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Abstract. In this paper, we explore various properties associated with

the traces of permuting n-derivations satisfying certain functional identi-
ties that operate on a Lie ideal within prime and semiprime rings. Ad-

ditionally, we address and discuss correlated findings pertaining to left
n-multipliers. Lastly, we enrich our results with examples that show the

necessity of their assumptions.
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1. Introduction & Preliminaries

In ring theory, functional identities play a crucial role in unraveling intricate re-
lationships between various algebraic structures. One such area of exploration
lies in understanding the behavior of permuting n-derivations and their interac-
tions within rings. A ring S is said to be prime if εSς = {0} implies that either
ε = 0 or ς = 0, for all ε, ς ∈ S. Similarly, S is called semiprime if εSε = {0}
implies ε = 0, where ε ∈ S. The notation [ε, ς] represents the commutator
ες − ςε, while ε ◦ ς denotes the anti-commutator ες + ςε, where ε and ς are any
elements belonging to the ring S. A ring S is considered n-torsion free if the
condition nε = 0 implies that ε = 0 for every element ε in S. Moreover, if S is
n!-torsion free, then it is also m-torsion free for every divisor m of n!. An addi-
tive subgroup U of S is called a Lie ideal of S if the commutator [u, r] belongs
to U for every u in U and r in S. Furthermore, U is termed as a square closed
Lie ideal of S if it satisfies the conditions of being a Lie ideal and if the square
of every element u in U also belongs to U . A mapping D : S → S is called a
derivation if D is additive and satisfies the condition D(ες) = D(ε)ς + εD(ς)
for all ε, ς ∈ S. Following [8], an additive mapping g : S −→ S is said to
be a generalized derivation on S if there exists a derivation d : S −→ S
such that g(ες) = g(ε)ς + εd(ς) holds for all ε, ς ∈ S. To expand the range
of derivation, the concept of symmetric bi-derivations on rings was proposed
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by Maksa [14]. Vukman further investigated this concept extensively in his
works [21] and [22]. A bi-additive map D : S × S → S is said to be a bi-
derivation if D(εε′, ς) = D(ε, ς)ε′+εD(ε′, ς) and D(ε, ςς ′) = D(ε, ς)ς ′+ςD(ε, ς ′)
hold for any ε, ε′, ς, ς ′ ∈ S. The foregoing conditions are identical if D is also
a symmetric map meaning that D(ε, ς) = D(ς, ε) for all ε, ς ∈ S. When this
condition holds, D is a symmetric bi-derivation on S. Numerous researchers
have investigated symmetric bi-derivations on rings (see [13], [20] and refer-
ences therein). Argac and Yenigul [1] and Muthana [15] achieved analogous
findings regarding Lie ideals within the ring S. In [18], Rehman and Ansari
characterized the trace of symmetric bi-derivation and attained more general
outcomes by examining various conditions on a subset of a ring S, specifically
focusing on Lie ideals within S.

From the given framework of bi-derivation, Park [16] brought forth the idea
of permuting n-derivation in the following manner:

Definition 1.1. Let n ≥ 2 be a fixed integer, and Sn = S×S× · · · ×S. A
map D : Sn → S is said to be symmetric (permuting) if

D(ε1, ε2, . . . , εn) = D(εκ(1), εκ(2), . . . , εκ(n))

for all permutations κ(i) ∈ Sn and εi ∈ S, where i = 1, 2, . . . , n.

Definition 1.2. Let n ≥ 2 be a fixed integer. A map D : Sn → S is said to
be a symmetric n-derivation if D is symmetric and n-additive (i.e., additive in
each argument) and

D (ε1, ε2, . . . , εiε
′
i, . . . , εn) = εiD (ε1, ε2, . . . , ε

′
i, . . . , εn)+D (ε1, ε2, . . . , εi, . . . , εn) ε′i

holds for all εi, ε
′
i ∈ S.

Of course, 1-derivation is a derivation and for n = 2, D is referred to as a
symmetric bi-derivation on rings.

The trace is a crucial aspect of a symmetric n-derivation. It plays a signif-
icant role when extending results established for derivations or bi-derivations
to n-derivations. It is defined as follows:

Definition 1.3. Let n ≥ 2 be a fixed integer and a map f : S→ S defined by
f(ε) = D(ε, ε, . . . , ε) for all ε ∈ S, is called the trace of D.

If D is symmetric n-additive, then the trace f of D satisfies the relation

f(ε+ ς) = f(ε) + f(ς) +

n−1∑
l=1

nCl D( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

, ς, . . . , ς︸ ︷︷ ︸
l−times

)

for all ε, ς ∈ S, where nCl =
(
n
l

)
.

Recently, Ashraf et al. [2] introduced the notion of permuting n-multipliers in
the following manner:
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Definition 1.4. A permuting n-additive map z : Sn → S is called a permut-
ing left n-multiplier (resp. permuting right n-multiplier) if

z(ε1, ε2, . . . , εiε
′
i, . . . , εn) = z(ε1, ε2, . . . , εi, . . . , εn)ε′i

(resp. z(ε1, ε2, . . . , εiε
′
i, . . . , εn) = εiz(ε1, ε2, . . . , ε

′
i, . . . , εn)

holds for all εi, ε
′
i ∈ S, i = 1, 2, . . . , n. If z is both a permuting left n-multiplier

and a permuting right n-multiplier, it is referred to as a permuting n-multiplier.

Inspired by the idea of generalized derivation in rings, they also introduced
the concept of symmetric generalized n-derivation in rings. Let n ≥ 1 be a
fixed positive integer. A symmetric n-additive map G : Sn → S is known to be
symmetric generalized n-derivation if there exists a symmetric n-derivation D :
Sn → S such that G (ε1, ε2, . . . , εiε

′
i, . . . , εn) = G (ε1, ε2, . . . , εi, . . . , εn) ε′i +

εiD(ε1, ε2, . . . , ε
′
i, . . . , εn) holds for all εi, ε

′
i ∈ S.

