

QUASI z° -SUBMODULES OF REDUCED MULTIPLICATION MODULES

F. FARSHADIFAR $\bullet \boxtimes$

Article type: Research Article

(Received: 18 June 2024, Received in revised form 04 November 2024) (Accepted: 15 November 2024, Published Online: 18 November 2024)

Abstract. The purpose of this paper is to define and investigate the notion of quasi z° -submodules of modules over a commutative ring as an extension of z° -ideals of commutative rings. Also, we obtain some related results when M is a reduced multiplication R -module.

Keywords: Multiplication module, reduced module, z° -ideal, z° -submodule, quasi z ◦-submodule. 2020 MSC: 16N99, 13C13, 13C99.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. An R-module M is said to be a *multiplication module* if for every submodule N of M there exists an ideal I of R such that $N = IM$ [\[5\]](#page-7-0).

A proper ideal I of R is called a z-ideal whenever any two elements of R are contained in the same set of maximal ideals and I contains one of them, then it also contains the other one [\[15\]](#page-8-0). For each $a \in R$, let \mathfrak{P}_a , be the intersection of all minimal prime ideals of R containing a . A proper ideal I of R is called a z^o-ideal if for each $a \in I$ we have $\mathfrak{P}_a \subseteq I$ [\[4\]](#page-7-1). In fact, the concepts of zideals and z° -ideals play very important roles in the research on the rings of continuous real-valued functions (or, more generally reduced rings) and related subjects, for more information, we refer the reader to [\[3,](#page-7-2) [13,](#page-7-3) [17\]](#page-8-1).

For a submodule N of an R-module M, let $\mathcal{M}(N)$ be the set of maximal submodules of M containing N and $Max(M)$ be the set of all maximal submodules of M . The intersection of all maximal submodules of M containing N is said to be the *Jacobson radical* of N and denote by $Rad_N(M)$ [\[6\]](#page-7-4). In case N is not contained in any maximal submodule, the Jacobson radical of N is defined to be M. We denote the Jacobson radical of zero submodule of M by $Rad_M(M)$. A proper submodule N of M is said to be a *z*-submodule if for every $x, y \in M$, $\mathcal{M}(x) = \mathcal{M}(y) \neq \emptyset$ and $x \in N$ imply $y \in N$ [\[9\]](#page-7-5).

Let M be an R -module. A proper submodule P of M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, either $m \in P$ or $r \in (P :_R M)$. In this case, $(P:_{R} M)$ is a prime ideal of R [\[7,](#page-7-6)11]. An R-module M is said to be

 f.farshadifar@cfu.ac.ir, ORCID: 0000-0001-7600-994X <https://doi.org/10.22103/jmmr.2024.23651.1671> © the Author(s)

Publisher: Shahid Bahonar University of Kerman

How to cite: F. Farshadifar, *Quasi* z° -submodules of reduced multiplication modules, J.

Mahani Math. Res. 2025; 14(1): 407-415.

407

reduced if the intersection of all prime submodules of M is equal to zero [\[18\]](#page-8-2). The intersection of all prime submodules of M containing a submodule N of M is said to be the *prime radical* of N and denote by $rad_N M$. In case N is not contained in any prime submodule, the prime radical of N is defined to be M [\[16\]](#page-8-3). A prime submodule P of M is a minimal prime submodule over N if P is a minimal element of the set of all prime submodules of M that contain N. A minimal prime submodule of M means a minimal prime submodule over the 0 submodule of M . The set of all minimal prime submodules of M will be denoted by $Min^p(M)$. The intersection of all minimal prime submodules of M containing a submodule K of M is denote by \mathfrak{P}_K . In case K is not contained in any minimal prime submodule of M , \mathfrak{P}_K is defined to be M . If N is a submodule of M, define $V(N) = \{P \in Min^{p}(M) : N \subseteq P\}.$

In [\[10\]](#page-7-8), the notion of z° -submodules of an R-module M as an extension of z° -ideals was introduced and some of their properties when M is a reduced multiplication R -module are dealt with. A proper submodule N of an R module M is said to be a z°-submodule of M if $\mathfrak{P}_x \subseteq N$ for all $x \in N$ [\[10\]](#page-7-8). In this paper, we introduce the notion of quasi z° -submodules of an R-module M as another generalization of z° -ideals. Also, we investigate some related results when M is a reduced multiplication R -module.

