

# QUASI z°-SUBMODULES OF REDUCED MULTIPLICATION MODULES

0 🖂 F. FARSHADIFAR

Article type: Research Article

(Received: 18 June 2024, Received in revised form 04 November 2024) (Accepted: 15 November 2024, Published Online: 18 November 2024)

ABSTRACT. The purpose of this paper is to define and investigate the notion of quasi  $z^{\circ}$ -submodules of modules over a commutative ring as an extension of  $z^{\circ}$ -ideals of commutative rings. Also, we obtain some related results when M is a reduced multiplication R-module.

Keywords: Multiplication module, reduced module,  $z^{\circ}$ -ideal,  $z^{\circ}$ -submodule, quasi  $z^{\circ}$ -submodule. 2020 MSC: 16N99, 13C13, 13C99.

#### 1. Introduction

Throughout this paper, R will denote a commutative ring with identity. An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that N = IM [5].

A proper ideal I of R is called a z-ideal whenever any two elements of R are contained in the same set of maximal ideals and I contains one of them, then it also contains the other one [15]. For each  $a \in R$ , let  $\mathfrak{P}_a$ , be the intersection of all minimal prime ideals of R containing a. A proper ideal I of R is called a  $z^{\circ}$ -ideal if for each  $a \in I$  we have  $\mathfrak{P}_a \subseteq I$  [4]. In fact, the concepts of zideals and  $z^{\circ}$ -ideals play very important roles in the research on the rings of continuous real-valued functions (or, more generally reduced rings) and related subjects, for more information, we refer the reader to [3, 13, 17].

For a submodule N of an R-module M, let  $\mathcal{M}(N)$  be the set of maximal submodules of M containing N and Max(M) be the set of all maximal submodules of M. The intersection of all maximal submodules of M containing N is said to be the Jacobson radical of N and denote by  $Rad_N(M)$  [6]. In case N is not contained in any maximal submodule, the Jacobson radical of Nis defined to be M. We denote the Jacobson radical of zero submodule of Mby  $Rad_M(M)$ . A proper submodule N of M is said to be a z-submodule if for every  $x, y \in M$ ,  $\mathcal{M}(x) = \mathcal{M}(y) \neq \emptyset$  and  $x \in N$  imply  $y \in N$  [9].

Let M be an R-module. A proper submodule P of M is said to be *prime* if for any  $r \in R$  and  $m \in M$  with  $rm \in P$ , either  $m \in P$  or  $r \in (P :_R M)$ . In this case,  $(P:_R M)$  is a prime ideal of R [7,11]. An R-module M is said to be

⊠ f.farshadifar@cfu.ac.ir, ORCID: 0000-0001-7600-994X https://doi.org/10.22103/jmmr.2024.23651.1671

Publisher: Shahid Bahonar University of Kerman

How to cite: F. Farshadifar, Quasi  $z^{\circ}$ -submodules of reduced multiplication modules, J. Mahani Math. Res. 2025; 14(1): 407-415.

407



(C) the Author(s)

reduced if the intersection of all prime submodules of M is equal to zero [18]. The intersection of all prime submodules of M containing a submodule N of M is said to be the prime radical of N and denote by  $rad_N M$ . In case N is not contained in any prime submodule, the prime radical of N is defined to be M [16]. A prime submodule P of M is a minimal prime submodule over N if P is a minimal element of the set of all prime submodules of M that contain N. A minimal prime submodule of M means a minimal prime submodule over the 0 submodule of M. The set of all minimal prime submodules of M will be denoted by  $Min^p(M)$ . The intersection of all minimal prime submodules of M containing a submodule K of M is denote by  $\mathfrak{P}_K$ . In case K is not contained in any minimal prime submodule of M,  $\mathfrak{P}_K$  is defined to be M. If N is a submodule of M, define  $V(N) = \{P \in Min^p(M) : N \subseteq P\}$ .