The study of commuting and centralizing mappings on a prime ring was
initiated by Posner [17]. In his work, the author demonstrated that if a prime
ring S possesses a nonzero centralizing derivation, then S must be commu-
tative. In 1993, Bres̆ar [7] generalized the result of Posner for left ideals of a
prime ring. Certainly, Bres̆ar’s proof establishes that in a prime ring S, if I is
a nonzero left ideal, and there exist nonzero derivations f and g of S satisfying
f(ε)ε− εg(ε) ∈ Z(S) for all ε ∈ I, then S is commutative. In [18], the authors
meticulously explored the commutativity properties of prime rings under spe-
cific identities dictated by the trace of symmetric bi-derivations. In fact, they
proved that in a prime ring S with characteristic not equal to 2, if U is a square
closed Lie ideal of S and B : S × S → S is a symmetric bi-derivation with
trace f , then for any mapping g : S→ S satisfying f(ε)ς−εg(ς) ∈ Z(S) for all
ε, ς ∈ U , it must hold that either U ⊆ Z(S) or f = 0. In the study conducted
by Gölbaşi and Sögütcü, as outlined in [10], they examined the characteristics
of a prime ring S equipped with a generalized derivation (F, d) operating on
a Lie ideal U of S. They proved that if [F (u), u] ∈ Z(S), for all u ∈ U , then
either d = 0 or U ⊆ Z(S). Very recently, in [19], they also conducted an in-
vestigation into the characteristics of semiprime rings acting on the Lie ideal of
S, where they characterize certain functional identities in the presence of trace
of symmetric bi-derivation on S. They demonstrated that if S is a semiprime
ring with U as a square-closed Lie ideal, and D : S×S→ S a symmetric bi-
derivation with trace d, then S contains a nonzero central ideal if the condition
d(ε)d(ς) ± ες ∈ Z(S) holds for all ε, ς ∈ U . In [2], Ashraf et al. established
that “for a fixed integer n ≥ 2, in a non-commutative semiprime ring S with
n!-torsion free property, if there exists a permuting generalized n-derivation T

with an associated n-derivation D such that the trace ζ of T centralizes on S,
then T acts as a left n-multiplier on S.” Numerous researchers have investi-
gated different identities that involve traces of bi-derivations and n-derivations,
yielding several intriguing outcomes(viz.; [2], [20], [21], [22]).
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The motivation behind this research is to expand on earlier results about
derivations and biderivations by exploring similar properties in permuting n-
derivations. By imposing conditions on a subset of the ring S, with a partic-
ular focus on the Lie ideal, this study aims to reveal new insights into the
behavior and structure of prime and semiprime rings. Understanding this
research not only enriches the theoretical framework of ring theory but also
contributes to the broader mathematical understanding of algebraic systems.
In particular, we establish that “for a given fixed integer n ≥ 2 and an n!-
torsion free semiprime ring S, along with a noncentral square closed Lie ideal
U of S, if S possesses two nonzero symmetric n-derivations D : Sn → S
with trace f : S → S and G : Sn → S with trace g : S → S, satisfying
f(ε)ς ± εg(ς) ∈ Z(S) for all ε, ς ∈ U , then S has a nonzero central ideal”
(Theorem 2.1). Furthermore, we provide a characterization of the traces of
q-iterations of n-derivations in prime rings. Specifically, we establish that “for
a fixed integer n ≥ 2, in a n!-torsion free prime ring S with a noncentral
square closed Lie ideal U , and for any integer q ≥ 1, admitting q-iterations of
n-derivations D1,D2, . . . ,Dq : Sn → S such that the product of the traces of
D1,D2, . . . ,Dq respectively is zero on a nonzero Lie ideal of S, then either D1

is identically zero or the remaining Di’s act as n-multipliers on U”.

We now provide some previously known results that play a crucial role in
deriving our main findings in the subsequent section.

Lemma 1.5. [16, Lemma 2.2] Let n be a fixed positive integer and S a n!-
torsion free ring. Suppose that a1, a2, . . . , an ∈ S satisfy λa1 + λ2a2 + · · · +
λnan = 0 (or ∈ Z(S)) for λ = 1, 2, . . . , n. Then ai = 0 (or ∈ Z(S)) for
i = 1, 2, . . . , n.

Lemma 1.6. [9, Lemma 2(b)] If S is a semiprime ring, then the center of a
nonzero ideal of S is contained in the center of S.

Lemma 1.7. [5, Theorem 3] Let S be a 2-torsion free semiprime ring and U
a noncentral Lie ideal of S such that u2 ∈ U for all u ∈ U . Then there exist a
nonzero ideal I of S such that I ⊆ U .

Lemma 1.8. [6, Lemma 4] If U * Z(S) is a Lie ideal of a prime ring S and
if aUb = (0), then a = 0 or b = 0.

Lemma 1.9. [12, Corollary 2.1] Let S be a 2-torsion free semiprime ring, U
a Lie ideal of S such that U * Z(S) and a, b ∈ U .

(i) If aUa = {0}, then a = 0.
(ii) If aU = {0} (Ua = {0}), then a = 0.

(iii) If U is a square closed Lie ideal and aUb = {0}, then ab = 0 and
ba = 0.
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Lemma 1.10. [11, Lemma 1] Let S be a semiprime, 2-torsion free ring and
let U be a Lie ideal of S. Suppose that [U,U ] ⊆ Z(S), then U ⊆ Z(S).

