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14
x′1
x′2
x′3

x1

x2

x3 B14,3,3

Figure 3. An adjacency basis for double broom Bn,3,3, 10 ≤
n ≤ 14.

Theorem 3.5. For the adjacency dimension of the double broom Bn,k,k with
n ≥ 1 and k ≥ 2 we have

adim(Bn,k,k) = 2k +

⌊
2n− 1

5

⌋
− 1.

Proof. By using Lemma 3.4 we see that adim(Bn,k,k) ≥ 2k+b 2n−15 c−1. Hence,

to complete the proof, it is sufficient to show that adim(Bn,k,k) ≥ 2k+b 2n−15 c−
1. Let B be an adjacency basis for Bn,k,k and hence, adim(Bn,k,k) = |B|. We
use the same notations applied in the proof of Lemma 3.4. Since x1, x2, ..., xk

are twins and similarly, x′1, x
′
2, ..., x

′
k are twins, we must have

|B ∩ {x1, x2, ..., xk}| ≥ k − 1 , |B ∩ {x′1, x′2, ..., x′k}| ≥ k − 1.
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Without loss of generality, assume that

{x1, x2, ..., xk−1} ⊆ B , {x′1, x′2, ..., x′k−1} ⊆ B.

Since ra(xk|B) 6= ra(x′k|B), we obtain

B ∩ {v1, vn, xk, x
′
k} 6= ∅.(1)

Note that k ≥ 2, v1 is the unique vertex adjacent to x1 ∈ B and vn is the unique
vertex adjacent to x′1 ∈ B. Especially, two vertices v1 and vn are resolved from
other vertices. Regarding the relation (1), we consider two following cases.

Case 1. B ∩ {v1, vn} = ∅.
In this case, relation (1) implies that B ∩ {xk, x

′
k} 6= ∅. Without loss of gen-

erality, assume that xk ∈ B. Since B ∩ {v1, vn} = ∅ and v2, v3, ..., vn−1 are
adjacently resolved by each other, we have

|B ∩ {v2, v3, ..., vn−1}| ≥ adim(Pn−2) =

⌊
2(n− 2) + 2

5

⌋
=

⌊
2n− 2

5

⌋
.

Thus,

|B| ≥ 2(k − 1) + 1 +

⌊
2n− 2

5

⌋
= 2k − 1 +

⌊
2n− 2

5

⌋
.

If n ≡ r (mod 5) with r ∈ {0, 1, 2, 4}, then the equality b 2n−25 c = b 2n−15 c
implies that |B| ≥ (2k−1)+b 2n−15 c, which completes the proof. Thus, assume
that n ≡ 3 (mod 5) and hence, (n−2) ≡ 1 (mod 5). If |B∩{v2, v3, ..., vn−1}| =
b 2n−25 c, then B∩{v2, v3, ..., vn−1} is a basis for the induced path on n−2 vertices
v2, v3, ..., vn−1 and Theorem 2.5 implies that there exists a vertex vi, 2 ≤ i ≤
n− 1, whose adjacency representation is (2, 2, ..., 2). Now if B ∩ {vn, x′k} = ∅,
then x′k and vi both have the same adjacency representation (2, 2, ..., 2), a
contradiction. Therefore, either |B ∩ {v2, v3, ..., vn−1}| ≥ b 2n−25 c + 1 or |B ∩
{vn, x′k}| ≥ 1. Thus,

|B| ≥ 2k − 1 +

⌊
2n− 2

5

⌋
+ 1 = 2k − 1 +

⌊
2n− 1

5

⌋
,

as desired, which completes the proof.