2. Reduced multiplication modules

Lemma 2.1. Let M be a reduced multiplication R -module and P be a minimal prime submodule of M. If $a \in (P :_R M)$, then

 $Ann_{R/Ann_R(M)}(a + Ann_R(M)) \nsubseteq (P :_R M)/Ann_R(M).$

Proof. By [\[14,](#page-7-9) Proposition 1.5], we have $(P :_R M)$ is a minimal prime ideal of R over $Ann_R(M)$. As M is a reduced multiplication R-module, $R/Ann_R(M)$ is a reduced ring by [\[18\]](#page-8-2). Let $a + Ann_R(M) \in (P :_R M)/Ann_R(M)$. Since $R/Ann_R(M)$ is a reduced ring, $(a + Ann_R(M))^2 \neq 0$. Hence $a + Ann_R(M) \notin$ $Ann_{R/Ann_R(M)}(a + Ann_R(M))$. Therefore, $Ann_{R/Ann_R(M)}(a + Ann_R(M)) \nsubseteq$
(P:p M)/Ann p(M) $(P:_{R} M)/Ann_{R}(M).$

Remark 2.2. [\[10,](#page-7-8) Remark] Let M be a multiplication R-module and Ω be a subset of $Min^p(M)$. Set $\mathfrak{P}_{\Omega} = \cap \{P : P \in \Omega\}$. A subset Ω of $Min^p(M)$ is said to be closed if $\Omega = V(\mathfrak{P}_{\Omega})$. With this notion of closed set, one can see that the space of minimal prime submodules of M becomes a topological space.

Theorem 2.3. Let M be a faithful reduced multiplication R-module. Then for each $a \in R$, we have $V(Ann_R(a)M) = Min^p(M) \setminus V(aM)$. In particular, $V(Ann_R(a)M)$ and $V(aM)$ are disjoint open-and-closed sets of $Min^p(M)$.

Proof. If $P \in V(aM)$, then $aM \subseteq P$, so $a \in (P :_R M)$. Now, since $Ann_R(M) =$ 0, we have $Ann_R(a) \nsubseteq (P :_R M)$ by Lemma [2.1.](#page-1-0) It follows that $Ann_R(a)M \nsubseteq$ P. Thus $V(Ann_R(a)M) \cap V(aM) = \emptyset$. On the other hand, if $P \in Min^p(M) \setminus$ $V(aM)$, then for any $b \in Ann_R(a)$, we have $abM = 0 \subseteq P$. Since $a \notin$

 $(P:_{R} M)$ and P is prime, $bM \subseteq P$. Therefore, $P \in V(Ann_{R}(a)M)$. Thus $V(Ann_R(a)M) = Min^p(M) \setminus V(aM)$. Both sets $V(Ann_R(a)M)$ and $V(aM)$ are closed, and since they are complementary, they are also open. \Box

Corollary 2.4. Let M be a faithful reduced multiplication R -module. Then $Min^p(M)$ is a Hausdorff space with a base of open-and-closed sets.

Proof. Let $P \neq Q \in Min^p(M)$. If $(P :_R M) \subseteq (Q :_R M)$, then $P = (P :_R M)$ $M/M \subset (Q:_{R} M)M = Q$ because M is a multiplication R-module. This is a contradiction because $P, Q \in Min^p(M)$ and $P \neq Q$. So, we can assume that $a \in (P :_R M) \setminus (Q :_R M)$. Then $V(aM)$ and $V(Ann_R(a)M)$ are disjoint open sets containing P and \hat{P} , respectively. Hence $Min^p(M)$ is a Hausdorff space. In fact, the family $\{V(aM)\}\$ is a base for the closed sets. Thus $V(Ann_R(a)M)$ is a base for the open sets.

Theorem 2.5. Let M be a reduced multiplication R-module. Then we have the following.

- (a) If M is a faithful R-module, then $V(aM) = V((0 :_M Ann_B(aM)))$ for each $a \in R$.
- (b) $(0:_{M} Ann_{R}(IJM)) = (0:_{M} Ann_{R}(IM)) \cap (0:_{M} Ann_{R}(JM))$ for each ideals I, J of R .

Proof. (a) Let M be a faithful R-module and $a \in R$. Then $Ann_R(aM)$ = Ann_R(a). As a $M \subseteq (0 :_M Ann_R(aM))$, we have $V((0 :_M Ann_R(aM))) \subseteq$ $V(aM)$. Now, let P be a minimal prime submodule of M containing aM . Then, there exists $b \in Ann_R(aM) \setminus (P :_R M)$ by Lemma [2.1.](#page-1-0) Then, for any $y \in (0:_{M} Ann_{R}(aM))$, we have $by = 0 \in P$. Hence $y \in P$. So, $(0:_{M}$ $Ann_R(aM)) \subseteq P$, as needed.