2. Main results

In [18], Rehman and Ansari investigated the trace of symmetric bi-derivations.
They achieved broader results by analyzing different conditions on a subset of
the ring S, with a particular emphasis on Lie ideals within S. Specifically, they
proved that in a prime ring S with characteristic not equal to 2, if U is a square
closed Lie ideal of S and B : S×S→ S is a symmetric bi-derivation with trace
f , then for any map g : S→ S satisfying f(ε)ς − ςg(ε) ∈ Z(S) for all ε, ς ∈ U
implies that either U ⊆ Z(S) or f = 0. This idea inspires our investigation
into similar criteria for symmetric n-derivations and the corresponding ring
behavior. In fact, our first main result is the following:

Theorem 2.1. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring, U a noncentral square closed Lie ideal of S and D : Sn → S & G : Sn →
S be two nonzero symmetric n-derivations on S with traces f : S → S and
g : S→ S respectively satisfying f(ε)ς ± εg(ς) ∈ Z(S) for all ε, ς ∈ U , then S
contains a nonzero central ideal.

Proof. Given that

(1) f(ε)ς ± εg(ς) ∈ Z(S) for all ε, ς ∈ U.
Replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f(ε)(ς +mτ)± εg(ς +mτ) ∈ Z(S) for all ε, ς, τ ∈ U.
Solving further, we see that

f(ε)ς + f(ε)mτ ± εg(ς)± εg(mτ)± ε
n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) ∈ Z(S)

for all ε, ς, τ ∈ U . Employing the given condition, we find that

ε

n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) ∈ Z(S) for all ε, ς, τ ∈ U

which implies that,

m

(
n

1

)
εh1(ς; τ) +m2

(
n

2

)
εh2(ς; τ) + · · ·+mn−1

(
n

n− 1

)
εhn−1(ς; τ) ∈ Z(S),

where hl(ς; τ) represents the term in which τ appears l- times.
Applying Lemma 1.5 results in

nεG(ς, . . . , ς, τ) ∈ Z(S) for all ε, ς, τ ∈ U.
Using the torsion restriction, we get

εG(ς, . . . , ς, τ) ∈ Z(S) for all ε, ς, τ ∈ U.
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Replacing τ by ς, we find that

εg(ς) ∈ Z(S) for all ε, ς ∈ U.

Hence, by the hypothesis, we see that

f(ε)ς ∈ Z(S) for all ε, ς ∈ U.

Commuting with r where r ∈ S results in

[f(ε)ς, r] = 0 for all ε, ς ∈ U, r ∈ S

(2) or, f(ε)[ς, r] + [f(ε), r]ς = 0 for all ε, ς ∈ U, r ∈ S.

Replacing ς by ςτ where τ ∈ U in (2) and using (2), we get

f(ε)ς[τ, r] = 0 for all ε, ς, τ ∈ U, r ∈ S.

Substituting r with f(ε) in the preceding equation yields

(3) f(ε)ς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U.

Multiplying by τ from left, we get

τf(ε)ς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U.(4)

Taking τς in place of ς in (3), we see that

(5) f(ε)τς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U.

Subtracting (5) from (4), we get

[τ, f(ε)]ς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U

i.e.,

[τ, f(ε)]U [τ, f(ε)] = 0 for all ε, τ ∈ U, r ∈ S.

By Lemma 1.9, the last expression gives

(6) [τ, f(ε)] = 0 for all ε, τ ∈ U.

Invoking Lemma 1.7, there exists a nonzero ideal I of S such that I ⊆ U .
Hence, by (6) and using Lemma 1.6, we have

f(ε) ∈ Z(S) for all ε ∈ I.(7)

Now again replacing ε by ε + mς1 for ς1 ∈ I and 1 ≤ m ≤ n − 1 in (7) and
using (7), we obtain

n−1∑
l=1

nClD( ε, . . . , ε︸ ︷︷ ︸
(n−l)−times

,mς1, . . . ,mς1︸ ︷︷ ︸
l−times

) ∈ Z(S) for all ε, ς1 ∈ I.

Again using Lemma 1.5 and taking into account that S is n!-torsion free, we
get

D(ς1, ε, . . . , ε) ∈ Z(S) for all ε, ς1 ∈ I.(8)
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Replace ε by ε+mς2 for ς2 ∈ I and 1 ≤ m ≤ n− 1 in (8) to get

D(ς1, ε+mς2, . . . , ε+mς2) ∈ Z(S) for all ε, ς1, ς2 ∈ I.
After further solving and applying torsion restriction, we obtain

D(ς1, ς2, ε, . . . , ε) ∈ Z(S) for all ς1, ς2, ε ∈ I.
Continuing in the same manner, we get

D(ς1, ς2, ς3, . . . , ςn) ∈ Z(S) for all ς1, ς2, . . . , ςn ∈ I.(9)

On commuting with r, we get

[D(ς1, ς2, ς3, . . . , ςn), r] = 0 for all ς1, ς2, . . . , ςn ∈ I, r ∈ S.

Substituting ς1 with ς21 in the last equation and applying the torsion restriction
of S, we reach the following

[ς1, r]D(ς1, ς2, . . . , ςn) = 0 for all ς1, ς2, . . . , ςn ∈ I, r ∈ S.

Now taking r to be rr′ where r′ ∈ S, we get

[ς1, r]r
′D(ς1, ς2, . . . , ςn) = 0 for all r, r′ ∈ S,

i.e.,

[ς1, r]SD(ς1, ς2, . . . , ςn) = {0} for all ς1, ς2, . . . , ςn ∈ I, r ∈ S.(10)

As S is a semiprime ring, it necessarily includes a family of prime ideals whose
intersection is zero. Let Π = {Pj | j ∈ Λ} be the family of all prime ideals such
that

⋂
j∈Λ

Pj = {0}. Let P be a typical member of Π. From (10), we can infer

that for a fixed ς1 ∈ I, either

(i) [ς1, r] ∈ P or
(ii) D(ς1, ς2, . . . , ςn) ∈ P for all ς1, ς2, . . . , ςn ∈ I, r ∈ S.