In [10], the notion of  $z^{\circ}$ -submodules of an R-module M as an extension of  $z^{\circ}$ -ideals was introduced and some of their properties when M is a reduced multiplication R-module are dealt with. A proper submodule N of an R-module M is said to be a  $z^{\circ}$ -submodule of M if  $\mathfrak{P}_x \subseteq N$  for all  $x \in N$  [10]. In this paper, we introduce the notion of quasi  $z^{\circ}$ -submodules of an R-module M as another generalization of  $z^{\circ}$ -ideals. Also, we investigate some related results when M is a reduced multiplication R-module.

#### 2. Reduced multiplication modules

**Lemma 2.1.** Let M be a reduced multiplication R-module and P be a minimal prime submodule of M. If  $a \in (P :_R M)$ , then

 $Ann_{R/Ann_R(M)}(a + Ann_R(M)) \not\subseteq (P:_R M)/Ann_R(M).$ 

*Proof.* By [14, Proposition 1.5], we have  $(P:_R M)$  is a minimal prime ideal of R over  $Ann_R(M)$ . As M is a reduced multiplication R-module,  $R/Ann_R(M)$  is a reduced ring by [18]. Let  $a + Ann_R(M) \in (P:_R M)/Ann_R(M)$ . Since  $R/Ann_R(M)$  is a reduced ring,  $(a + Ann_R(M))^2 \neq 0$ . Hence  $a + Ann_R(M) \notin Ann_{R/Ann_R(M)}(a + Ann_R(M))$ . Therefore,  $Ann_{R/Ann_R(M)}(a + Ann_R(M)) \nsubseteq (P:_R M)/Ann_R(M)$ .

**Remark 2.2.** [10, Remark ] Let M be a multiplication R-module and  $\Omega$  be a subset of  $Min^p(M)$ . Set  $\mathfrak{P}_{\Omega} = \cap \{P : P \in \Omega\}$ . A subset  $\Omega$  of  $Min^p(M)$  is said to be closed if  $\Omega = V(\mathfrak{P}_{\Omega})$ . With this notion of closed set, one can see that the space of minimal prime submodules of M becomes a topological space.

**Theorem 2.3.** Let M be a faithful reduced multiplication R-module. Then for each  $a \in R$ , we have  $V(Ann_R(a)M) = Min^p(M) \setminus V(aM)$ . In particular,  $V(Ann_R(a)M)$  and V(aM) are disjoint open-and-closed sets of  $Min^p(M)$ .

*Proof.* If  $P \in V(aM)$ , then  $aM \subseteq P$ , so  $a \in (P :_R M)$ . Now, since  $Ann_R(M) = 0$ , we have  $Ann_R(a) \not\subseteq (P :_R M)$  by Lemma 2.1. It follows that  $Ann_R(a)M \not\subseteq P$ . Thus  $V(Ann_R(a)M) \cap V(aM) = \emptyset$ . On the other hand, if  $P \in Min^p(M) \setminus V(aM)$ , then for any  $b \in Ann_R(a)$ , we have  $abM = 0 \subseteq P$ . Since  $a \notin Ann_R(a) = 0$ .

 $(P:_R M)$  and P is prime,  $bM \subseteq P$ . Therefore,  $P \in V(Ann_R(a)M)$ . Thus  $V(Ann_R(a)M) = Min^p(M) \setminus V(aM)$ . Both sets  $V(Ann_R(a)M)$  and V(aM) are closed, and since they are complementary, they are also open.

**Corollary 2.4.** Let M be a faithful reduced multiplication R-module. Then  $Min^p(M)$  is a Hausdorff space with a base of open-and-closed sets.