(b) Let I, J be ideals of R. As $Ann_R(IM) \subseteq Ann_R(IM)$ and $Ann_R(JM) \subseteq$ $Ann_R(IJM),$ we have

 $(0:_{M} Ann_{R}(IJM)) \subseteq (0:_{M} Ann_{R}(JM)) \cap (0:_{M} Ann_{R}(IM)).$

Now, suppose that $z \in (0 :_M Ann_R(JM)) \cap (0 :_M Ann_R(IM))$. Let $t \in$ Ann_R(IJM). Then $Jt \subseteq Ann_R(IM)$, so $tJz = 0$. Since M is a multiplication module, $tzR = AM$ for some ideal A of R. Hence, $A \subseteq Ann_R(JM)$, so $Az = 0$. Thus $t(Rz)^2 = 0$. It follows that $(Rtz)^2 = 0$. This means that $(Rtz:_{R} M)^{2}M = 0$, so $(Rtz:_{R} M)^{2} \subseteq Ann_{R}(M)$. It follows that $((Rtz:_{R} M)^{2}M)$ $(M) + Ann_R(M))^2 = 0 \in R/Ann_R(M)$. As M is a reduced multiplication R-module, $R/Ann_R(M)$ is a reduced ring by [\[18\]](#page-8-2). Therefore, $(Rtz:_{R} M)$ + $Ann_R(M) = 0_{R/Ann_R(M)}$. This implies that $tz = 0$. Hence, $zAnn_R(I JM) = 0$. It follows that $z \in (0 :_M Ann_R(I JM)).$

Corollary 2.6. Let M be a faithful reduced multiplication R -module. Then for each $a \in R$, $(0:_{M} Ann_{R}(aM)) = \mathfrak{P}_{aM}$.

Proof. Since, by [\[10,](#page-7-8) Theorem 2.11], $(0:_{M} I) = \mathfrak{P}_{(0:_{M} I)}$ for each ideal I of R. The result follows from Theorem [2.5](#page-2-0) (a). \Box Theorem 2.7. Let M be a reduced multiplication R-module. Then the following are equivalent:

- (a) For $a, b \in R$, $Ann_R(aM) = Ann_R(bM)$ and $aM \subseteq N$ imply that $bM \subseteq N;$
- (b) For $a, b \in R$, $Ann_R(aM) \subseteq Ann_R(bM)$ and $aM \subseteq N$ imply that $bM \subseteq N$.

Proof. (a) \Rightarrow (b) Let for $a, b \in R$, $Ann_R(aM) \subseteq Ann_R(bM)$ and $aM \subseteq N$. Then $(0:_{M} Ann_{R}(bM)) \subseteq (0:_{M} Ann_{R}(aM))$. Hence $(0:_{M} Ann_{R}(abM))$ = $(0:_{M} Ann_{R}(bM))$ by Theorem [2.5](#page-2-0) (b). It follows that $Ann_{R}(abM) = Ann_{R}(bM)$. Now, as $abM \subseteq N$ we have $bM \subseteq N$ by part (a).

 $(b) \Rightarrow (a)$ This is clear.

Theorem 2.8. Let M be a faithful multiplication R-module. Then $\mathfrak{P}_I M$ \mathfrak{P}_{IM} for each ideal I of R. The reverse inclusion holds when M is a finitely generated R-module.

Proof. Let I be an ideal of R and X be a minimal prime submodule of M such that $IM \subseteq X$. Then $I \subseteq (X :_R M)$. Since, by [\[14,](#page-7-9) Proposition 1.5], $(X :_R M)$ is a minimal prime ideal of R, $\mathfrak{P}_I \subseteq (X :_R M)$. Thus $\mathfrak{P}_I M \subseteq (X :_R M)M \subseteq$ X. Hence, $\mathfrak{P}_I M \subseteq \mathfrak{P}_{IM}$ for each ideal I of R. For the converse, let $\mathfrak{P}_I = \cap \mathfrak{p}_i$, where $\mathfrak{p}_i \in Min^p(R), I \subseteq \mathfrak{p}_i$, where $Min^p(R)$ is the set of all minimal prime ideals of R. As M is a faithful multiplication R-module, by using $[8,$ Theorem 1.6],

$$
IM\subseteq \mathfrak{P}_I M=(\bigcap \mathfrak{p}_i)M=\bigcap \mathfrak{p}_iM=\bigcap_{\mathfrak{p}_iM\neq M}\mathfrak{p}_iM.
$$

This implies that $\mathfrak{P}_{IM} \subseteq \mathfrak{P}_{I}M$ since M is finitely generated, so by using [\[8,](#page-7-10) Page 762, $\mathfrak{p}_i M \neq M$ is a minimal prime submodule of M.