Let us set L = {ς1 ∈ I | [ς1,S] ⊆ P} and K = {ς1 ∈ I | D(ς1, ς2, . . . , ςn) ∈
P for all ς2, . . . , ςn ∈ I}. Both L and K are additive subgroups of I such
that I = L ∪K. However, a group cannot be expressed as the union of two
of its proper subgroups. Hence, either I = L or I = K. Let us suppose that
I 6= L. Then, we have I = K, i.e., D(ς1, ς2, . . . , ςn) ∈ P for all ς1, ς2, . . . , ςn ∈ I.
Replace ς1 by ς1r1, i.e., D(ς1r1, ς2, . . . , ςn) ∈ P for any r1 ∈ S. On solving, we
get ς1D(r1, ς2, . . . , ςn) ∈ P . Using the primeness of P , we get either ς1 ∈ P or
D(r1, ς2, . . . , ςn) ∈ P for all ς1, ς2, . . . , ςn ∈ I, r1 ∈ S. But ς1 ∈ P implies that
[ς1,S] ⊆ P , which leads to a contradiction. Thus, we have D(r1, ς2, . . . , ςn) ∈ P
for all ς2, . . . , ςn ∈ I, r1 ∈ S. Again replace ς2 by ς2r2 and adhering to the
same method, we get D(r1, r2, ς3, . . . , ςn) ∈ P for all ς3, . . . , ςn ∈ I, r1, r2 ∈ S.
Carrying on in a similar vein, we reach

D(S,S, . . . ,S) ⊆ P for any P ∈ Π.

As P was chosen arbitrarily from Π. Therefore,

D(S,S, . . . ,S) ⊆
⋂
j∈Λ

Pj = {0}
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and consequently, D(S,S, . . . ,S) = {0}. As a consequence, we find ourselves
with a contradiction. Therefore, I = L, i.e., [ς1,S] ⊆ P for all ς1 ∈ I or
[I,S] ⊆

⋂
j∈Λ

Pj = {0}. That is, [I,S] = {0}. Therefore, I is a nonzero central

ideal of S. Hence S has a nonzero central ideal. �

The following corollary is the immediate consequence of the above result.

Corollary 2.2. [20, Theorem 1] Let S be a 2-torsion free semiprime ring and
U be a square closed Lie ideal of S. Suppose D : S×S→ S, G : S×S→ S
two symmetric bi-derivations where d is the trace of D and g is the trace of
D where UD(U,U) 6= (0). If d(ε)ς ± εg(ς) ∈ Z(S), for all ε, ς ∈ U , then S
contains a nonzero central ideal.

Proof. In the above theorem, if we put n = 2, we get the required result. �

Lemma 2.3. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring, U a noncentral square closed Lie ideal of S. Suppose that S admits two
nonzero symmetric n-derivations D : Sn → S with trace f : S → S and
G : Sn → S with trace g : S→ S satisfying f([ε, ς]) = [f(ε), ς]+ [f(ς), ε] for all
ε, ς ∈ U, then S contains a nonzero central ideal.

Proof. We have been given that

[f(ε), ς] = ± ε ◦ g(ς) for all ε, ς ∈ U.
Now replace ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

[f(ε), ς]+[f(ε),mτ ] = ± ε◦g(ς)± ε◦g(mτ)± ε◦
n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)

for all ε, ς, τ ∈ U . By using hypothesis, we get

ε ◦
n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) = 0 for all ε, ς, τ ∈ U.

The application of Lemma 1.5 yields that

n{ε ◦G(ς, . . . , ς, τ)} = 0 for all ε, ς, τ ∈ U.
Using the torsion free restriction in S, we find that

ε ◦G(ς, . . . , ς, τ) = 0 for all ε, ς, τ ∈ U.
After replacing τ by ς, we get

ε ◦ g(ς) = 0 for all ε, ς ∈ U.
Again using the hypothesis, we get

[f(ε), ς] = 0 for all ε, ς ∈ U
which is the same as (6). Thus, continuing in the same manner as our previous
steps, we can infer that S contains a nonzero central ideal. �
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Lemma 2.4. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring, U a noncentral square closed Lie ideal of S. Suppose that S admits two
nonzero symmetric n-derivations D : Sn → S with trace f : S → S and
G : Sn → S with trace g : S → S satisfying [f(ε), ς] = ± ε ◦ g(ς) for all
ε, ς ∈ U, then S contains a nonzero central ideal.

Proof. It is given that

f([ε, ς]) = [f(ε), ς] + [f(ς), ε] for all ε, ς ∈ U.

On replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f([ε, ς] + [ε,mτ ]) = [f(ε), ς] + [f(ε),mτ ]+

[f(ς) + f(mτ) +

n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

), ε]

for all ε, ς, τ ∈ U. On simplifying, we get

f([ε, ς]) + f([ε,mτ ]) +

n−1∑
l=1

nClD([ε, ς], . . . , [ε, ς]︸ ︷︷ ︸
(n−l)−times

, [ε,mτ ], . . . , [ε,mτ ]︸ ︷︷ ︸
l−times

)

= [f(ε), ς]+[f(ε),mτ ]+[f(ς), ε]+[f(mτ), ε]+
[ n−1∑

l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

), ε
]

for all ε, ς, τ ∈ U . Using the hypothesis, we get

n−1∑
l=1

nClD([ε, ς], . . . , [ε, ς]︸ ︷︷ ︸
(n−l)−times

, [ε,mτ ], . . . , [ε,mτ ]︸ ︷︷ ︸
l−times

) =
[ n−1∑

l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

), ε
]

for all ε, ς, τ ∈ U . Taking account of the Lemma 1.5 and torsion free restriction
in S, we get

D([ε, ς], . . . , [ε, ς], [ε, τ ]) = [D(ς, . . . , ς, τ), ε] for all ε, ς, τ ∈ U.

Replacing τ by ς, we get

f([ε, ς]) = [f(ς), ε] for all ε, ς ∈ U.

Utilizing the hypothesis once more, we derive

[f(ε), ς] = 0 for all ε, ς ∈ U

which is equivalent to (6). Consequently, the conclusion is reached by employ-
ing the same line of reasoning as outlined in Theorem 2.1.