*Proof.* Let  $P \neq Q \in Min^p(M)$ . If  $(P :_R M) \subseteq (Q :_R M)$ , then  $P = (P :_R M)M \subseteq (Q :_R M)M = Q$  because M is a multiplication R-module. This is a contradiction because  $P, Q \in Min^p(M)$  and  $P \neq Q$ . So, we can assume that  $a \in (P :_R M) \setminus (Q :_R M)$ . Then V(aM) and  $V(Ann_R(a)M)$  are disjoint open sets containing P and P, respectively. Hence  $Min^p(M)$  is a Hausdorff space. In fact, the family  $\{V(aM)\}$  is a base for the closed sets. Thus  $V(Ann_R(a)M)$  is a base for the open sets. □

**Theorem 2.5.** Let M be a reduced multiplication R-module. Then we have the following.

- (a) If M is a faithful R-module, then  $V(aM) = V((0:_M Ann_R(aM)))$  for each  $a \in R$ .
- (b)  $(0:_M Ann_R(IJM)) = (0:_M Ann_R(IM)) \cap (0:_M Ann_R(JM))$  for each ideals I, J of R.

*Proof.* (a) Let M be a faithful R-module and  $a \in R$ . Then  $Ann_R(aM) = Ann_R(a)$ . As  $aM \subseteq (0 :_M Ann_R(aM))$ , we have  $V((0 :_M Ann_R(aM))) \subseteq V(aM)$ . Now, let P be a minimal prime submodule of M containing aM. Then, there exists  $b \in Ann_R(aM) \setminus (P :_R M)$  by Lemma 2.1. Then, for any  $y \in (0 :_M Ann_R(aM))$ , we have  $by = 0 \in P$ . Hence  $y \in P$ . So,  $(0 :_M Ann_R(aM)) \subseteq P$ , as needed.

(b) Let I, J be ideals of R. As  $Ann_R(IM) \subseteq Ann_R(IJM)$  and  $Ann_R(JM) \subseteq Ann_R(IJM)$ , we have

 $(0:_M Ann_R(IJM)) \subseteq (0:_M Ann_R(JM)) \cap (0:_M Ann_R(IM)).$ 

Now, suppose that  $z \in (0 :_M Ann_R(JM)) \cap (0 :_M Ann_R(IM))$ . Let  $t \in Ann_R(IJM)$ . Then  $Jt \subseteq Ann_R(IM)$ , so tJz = 0. Since M is a multiplication module, tzR = AM for some ideal A of R. Hence,  $A \subseteq Ann_R(JM)$ , so Az = 0. Thus  $t(Rz)^2 = 0$ . It follows that  $(Rtz)^2 = 0$ . This means that  $(Rtz :_R M)^2M = 0$ , so  $(Rtz :_R M)^2 \subseteq Ann_R(M)$ . It follows that  $((Rtz :_R M) + Ann_R(M))^2 = 0 \in R/Ann_R(M)$ . As M is a reduced multiplication R-module,  $R/Ann_R(M)$  is a reduced ring by [18]. Therefore,  $(Rtz :_R M) + Ann_R(M) = 0_{R/Ann_R(M)}$ . This implies that tz = 0. Hence,  $zAnn_R(IJM) = 0$ . It follows that  $z \in (0 :_M Ann_R(IJM))$ .

**Corollary 2.6.** Let M be a faithful reduced multiplication R-module. Then for each  $a \in R$ ,  $(0:_M Ann_R(aM)) = \mathfrak{P}_{aM}$ .

*Proof.* Since, by [10, Theorem 2.11],  $(0:_M I) = \mathfrak{P}_{(0:_M I)}$  for each ideal I of R. The result follows from Theorem 2.5 (a).

**Theorem 2.7.** Let M be a reduced multiplication R-module. Then the following are equivalent:

- (a) For  $a, b \in R$ ,  $Ann_R(aM) = Ann_R(bM)$  and  $aM \subseteq N$  imply that  $bM \subseteq N$ ;
- (b) For  $a, b \in R$ ,  $Ann_R(aM) \subseteq Ann_R(bM)$  and  $aM \subseteq N$  imply that  $bM \subseteq N$ .