3. Quasi z° -submodules

Definition 3.1. We say that a proper submodule N of an R -module M is a quasi z°-submodule of M if $\mathfrak{P}_{aM} \subseteq N$ for all $a \in (N :_R M)$.

Remark 3.2. Let M be an R-module. If N is a quasi z° -submodule of M, then for each $a \in (N :_R M)$ we have $\mathfrak{P}_{aM} \neq M$, i.e., aM contained in at least a minimal prime submodule of M . Clearly, every minimal prime submodule of M is a quasi z° -submodule of M. Also, the family of quasi z° -submodules of M is closed under intersection. Therefore, if $\mathfrak{P}_0 \neq M$, then \mathfrak{P}_0 is a quasi z° -submodule of M and it is contained in every quasi z° -submodule of M.

Example 3.3. Let K be a field and let $R = K[[x, y]]$, where x, y are indeterminates. Put $P = (x, y)$. Then $(Py :_R P) = (y)$. Put $P_1 = P/(y)$, $R_1 = R/(y)$, and $M = P/Py$. Then by [\[12,](#page-7-11) Example 2.7], $P₁M$ is a minimal prime submodule of the R_1 -module M and so, P_1M is a quasi z° -submodule of M as an R_1 -module.

Quasi z° -submodules of reduced multiplication modules – JMMR Vol. 14, No. 1 (2025) 411

We give the following easy results without proofs.

Proposition 3.4. Let N be a submodule of a cyclic R -module M . Then N is a z° -submodule of M if and only if N is a quasi z° -submodule of M. In particular, an ideal I of the ring R is a z° -ideal if and only if I is a quasi z° -ideal of R.

Lemma 3.5. Let M be an R-module. A submodule N of M is a quasi z° submodule if and only if $N = \sum_{a \in (N:_{R}M)} \mathfrak{P}_{aM}$.

Proposition 3.6. Let N be a proper submodule of an R-module M . Then N as an R-submodule is a quasi z° -submodule if and only if as an $R/Ann_R(M)$ submodule is a quasi z° -submodule.

Lemma 3.7. Let M be a faithful multiplication R -module. If N is a quasi z° -submodule M, then $(N :_{R} M)$ is a z° -ideal of R. The converse holds when M is a finitely generated R-module.

Proof. This follows from Theorem [2.8.](#page-3-0)

$$
\qquad \qquad \Box
$$

Theorem 3.8. Let M be a faithful multiplication R-module. Then we have the following.

- (a) Let M be a finitely generated R-module and I be a z° -ideal of R. Then IM is a quasi z° -submodule of M.
- (b) Let R be a reduced ring and N be a quasi z° -submodule of an R-module M. Then $(N:_{R} (K:_{R} M)M)$ is a z° -ideal of R for each submodule K of M. In particular, if $\mathfrak{P}_0 = 0$, then $Ann_R((K:_{R} M)M)$ is a z° -ideal of R for each submodule K of M.
- (c) Let R be a reduced ring and N be a quasi z° -submodule of M. Then $(N:_{R} K)$ is a z°-ideal of R for each submodule K of M. In particular, if $\mathfrak{P}_0 = 0$, then $Ann_R(K)$ is a z^o-ideal of R for each submodule K of M.