�

Lemma 2.5. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring, U a noncentral square closed Lie ideal of S. Suppose that S admits two
nonzero symmetric n-derivations D : Sn → S with trace f : S → S and
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G : Sn → S with trace g : S → S satisfying f(ε) ◦ ς = ± ε ◦ g(ς) for all
ε, ς ∈ U, then S contains a nonzero central ideal.

Proof. Given that

f(ε) ◦ ς = ± ε ◦ g(ς) for all ε, ς ∈ U.

On replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f(ε) ◦ (ς +mτ) = ± ε ◦ g(ς +mτ) for all ε, ς, τ ∈ U.

On simplifying, we get

f(ε) ◦ ς + f(ε) ◦mτ = ±ε ◦ g(ς)± ε ◦ g(mτ)± ε ◦
n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)

for all ε, ς, τ ∈ U . On using the given condition, we find that

ε ◦
n−1∑
l=1

nClG( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) = 0 for all ε, ς, τ ∈ U.

Application of Lemma 1.5 gives

n(ε ◦G(ς, . . . , ς, τ)) = 0 for all ε, ς, τ ∈ U.

Since S is n!-torsion free, we have

ε ◦G(ς, . . . , ς, τ) = 0 for all ε, ς, τ ∈ U.

On replacing τ by ς, we get

ε ◦ g(ς) = 0 for all ε, ς ∈ U.

Using the hypothesis one more time, we see that

f(ε) ◦ ς = 0 for all ε, ς ∈ U.

Replacing ς by ςτ where τ ∈ U , we find that

ς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U.

Replacing ς by [τ, f(ε)]ς in the above equation, we have

[τ, f(ε)]ς[τ, f(ε)] = 0 for all ε, ς, τ ∈ U

or

[τ, f(ε)]U [τ, f(ε)] = {0} for all ε, τ ∈ U.

Using Lemma 1.9, we get

[τ, f(ε)] = 0 for all ε, τ ∈ U

which is the same as (6). Therefore, following a similar approach, we can
deduce that S possesses a nontrivial central ideal. �
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In 2001, Ashraf and Rehman [3] demonstrated that if a prime ring S with
a nonzero ideal I possesses a derivation δ satisfying either of the conditions:
δ(ες) ± ες ∈ Z(S) or δ(ες) ± ςε ∈ Z(S) for all ε, ς ∈ I, then S must be com-
mutative. Additionally, Ashraf et al. [4] broadened these results to generalized
derivations (F, d) associated with a nonzero derivation d of S. Motivated by the
above mentioned result, we prove the similar result for the traces of permuting
n-derivations on semiprime rings acting on the Lie ideal of the ring.

Theorem 2.6. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring and U be a square closed Lie ideal of S. Suppose that S admits a sym-
metric n-derivation D : Sn → S with trace f : S → S such that any one of
the following conditions hold:

(i) f(ες)± ες ∈ Z(S) for all ε, ς ∈ U,
(ii) f(ες)± ςε ∈ Z(S) for all ε, ς ∈ U,

(iii) f(ες)± [ε, ς] ∈ Z(S) for all ε, ς ∈ U,
(iv) f(ες)± ε ◦ ς ∈ Z(S) for all ε, ς ∈ U.

Then U ⊆ Z(S).

Proof. (i) Given that

f(ες)± ες ∈ Z(S) for all ε, ς ∈ U.
Replace ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f(ε(ς +mτ))± ε(ς +mτ) ∈ Z(S) for all ε, ς, τ ∈ U.
That is,

f(ες) + f(εmτ) +

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

, εmτ, . . . , εmτ︸ ︷︷ ︸
l−times

)± ες ± εmτ ∈ Z(S)

for all ε, ς, τ ∈ U . On using the given condition, we see that

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

,mετ, . . . ,mετ︸ ︷︷ ︸
l−times

) ∈ Z(S) for all ε, ς, τ ∈ U.

Utilizing Lemma 1.5 and taking into account the characteristic of S to be
n!-torsion free, we can derive at

D(ες, . . . , ες, ετ) ∈ Z(S) for all ε, ς, τ ∈ U.
Replace τ by ς to get

f(ες) ∈ Z(S) for all ε, ς ∈ U.
Again using the hypothesis, we get

(11) ες ∈ Z(S) for all ε, ς ∈ U.
Also,

ςε ∈ Z(S) for all ε, ς ∈ U.
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This implies that [ε, ς] ∈ Z(S) for all ε, ς ∈ U . By Lemma 1.10, we have the
required conclusion.

(ii) Apply analogous reasoning as used in part (i) to obtain the desired out-
come.

(iii) Given that

f(ες)± [ε, ς] ∈ Z(S) for all ε, ς ∈ U.

Replace ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f(ε(ς +mτ)) ± [ε, ς +mτ ] ∈ Z(S) for all ε, ς, τ ∈ U.

That is,

f(ες)+f(εmτ)+

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

, εmτ, . . . , εmτ︸ ︷︷ ︸
l−times

) ± [ε, ς] ± [ε,mτ ] ∈ Z(S)

for all ε, ς, τ ∈ U . Using the hypothesis, we see that

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

,mετ, . . . ,mετ︸ ︷︷ ︸
l−times

) ∈ Z(S) for all ε, ς, τ ∈ U.

Invoking Lemma 1.5 and using torsion free restriction of S, we get

D(ες, . . . , ες, ετ) ∈ Z(S) for all ε, ς, τ ∈ U.

Replace τ by ς, we obtain

f(ες) ∈ Z(S) for all ε, ς ∈ U.

On using the hypothesis, we see that

[ε, ς] ∈ Z(S) for all ε, ς ∈ U.

That is, [U,U ] ⊆ Z(S). Hence by Lemma 1.10, U ⊆ Z(S).

(iv) On the contrary, suppose that U * Z(S). Now, we have been given that

f(ες)± ε ◦ ς ∈ Z(S) for all ε, ς ∈ U.