Proof. (a)  $\Rightarrow$  (b) Let for  $a, b \in R$ ,  $Ann_R(aM) \subseteq Ann_R(bM)$  and  $aM \subseteq N$ . Then  $(0:_M Ann_R(bM)) \subseteq (0:_M Ann_R(aM))$ . Hence  $(0:_M Ann_R(abM)) = (0:_M Ann_R(bM))$  by Theorem 2.5 (b). It follows that  $Ann_R(abM) = Ann_R(bM)$ . Now, as  $abM \subseteq N$  we have  $bM \subseteq N$  by part (a).

 $(b) \Rightarrow (a)$  This is clear.

**Theorem 2.8.** Let M be a faithful multiplication R-module. Then  $\mathfrak{P}_I M \subseteq \mathfrak{P}_{IM}$  for each ideal I of R. The reverse inclusion holds when M is a finitely generated R-module.

*Proof.* Let I be an ideal of R and X be a minimal prime submodule of M such that  $IM \subseteq X$ . Then  $I \subseteq (X :_R M)$ . Since, by [14, Proposition 1.5],  $(X :_R M)$  is a minimal prime ideal of R,  $\mathfrak{P}_I \subseteq (X :_R M)$ . Thus  $\mathfrak{P}_I M \subseteq (X :_R M)M \subseteq X$ . Hence,  $\mathfrak{P}_I M \subseteq \mathfrak{P}_{IM}$  for each ideal I of R. For the converse, let  $\mathfrak{P}_I = \cap \mathfrak{p}_i$ , where  $\mathfrak{p}_i \in Min^p(R), I \subseteq \mathfrak{p}_i$ , where  $Min^p(R)$  is the set of all minimal prime ideals of R. As M is a faithful multiplication R-module, by using [8, Theorem 1.6],

$$IM \subseteq \mathfrak{P}_I M = (\bigcap \mathfrak{p}_i) M = \bigcap \mathfrak{p}_i M = \bigcap_{\mathfrak{p}_i M \neq M} \mathfrak{p}_i M.$$

This implies that  $\mathfrak{P}_{IM} \subseteq \mathfrak{P}_I M$  since M is finitely generated, so by using [8, Page 762],  $\mathfrak{p}_i M \neq M$  is a minimal prime submodule of M.

## 3. Quasi $z^{\circ}$ -submodules

**Definition 3.1.** We say that a proper submodule N of an R-module M is a quasi  $z^{\circ}$ -submodule of M if  $\mathfrak{P}_{aM} \subseteq N$  for all  $a \in (N :_R M)$ .

**Remark 3.2.** Let M be an R-module. If N is a quasi  $z^{\circ}$ -submodule of M, then for each  $a \in (N :_R M)$  we have  $\mathfrak{P}_{aM} \neq M$ , i.e., aM contained in at least a minimal prime submodule of M. Clearly, every minimal prime submodule of M is a quasi  $z^{\circ}$ -submodule of M. Also, the family of quasi  $z^{\circ}$ -submodules of M is closed under intersection. Therefore, if  $\mathfrak{P}_0 \neq M$ , then  $\mathfrak{P}_0$  is a quasi  $z^{\circ}$ -submodule of M.

**Example 3.3.** Let K be a field and let R = K[[x, y]], where x, y are indeterminates. Put P = (x, y). Then  $(Py :_R P) = (y)$ . Put  $P_1 = P/(y)$ ,  $R_1 = R/(y)$ , and M = P/Py. Then by [12, Example 2.7],  $P_1M$  is a minimal prime submodule of the  $R_1$ -module M and so,  $P_1M$  is a quasi  $z^\circ$ -submodule of M as an  $R_1$ -module.

Quasi  $z^{\circ}$ -submodules of reduced multiplication modules – JMMR Vol. 14, No. 1 (2025) 411

We give the following easy results without proofs.