Case 2. B ∩ {v1, vn} 6= ∅.
Without loss of generality, assume that v1 ∈ B. Since k ≥ 2, vn is the unique
vertex adjacent to x′1 ∈ B and is resolved from the other vertices. Since
ra(xk|B) 6= ra(v2|B), we must have |B ∩ {xk, v2, v3}| ≥ 1. If B ∩ {xk, v2, v3} =
{v2, v3}, then we can remove v2 from B and we get B \ {v2} as an adjacency
resolving set which is smaller that the basis B, a contradiction. In a similar
way, if |B ∩ {xk, v2, v3}| ≥ 2, then by an easy check we can see that at least
one member of B∩{xk, v2, v3} is irredental and can be removed from B, which
contradicts the minimality of B. Therefore, we have |B ∩ {xk, v2, v3}| = 1.
Consider the following subcases.
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Subcase i. B ∩ {xk, v2, v3} = {xk}.
Then |B ∩ {v3, v4, ..., vn−1}| ≥ adim(Pn−3) and

|B| ≥ 2(k − 1) + 1 + 1 + adim(Pn−3)

= 2k − 1 + 1 +

⌊
2(n− 3) + 2

5

⌋
= 2k − 1 +

⌊
2n + 1

5

⌋
≥ 2k − 1 +

⌊
2n− 1

5

⌋
.

Subcase ii. B ∩ {xk, v2, v3} = {v2}.
Then |B ∩ {v4, v5, ..., vn−1}| ≥ adim(Pn−4), hence

|B| ≥ 2(k − 1) + 1 + 1 + adim(Pn−4)

= 2k − 1 + 1 +

⌊
2(n− 4) + 2

5

⌋
= 2k − 1 +

⌊
2n− 1

5

⌋
.

Subcase iii. B ∩ {xk, v2, v3} = {v3}.
If v4 ∈ B, then we can replace it with v5. Now we have |B∩{v5, v6, ..., vn−1}| ≥
adim(Pn−5) and

|B| ≥ 2(k − 1) + 1 + 1 + adim(Pn−5)

= 2k − 1 + 1 +

⌊
2(n− 5) + 2

5

⌋
= 2k − 1 +

⌊
2n− 3

5

⌋
.

If n ≡ r (mod 5) with r ∈ {0, 2, 4}, then b 2n−35 c = b 2n−15 c and the proof
is complete. For n ≡ 1 or 3 (mod 5), we have n− 5 ≡ 1 or 3 (mod 5) and
b 2n−35 c = b 2n−15 c−1. If |B∩{v5, v6, ..., vn−1}| = adim(Pn−5), then by Theorem
2.5 a vertex in {v5, v6, ..., vn−1} has the adjacency representation (2, 2, ..., 2). If
B ∩ {vn, x′k} = ∅, then the adjacency representation of x′k is also (2, 2, ..., 2), a
contradiction. Thus, |B∩{v5, v6, ..., vn−1}| ≥ 1+adim(Pn−5) or |B∩{vn, x′k}| ≥
1. Therefore,

|B| ≥ 2(k − 1) + 1 + 1 +

(
1 +

⌊
2n− 3

5

⌋)
= 2k − 1 +

⌊
2n− 1

5

⌋
.

This completes the proof. �

Note that Figure 3 provides some examples for Theorem 3.5 and two follow-
ing results can be considered as a confirmation of it.
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Corollary 3.6. If n = 1, then Bn,k,k is the star graph S2k+1, and

adim(B1,k,k) = 2k − 1 = adim(S2k+1).

Corollary 3.7. If n = 2, then Bn,k,k is the double star graph Sk,k of order
2k+2, and

adim(B2,k,k) = 2k − 1 = adim(Sk,k).

In some literature, a double broom Bn,k,k′ is defined as a tree obtained from
a path Pn by attaching k pendant edges to one end vertex of Pn and k′ pendant
edges to the other end vertex of Pn, where k, k′ ≥ 2. Since each pair of twin
vertices has non-empty intersection with each adjacency resolving set, we can
obtain the following result directly from Theorem 3.5 and its proof.

Corollary 3.8. If k, k′ ≥ 2, then adim(Bn,k,k′) = k + k′ − 1 + b 2n−15 c.

4. Conclusion and further works

In this paper we determine the properties of adjacency resolving sets of
paths. By using these properties, we determine the adjacency dimension of
broom and double broom graphs. These properties can be applied for deter-
mining the adjacency dimension of some other path related graphs and some
graph operations like subdivision.
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