Taking ς +mτ in the place of ς for τ ∈ U and 1 ≤ m ≤ n− 1, we get

f(ε(ς +mτ))± ε ◦ (ς +mτ) ∈ Z(S) for all ε, ς, τ ∈ U.

That is,

f(ες)+f(εmτ)+

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

, εmτ, . . . , εmτ︸ ︷︷ ︸
l−times

) ± ε◦ ς ± ε◦mτ ∈ Z(S)
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for all ε, ς, τ ∈ U . By utilizing the provided condition, we observe that

n−1∑
l=1

nClD( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

,mετ, . . . ,mετ︸ ︷︷ ︸
l−times

) ∈ Z(S) for all ε, ς, τ ∈ U.

Now, using Lemma 1.5 and the fact that S is n!-torsion free, we obtain

D(ες, . . . , ες, ετ) ∈ Z(S) for all ε, ς, τ ∈ U.

Replace τ by ς, we get

f(ες) ∈ Z(S) for all ε, ς ∈ U.

Utilizing the given hypothesis, it is evident that

(12) ε ◦ ς ∈ Z(S) for all ε, ς ∈ U.

Again replace ε by ςε, we have ς(ε ◦ ς) ∈ Z(S) which imply [ς(ε ◦ ς), τ ] = 0
for all ε, ς, τ ∈ U . On solving, we get [ς, τ ](ε ◦ ς) = 0 for all ε, ς, τ ∈ U . Again
replace ε by ετ , we have [ς, τ ]ε[τ, ς] = 0 for all ε, ς, τ ∈ U . By Lemma 1.9, we
have [τ, ς] = 0 for all ς, τ ∈ U . Again using Lemma 1.10, we get U ⊆ Z(S),
which is a contradiction. �

Theorem 2.7. For a fixed integer n ≥ 2, let S be a n!-torsion free semiprime
ring and U be a nonzero ideal of S. Suppose that S admits two nonzero
symmetric n-derivations D : Sn → S and G : Sn → S with f : S → S and
g : S→ S as traces of D and G respectively satisfying any one of the following
conditions:

(i) g(ες) + f(ε)f(ς)± ες ∈ Z(S) for all ε, ς ∈ U,
(ii) g(ες) + f(ε)f(ς)± ςε ∈ Z(S) for all ε, ς ∈ U,

(iii) g([ε, ς]) + [f(ε), f(ς)]± [ε, ς] ∈ Z(S) for all ε, ς ∈ U,
(iv) g(ε ◦ ς) + f(ε) ◦ f(ς)± ε ◦ ς ∈ Z(S) for all ε, ς ∈ U.

Then U ⊆ Z(S).

Proof. (i) Given that

g(ες) + f(ε)f(ς)± ες ∈ Z(S) for all ε, ς ∈ U.

Replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we arrive at

g(ες) + g(εmτ) +

n−1∑
l=1

nClG( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

, εmτ, . . . , εmτ︸ ︷︷ ︸
l−times

)+

f(ε)

(
f(ς) + f(mτ) +

n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)

)
± ες ± εmτ ∈ Z(S) for all ε, ς, τ ∈ U.
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Using the hypothesis, we get

n−1∑
l=1

nClG( ες, . . . , ες︸ ︷︷ ︸
(n−l)−times

, εmτ, . . . , εmτ︸ ︷︷ ︸
l−times

)+f(ε)

n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) ∈ Z(S)

for all ε, ς, τ ∈ U . Using Lemma 1.5, we see that

nG(ες, . . . , ες, ετ) + nf(ε)D(ς, . . . , ς, τ) ∈ Z(S) for all ε, ς, τ ∈ U.

Since S is n!-torsion free, we get

G(ες, . . . , ες, ετ) + f(ε)D(ς, . . . , ς, τ) ∈ Z(S) for all ε, ς, τ ∈ U.

Writing ς in place of τ , we get

g(ες) + f(ε)f(ς) ∈ Z(S) for all ε, ς ∈ U.

Using the hypothesis, we obtain that

ες ∈ Z(S) for all ε, ς ∈ U.

Utilizing the same reasoning following (11), we arrive at the desired conclusion.

(ii) Using identical procedures as in (i), we ascertain that U is contained within
the center of S.

(iii) Given that

g([ε, ς]) + [f(ε), f(ς)]± [ε, ς] ∈ Z(S) for all ε, ς ∈ U.

Replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we conclude that

g([ε, ς]) + g([ε,mτ ]) +

n−1∑
l=1

nClG([ε, ς], . . . , [ε, ς]︸ ︷︷ ︸
(n−l)−times

, [ε,mτ ], . . . , [ε,mτ ]︸ ︷︷ ︸
l−times

)+

[f(ε), f(ς)] + [f(ε), f(mτ)] + [f(ε),

n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)]

± [ε, ς]± [ε,mτ ] ∈ Z(S) for all ε, ς, τ ∈ U.

On using hypothesis, we get

n−1∑
l=1

nClG([ε, ς], . . . , [ε, ς]︸ ︷︷ ︸
(n−l)−times

, [ε,mτ ], . . . , [ε,mτ ]︸ ︷︷ ︸
l−times

)+

[
f(ε),

n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)
]
∈ Z(S)
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for all ε, ς, τ ∈ U . Using Lemma 1.5 and the fact that S is n!−torsion free, we
have

G([ε, ς], . . . , [ε, ς], [ε, τ ]) + [f(ε),D(ς, . . . , ς, τ)] ∈ Z(S) for all ε, ς, τ ∈ U.

Writing ς in place of τ , we obtain

g([ε, ς]) + [f(ε), f(ς)] ∈ Z(S) for all ε, ς ∈ U.

Using the hypothesis, we obtain that

[ε, ς] ∈ Z(S) for all ε, ς ∈ U.

By Lemma 1.10, we conclude that U ⊆ Z(S).