**Proposition 3.4.** Let N be a submodule of a cyclic R-module M. Then N is a  $z^{\circ}$ -submodule of M if and only if N is a quasi  $z^{\circ}$ -submodule of M. In particular, an ideal I of the ring R is a  $z^{\circ}$ -ideal if and only if I is a quasi  $z^{\circ}$ -ideal of R.

**Lemma 3.5.** Let M be an R-module. A submodule N of M is a quasi  $z^{\circ}$ -submodule if and only if  $N = \sum_{a \in (N:_RM)} \mathfrak{P}_{aM}$ .

**Proposition 3.6.** Let N be a proper submodule of an R-module M. Then N as an R-submodule is a quasi  $z^{\circ}$ -submodule if and only if as an  $R/Ann_R(M)$ -submodule is a quasi  $z^{\circ}$ -submodule.

**Lemma 3.7.** Let M be a faithful multiplication R-module. If N is a quasi  $z^{\circ}$ -submodule M, then  $(N :_R M)$  is a  $z^{\circ}$ -ideal of R. The converse holds when M is a finitely generated R-module.

*Proof.* This follows from Theorem 2.8.

**Theorem 3.8.** Let M be a faithful multiplication R-module. Then we have the following.

- (a) Let M be a finitely generated R-module and I be a z°-ideal of R. Then IM is a quasi z°-submodule of M.
- (b) Let R be a reduced ring and N be a quasi z<sup>◦</sup>-submodule of an R-module M. Then (N :<sub>R</sub> (K :<sub>R</sub> M)M) is a z<sup>◦</sup>-ideal of R for each submodule K of M. In particular, if 𝔅<sub>0</sub> = 0, then Ann<sub>R</sub>((K :<sub>R</sub> M)M) is a z<sup>◦</sup>-ideal of R for each submodule K of M.
- (c) Let R be a reduced ring and N be a quasi  $z^{\circ}$ -submodule of M. Then  $(N:_{R}K)$  is a  $z^{\circ}$ -ideal of R for each submodule K of M. In particular, if  $\mathfrak{P}_{0} = 0$ , then  $Ann_{R}(K)$  is a  $z^{\circ}$ -ideal of R for each submodule K of M.

*Proof.* (a) By [19, Theorem 10],  $I = (IM :_R M)$ . Now, the result follows from Lemma 3.7.

(b) As N is a quasi  $z^{\circ}$ -submodule,  $(N :_R M)$  is a  $z^{\circ}$ -ideal of R by Lemma 3.7. Let K be a submodule of M. Then by [4, Examples of  $z^{\circ}$ -ideals],  $((N :_R M) :_R (K :_R M))$  is a  $z^{\circ}$ -ideal of R. Now,  $(N :_R (K :_R M)M) = ((N :_R M) :_R (K :_R M))$  implies that  $(N :_R (K :_R M)M)$  is a  $z^{\circ}$ -ideal of R. Now, the last assertion follows from the fact that  $\mathfrak{P}_0$  is a quasi  $z^{\circ}$ -submodule of M by Remark 3.2.

(c) As M is a multiplication R-module,  $K = (K :_R M)M$ . Now, the result follows from part (b)

Let M be an R-module. The set of torsion elements of M with respect to R is the set  $T_0(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in R\}.$ 

**Theorem 3.9.** Let M be a faithful reduced multiplication R-module,  $a, b \in M$ , and  $b \in Ann_R(aM)$ . If  $Ann(aM)M = \mathfrak{P}_{bM}$ , then  $(a + b)M \not\subseteq T_0(M)$ . The converse holds when  $Ann_R(a)M = Ann_R(aM)M$  is a quasi  $z^\circ$ -submodule of M.

Proof. First note that  $T_0(M) = \bigcup_{P \in Min^P(M)} P$  by [10, Corollary 2.9]. Now, let  $Ann(aM)M = \mathfrak{P}_{bM}$  and (a + b)M belong to a minimal prime submodule P of M and seek a contradiction. If  $a \in (P :_R M)$ , then  $b \in (P :_R M)$  implies that  $\mathfrak{P}_{bM} \subseteq P$ , i.e.,  $\mathfrak{P}_{bM} = Ann_R(aM)M \subseteq P$ , which is a contradiction by Theorem 2.3. Now, if  $a \notin (P :_R M)$ , then we must have  $b \notin (P :_R M)$ , i.e.,  $Ann(aM)M = \mathfrak{P}_{bM} \not\subseteq P$ , which is impossible by Theorem 2.3. Conversely, if  $(a + b)M \not\subseteq T_0(M)$ , we have to show that  $Ann(aM)M \subseteq \mathfrak{P}_{bM}$ . Let P be a minimal prime submodule with  $b \in (P :_R M)$ . Then  $a + b \notin (P :_R M)$  implies that  $a \notin (P :_R M)$ , i.e.,  $Ann(aM)M \subseteq P$ . Hence  $Ann(aM)M \subseteq \mathfrak{P}_{bM}$ . The reverse inclusion follows from the fact that  $Ann_R(aM)M$  is a quasi  $z^\circ$ -submodule of M.

Let M be an R-module. The set of zero divisors of R on M is the set  $Zd_R(M) = \{r \in R : rm = 0 \text{ for some nonzero } m \in M\}.$ 

**Proposition 3.10.** Let M be a faithful multiplication R-module. If N is a quasi  $z^{\circ}$ -submodule of M, then  $(N :_R M) \subseteq Zd_R(M)$ .

*Proof.* By [1, Lemma 2.1],  $Zd_R(R) = Zd_R(M)$ . Now, the result follows from the fact that  $(N :_R M)$  is a  $z^\circ$ -ideal of R by Lemma 3.7.

**Theorem 3.11.** Let M be a faithful reduced multiplication R-module. Then the following are equivalent:

- (a) N is a quasi  $z^{\circ}$ -submodule of M;
- (b) For each  $a \in (N :_R M)$  and submodule K of M,  $\mathfrak{P}_{aM} = \mathfrak{P}_K$  implies that  $K \subseteq N$ ;
- (c) For each  $a \in (N :_R M)$  and submodule K of M, V(aM) = V(K) implies that  $K \subseteq N$ ;
- (d) For each  $a \in R$ , we have  $aM \subseteq N$  implies that  $(0:_M Ann_R(aM)) \subseteq N$ ;
- (e) For  $a, b \in R$ ,  $Ann_R(aM) = Ann_R(bM)$  and  $aM \subseteq N$  imply that  $bM \subseteq N$ ;

(f) For  $a, b \in R$ ,  $Ann_R(aM) \subseteq Ann_R(bM)$  and  $aM \subseteq N$  imply that  $bM \subseteq N$ .

*Proof.*  $(a) \Rightarrow (b)$  Let  $a \in (N :_R M)$  and K be a submodule of M such that  $\mathfrak{P}_{aM} = \mathfrak{P}_K$ . By assumption,  $\mathfrak{P}_{aM} \subseteq N$ . Thus  $K \subseteq \mathfrak{P}_K \subseteq N$ .

 $(b) \Rightarrow (c)$  Let  $a \in (N :_R M)$  and K be a submodule of M such that V(aM) = V(K). Then  $\mathfrak{P}_{aM} = \mathfrak{P}_K$ . Thus, by part (b),  $K \subseteq N$ .

 $(c) \Rightarrow (d)$  Let  $aM \subseteq N$ . Then  $V(aM) = V((0:_M Ann_R(aM))$  by Theorem 2.5. Thus, by part (c),  $(0:_M Ann_R(aM)) \subseteq N$ .

 $(d) \Rightarrow (e)$  Let  $a, b \in R$ ,  $Ann_R(aM) = Ann_R(bM)$  and  $aM \subseteq N$ . Then  $(0:_M Ann_R(aM)) = (0:_M Ann_R(bM))$ . By part (d),  $(0:_M Ann_R(aM)) \subseteq N$ . Thus  $bM \subseteq (0:_M Ann_R(bM)) \subseteq N$ .