(iv) Given that

g(ε ◦ ς) + f(ε) ◦ f(ς)± ε ◦ ς ∈ Z(S) for all ε, ς ∈ U.

Replacing ς by ς +mτ for τ ∈ U and 1 ≤ m ≤ n− 1, we arrive at

g(ε ◦ ς) + g(ε ◦mτ) +

n−1∑
l=1

nClG(ε ◦ ς, . . . , ε ◦ ς︸ ︷︷ ︸
(n−l)−times

, ε ◦mτ, . . . , ε ◦mτ︸ ︷︷ ︸
l−times

)+

f(ε) ◦ f(ς) + f(ε) ◦ f(mτ) + f(ε) ◦
n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

)

± ε ◦ ς ± ε ◦mτ ∈ Z(S) for all ε, ς, τ ∈ U.

On using hypothesis, we get

n−1∑
l=1

nClG(ε ◦ ς, . . . , ε ◦ ς︸ ︷︷ ︸
(n−l)−times

, ε ◦mτ, . . . , ε ◦mτ︸ ︷︷ ︸
l−times

)+

f(ε) ◦
n−1∑
l=1

nClD( ς, . . . , ς︸ ︷︷ ︸
(n−l)−times

,mτ, . . . ,mτ︸ ︷︷ ︸
l−times

) ∈ Z(S)

for all ε, ς, τ ∈ U . Using Lemma 1.5 and using the fact that S is n!−torsion
free, we get

G(ε ◦ ς, . . . , ε ◦ ς, ε ◦ τ) + f(ε) ◦D(ς, . . . , ς, τ) ∈ Z(S) for all ε, ς, τ ∈ U.

Write ς in place of τ to get

g(ε ◦ ς) + f(ε) ◦ f(ς) ∈ Z(S) for all ε, ς ∈ U.

Using the hypothesis, we obtain that

ε ◦ ς ∈ Z(S) for all ε, ς ∈ U

which is the same as (12). Hence, proceeding in the same way, we get our
result. The proof is complete. �
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The following outcome extends Vukman’s finding [22] to Lie ideals. Certainly,
Vukman demonstrated that if S is a prime ring with characteristic other than
two and three, and there exist symmetric bi-derivations D1 : S×S→ S and
D2 : S×S→ S such that f1(a)f2(a) = 0 for all a ∈ S, where f1 and f2 are the
traces of D1 and D2 respectively, then either D1 = 0 or D2 = 0. We generalize
this theorem for the traces of q-iterations of n-derivations acting on the Lie
ideal of S.

Theorem 2.8. Let S be a n!-torsion free prime ring, U a noncentral square
closed Lie ideal of S and q ≥ 1, be a fixed integer. Consider D1,D2, . . . ,Dq :
Sn → S to be n-derivations on S such that f1(ε1)f2(ε2) · · · fq(εq) = 0 for all
ε1, ε2, . . . , εq ∈ U where f′is are traces of D′is respectively, 1 ≤ i ≤ q. Then one
of the following holds:

(i) f1(ε1) = 0 for all ε1 ∈ U ,
(ii) All Dp act as left n-multipliers on U for p = 2, 3, . . . , q.

Proof. We will utilize the technique of induction to establish our result. When
substituting q = 1 into our hypothesis, it becomes evident that f1(ε1) = 0
for all ε1 ∈ U . Now, taking into account the case when q = 2, according to the
hypothesis, we obtain

f1(ε1)f2(ε2) = 0 for all ε1, ε2 ∈ U.(13)

Replacing ε2 by ε2 +mς2 for ς2 ∈ U and 1 ≤ m ≤ n− 1, we get

f1(ε1)f2(ε2 +mς2) = 0 for all ε1, ε2, ς2 ∈ U.
On simplifying, we get

(14) f1(ε1)f2(ε2) + f1(ε1)f2(mς2)+

f1(ε1)

n−1∑
l=1

nClD2( ε2, . . . , ε2︸ ︷︷ ︸
(n−l)−times

,mς2, . . . ,mς2︸ ︷︷ ︸
l−times

) = 0

for all ε1, ε2, ς2 ∈ U . Compare (13) and (14) and use Lemma 1.5 to get

nf1(ε1)D2(ε2, . . . , ε2, ς2) = 0 for all ε1, ε2, ς2 ∈ U.
Since S is n!-torsion free, we obtain

f1(ε1)D2(ε2, . . . , ε2, ς2) = 0 for all ε1, ε2, ς2 ∈ U.(15)

Replacing ς2 by ς2ς
′
2 in (15), we obtain

f1(ε1)ς2D2(ε2, . . . , ε2, ς
′
2) = 0 for all ε1, ε1, ς2, ς

′
2 ∈ U

i.e.,

f1(ε1)UD2(ε2, . . . , ε2, ς
′
2) = {0} for all ε1, ε2, ς

′
2 ∈ U.

Using Lemma 1.8, we have either f1(ε1) = 0 or D2(ε2, . . . , ε2, ς
′
2) = 0 for all

ε2, ς
′
2 ∈ U . Consider the later case D2(ε2, . . . , ε2, ς

′
2) = 0 for all ε2, ς

′
2 ∈ U . A

straightforward modification shows that D2(ε2, . . . , ε2, ς
′′
2 ς
′
2) = D2(ε2, . . . , ε2, ς

′′
2 )ς ′2
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for all ς ′2, ς
′′
2 ∈ U . Hence, D2 acts as a left n-multiplier on U as desired.

Next assuming the statement holds true for n = q − 1 and we now aim to
establish its validity for n = q. Using hypothesis,

f1(ε1)f2(ε2) · · · fq(εq) = 0 for all ε1, ε2, . . . , εq ∈ U.(16)

Replacing εq by εq + mςq for ςq ∈ U and 1 ≤ m ≤ n − 1 in (16) and taking
account of Lemma 1.5, we get

nf1(ε1)f2(ε2) · · · fq−1(εq−1)Dq(εq, . . . , εq, ςq) = 0

for all ε1, ε2, . . . , εq, ςq ∈ U . Since S is n!-torsion free, we see that

f1(ε1)f2(ε2) · · · fq−1(εq−1)Dq(εq, . . . , εq, ςq) = 0.(17)

Substituting ςqu for ςq in (17) and using (17), we arrive at

f1(ε1)f2(ε2) · · · fq−1(εq−1)ςqDq(εq, . . . , εq, u) = 0

i.e.,

f1(ε1)f2(ε2) · · · fq−1(εq−1)UDq(εq, . . . , εq, u) = {0}

for all ε1, ε2, . . . , εq, u ∈ U . Again taking account of Lemma 1.8, we have that
either f1(ε1)f2(ε2) · · · fq−1(εq−1) = 0 or Dq(εq, . . . , εq, u) = 0 for all ε1, ε2, . . . , εq
, u ∈ U . If f1(ε1)f2(ε2) · · · fq−1(εq−1) = 0, then we are done by the former case.
If Dq(εq, . . . , εq, u) = 0 for all εq, u ∈ U , then we can easily compute that
Dq(εq, . . . , εq, ςq−1u) = Dq(εq, . . . , εq, ςq−1)u for all εq, ςq−1, u ∈ U . Hence Dq

acts as a left n-multiplier on U as desired. The theorem’s proof is completed
with this conclusion. �

The subsequent example illustrates that the requirement of semiprimeness
for S in Theorems 2.1, 2.6, and 2.7 and Lemma 2.3 - 2.5 is indispensable and
cannot be overlooked.

Example 2.9. Consider the ring S =

{[
a b
0 0

]
| a, b ∈ Z

}
. Consider

U =

{[
0 b
0 0

]
| b ∈ Z

}
be a Lie ideal of S. Denote Ai =

[
ai bi
0 0

]
∈ S,

ai, bi ∈ Z, 1 ≤ i ≤ n, and let us define D : Sn → S by D(A1, A2, . . . , An) =[
0 a1a2 · · · an
0 0

]
with trace f : S→ S define by f

([
a b
0 0

])
=

[
0 an

0 0

]
. One

can easily see that D is a symmetric n-derivation such that all the conditions
in Theorems 2.1, 2.6, 2.7 and Lemma 2.3 - 2.5 are satisfied. However, U is
non central and S does not contain any nonzero central ideal.
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3. Conclusion and Future Work

In this paper, we investigated various characteristics related to the traces of
permuting n-derivations that satisfy specific functional identities within the
context of Lie ideals in prime and semiprime rings. Our exploration led to
the establishment of several results, particularly focusing on the traces of per-
muting n-derivations. We demonstrated how these traces behave under certain
algebraic conditions and their implications in the structure of the rings stud-
ied. In addition to prove certain results involving the traces of permuting
n-derivations, the last theorem is related to the permuting n-multipliers. Nev-
ertheless, there are various interesting open problems related to our work. In
this final section, we will propose a direction for future further research. In
view of the above mentioned work, the following problems remain unanswered.

Problem 3.1. For a fixed integer n ≥ 2, let S be a (semi)-prime ring of suitable
torsion restriction and P be a prime ideal of S. If S admits a nonzero sym-
metric generalized n-derivation G : Sn → S with trace g : S → S associated
with symmetric n-derivation D : Sn → S with trace d : S → S satisfying
g(ε)ς ± εg(ς) ∈ Z(S) or g(ε)ς ± εg(ς) ∈ P . Then, what can we say about the
structure of S, g and d?

Problem 3.2. For a fixed integer n ≥ 2, let S be a (semi)-prime ring of suitable
torsion restriction and P be a prime ideal of S. If S admits a nonzero sym-
metric generalized n-derivation G : Sn → S with trace g : S → S associated
with symmetric n-derivation D : Sn → S with trace d : S → S satisfying
g(ες) ± [ε, ς] ∈ Z(S) or g(ες) ± [ε, ς] ∈ P . Then, what can we say about the
structure of S, g and d?

Problem 3.3. For a fixed integer n ≥ 2, let S be a (semi)-prime ring of suitable
torsion restriction and P be a prime ideal of S. If S admits a nonzero sym-
metric generalized n-derivation G : Sn → S with trace g : S → S associated
with symmetric n-derivation D : Sn → S with trace d : S → S satisfying
g(ες) ± ε ◦ ς ∈ Z(S) or g(ες) ± ε ◦ ς ∈ P . Then, what can we say about the
structure of S, g and d?
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[10] Gölbaşi, Ö., & Sögütcü, E. Koç (2011). Generalized Derivations on Lie Ideals in Prime
Rings, Turkish J. Math., 35(1), 23-28.

[11] Herstein, I. N. (1970). On the Lie structure of an associative ring. J. Algebra, 14(4),

561–571.
[12] Hongan, M., Rehman, N., & Omary, R. M. Al (2011). Lie ideals and Jordan triple

derivations of rings. Rend. Sem. Mat. Univ. Padova, 125, 147–156.

[13] Maksa, G. (1987). On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci.
Canada IX, 303–308.

[14] Maksa, G. (1980). A remark on symmetric bi-additive functions having nonnegative

diagonalization, Glas. Mat., 15(35), 279–282.
[15] Muthana, N. M. (2007). Left cetralizer traces, generalized bi-derivations left bimultipliers

and generalized Jordan biderivations, Aligarh Bull. Math., 26(2), 33–45.
[16] Park, K. H. (2009). On prime and semi-prime rings with symmetric n-derivations, J.

Chungcheong Math. Soc., 22(3), 451–458.

[17] Posner, E. C. (1957). Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093–1100.
[18] Rehman, N., & Ansari, A. Z. (2013). On Lie ideals with symmetric bi-additive maps in

rings, Palest. J. Math., 2(1), 14–21.
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