 $(e) \Rightarrow (f)$  By Theorem 2.7.

 $(f) \Rightarrow (a)$  Let  $aM \subseteq N$ . By Corollary 2.6,  $(0:_M Ann_R(aM)) = \mathfrak{P}_{aM}$ . Let  $x \in (0:_M Ann_R(aM))$ . Then  $Ann_R(aM) \subseteq Ann_R(x)$ . As M is a multiplication R-module, Rx = JM for some ideal J or R. Let  $b \in J$ . Then  $Ann_R(JM) \subseteq Ann_R(bM)$ . Therefore,  $Ann_R(aM) \subseteq Ann_R(bM)$ . Thus by part (f),  $bM \subseteq N$ , so  $Rx = JM \subseteq N$ . This implies that  $\mathfrak{P}_{aM} = (0:_M Ann_R(aM)) \subseteq N$ .

An *R*-module *M* is said to be a co-multiplication module if for every submodule *N* of *M* there exists an ideal *I* of *R* such that  $N = (0 :_M I)$ , equivalently, for each submodule *N* of *M*, we have  $N = (0 :_M Ann_R(N))$  [2].

**Corollary 3.12.** Every proper submodule of a faithful reduced multiplication and co-multiplication *R*-module is a quasi  $z^{\circ}$ -submodule.

*Proof.* As M is a co-multiplication R-module, for each  $a \in M$  we have  $aM = (0:_M Ann_R(aM))$ . Now, the result follows from Theorem 2.5  $((d) \Rightarrow (a))$ .  $\Box$ 

**Theorem 3.13.** Let M be a faithful reduced multiplication R-module and N be a quasi  $z^{\circ}$ -submodule of M. Then every minimal prime submodule over N is a prime quasi  $z^{\circ}$ -submodule of M.

*Proof.* Let *P* be a minimal prime submodule over *N*. Assume that  $Ann(aM) \subseteq Ann(bM)$ , where  $a \in (P :_R M)$  and  $b \in R$ . Since *P*/*N* is a minimal prime submodule of *M*/*N*, by Lemma 2.1 (b), there exists  $c \in Ann_R(a(M/N)) \setminus (P/N :_R M/N)$ . Thus  $ca \in (N :_R M)$  and  $c \notin (P :_R M)$ . Now, we have  $Ann(caM) \subseteq Ann(cbM)$ . As *N* is a quasi *z*°-submodule of *M*, we get that  $cb \in (N :_R M) \subseteq (P :_R M)$ . Since  $c \notin (P :_R M)$  and *P* is a prime submodule,  $b \in (P :_R M)$ , as needed. □

**Corollary 3.14.** If  $f: M \to M/N$  is the natural epimorphism, where M is a faithful reduced multiplication R-module and N is a quasi  $z^{\circ}$ -submodule of M, then every quasi  $z^{\circ}$ -submodule of M/N contracts to a quasi  $z^{\circ}$ -submodule of M.

**Corollary 3.15.** Let M be a faithful reduced multiplication R-module. Then we have the following.

- (a) Every maximal quasi  $z^{\circ}$ -submodule is a prime quasi  $z^{\circ}$ -submodule.
- (b) If P is a prime submodule of M, then either P is a quasi  $z^{\circ}$ -submodule or contains a maximal quasi  $z^{\circ}$ -submodule which is a prime quasi  $z^{\circ}$ -submodule.

**Theorem 3.16.** Let M be a faithful multiplication R-module. Then the following are equivalent:

- (a) M is a reduced module, i.e., R is a reduced ring;
- (b) The submodule 0 is a quasi  $z^{\circ}$ -submodule of M.

*Proof.*  $(a) \Rightarrow (b)$  Let  $a \in Ann_R(M)$ . Then  $(0:_M Ann_R(aM)) = 0$ . Thus the result follows from Theorem 3.11  $(d) \Rightarrow (a)$ .

### F. Farshadifar

 $(b) \Rightarrow (a)$  Let  $a \in R$  such that  $(Ra)^2 = 0$ . It is clear that  $\mathfrak{P}_{aM} = \mathfrak{P}_{(a^2M)}$ . Thus  $\mathfrak{P}_{aM} = \mathfrak{P}_{a^2M} = \mathfrak{P}_0$ . Since the submodule 0 is a quasi  $z^\circ$ -submodule, aM = 0. Now, as M is faithful, a = 0.

## 4. Data Availability Statement

Not applicable.

#### 5. Aknowledgement

The author would like to thank the referees for careful reading of the manuscript and making valuable suggestions which improved this paper.

#### 6. Ethical considerations

The author avoided from data fabrication and falsification.

#### 7. Funding

No funding received.

## 8. Conflict of interest

The author declare no conflict of interest.

### References

- Ansari-Toroghy, H., Farshadifar, F., and Mahboobi-Abkenar, F. (2018). On the idealbased zero-divisor graphs. Int. Electron. J. Algebra, 23, 115-130.
- [2] Ansari-Toroghy, H. and Farshadifar, F. (2019). Survey on comultiplication modules. Surv. Math. Appl., 14, 61-108.
- [3] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (1999). On  $z^0$ -ideals in C(X). Fund. Math., **160** (1), 15-25.
- [4] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (2000). On ideals consisting entirely of zero divisors. Comm. Algebra, 28 (2), 1061-1073.
- [5] Barnard, A. (1981). Multiplication modules. J. Algebra, 71 (1), 174-178.
- [6] Cissé, M. D. and Sow, D. (2017). On generalizations of essential and small submodules. Southeast Asian Bull. Math., 41 (3), 369-383.
- [7] Dauns, J. (1978). Prime modules. J. Reine Angew. Math., 298, 156-181.
- [8] El-Bast, Z. A. and Smith, P. F. (1988). Multiplication modules. Comm. Algebra, 16 (4), 755-779.
- $[9]\,$  Farshadifar, F. A generalization of z-ideals. submitted.
- [10] Farshadifar, F.  $z^{\circ}$ -submodules of a reduced multiplication module. submitted.
- [11] Feller, E. H. and Swokowski, E. W. (1965). Prime modules. Canadian J. Math., 17, 1041-1052.
- [12] Gaur, A. and Maloo, A. K. (2008). Minimal prime submodules. Int. J. Algebra 2 (20), 953-956.
- [13] Gillman, L. and Jerison, M. (1960). *Rings of continuous functions*. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York.
- [14] Koohy, H. (2008). On finiteness of multiplication modules. Acta Math. Hungar., 118 (1-2), 1-7.

414

Quasi  $z^\circ$ -submodules of reduced multiplication modules – JMMR Vol. 14, No. 1 (2025) 415

- [15] Mason, G. (1973). z-ideals and prime idealsz-ideals and prime ideals. J. Algebra, 26, 280-297.
- [16] McCasland, R. L. and Moore, M. E. (1986). On radicals of submodules of finitely generated modules. Canad. Math. Bull., 29 (1), 37-39.
- [17] Namdari, M. (2023). The story of rings of continuous functions in Ahvaz: from C(X) to  $C_c(X)$ . J. Iran. Math. Soc. 4 (2), 149-182.
- [18] Samei, K. (2011). Reduced multiplication modules. Proc. Indian Acad. Sci. Math. Sci., 121 (2), 121-132.
- [19] Smith, P. F. (1988). Some remarks on multiplication modules. Arch. Math. (Basel), 50 (3), 223-235.

Faranak Farshadifar

Orcid number: 0000-0001-7600-994X

Department of Mathematics Education

FARHANGIAN UNIVERSITY

P.O. Box 14665-889, Tehran, Iran Email address: f.farshadifar@cfu.ac.ir