Proof. (a) By [\[19,](#page-8-4) Theorem 10], $I = (IM :_R M)$. Now, the result follows from Lemma [3.7.](#page-4-0)

(b) As N is a quasi z° -submodule, $(N :_{R} M)$ is a z° -ideal of R by Lemma [3.7.](#page-4-0) Let K be a submodule of M. Then by [\[4,](#page-7-1) Examples of z° -ideals], $((N :_R)$ M) :R $(K:_{R} M)$ is a z^o-ideal of R. Now, $(N:_{R} (K:_{R} M)M) = ((N:_{R}$ $M):_R (K:_{R} M)$ implies that $(N:_{R} (K:_{R} M)M)$ is a z°-ideal of R. Now, the last assertion follows from the fact that \mathfrak{P}_0 is a quasi z° -submodule of M by Remark [3.2.](#page-3-1)

(c) As M is a multiplication R-module, $K = (K :_R M)M$. Now, the result follows from part (b)

Let M be an R-module. The set of torsion elements of M with respect to R is the set $T_0(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in R\}.$

Theorem 3.9. Let M be a faithful reduced multiplication R-module, $a, b \in M$, and $b \in Ann_R(aM)$. If $Ann(aM)M = \mathfrak{P}_{bM}$, then $(a + b)M \nsubseteq T_0(M)$. The

converse holds when $Ann_R(a)M = Ann_R(aM)M$ is a quasi z° -submodule of M .

Proof. First note that $T_0(M) = \bigcup_{P \in Min^p(M)} P$ by [\[10,](#page-7-8) Corollary 2.9]. Now, let $Ann(aM)M = \mathfrak{P}_{bM}$ and $(a + b)M$ belong to a minimal prime submodule P of M and seek a contradiction. If $a \in (P :_R M)$, then $b \in (P :_R M)$ implies that $\mathfrak{P}_{bM} \subseteq P$, i.e., $\mathfrak{P}_{bM} = Ann_R(aM)M \subseteq P$, which is a contradiction by Theorem [2.3.](#page-1-1) Now, if $a \notin (P :_R M)$, then we must have $b \notin (P :_R M)$, i.e., $Ann(aM)M = \mathfrak{P}_{bM} \nsubseteq P$, which is impossible by Theorem [2.3.](#page-1-1) Conversely, if $(a + b)M \nsubseteq T_0(M)$, we have to show that $Ann(aM)M \subseteq \mathfrak{P}_{bM}$. Let P be a minimal prime submodule with $b \in (P :_R M)$. Then $a + b \notin (P :_R M)$ implies that $a \notin (P :_R M)$, i.e., $Ann(aM)M \subseteq P$. Hence $Ann(aM)M \subseteq \mathfrak{P}_{bM}$. The reverse inclusion follows from the fact that $Ann_R(aM)M$ is a quasi z° submodule of M .

Let M be an R-module. The set of zero divisors of R on M is the set $Zd_R(M) = \{r \in R : rm = 0 \text{ for some nonzero } m \in M\}.$

Proposition 3.10. Let M be a faithful multiplication R-module. If N is a quasi z°-submodule of M, then $(N:_{R} M) \subseteq Zd_{R}(M)$.

Proof. By [\[1,](#page-7-12) Lemma 2.1], $Zd_R(R) = Zd_R(M)$. Now, the result follows from the fact that $(N:_{R} M)$ is a z^o-ideal of R by Lemma [3.7.](#page-4-0)

Theorem 3.11. Let M be a faithful reduced multiplication R-module. Then the following are equivalent:

- (a) N is a quasi z° -submodule of M;
- (b) For each $a \in (N :_R M)$ and submodule K of M, $\mathfrak{P}_{aM} = \mathfrak{P}_K$ implies that $K \subseteq N$;
- (c) For each $a \in (N :_R M)$ and submodule K of M, $V(aM) = V(K)$ implies that $K \subseteq N$;
- (d) For each $a \in R$, we have $aM \subseteq N$ implies that $(0 :_M Ann_R(aM)) \subseteq N$;

(e) For $a, b \in R$, $Ann_R(aM) = Ann_R(bM)$ and $aM \subseteq N$ imply that $bM \subseteq N$;

(f) For $a, b \in R$, $Ann_R(aM) \subseteq Ann_R(bM)$ and $aM \subseteq N$ imply that $bM \subseteq N$.

Proof. (a) \Rightarrow (b) Let $a \in (N :_{R} M)$ and K be a submodule of M such that $\mathfrak{P}_{aM} = \mathfrak{P}_K$. By assumption, $\mathfrak{P}_{aM} \subseteq N$. Thus $K \subseteq \mathfrak{P}_K \subseteq N$.

 $(b) \Rightarrow (c)$ Let $a \in (N :_R M)$ and K be a submodule of M such that $V(aM) = V(K)$. Then $\mathfrak{P}_{aM} = \mathfrak{P}_K$. Thus, by part (b), $K \subseteq N$.

 $(c) \Rightarrow (d)$ Let $aM \subseteq N$. Then $V(aM) = V((0 :_M Ann_R(aM))$ by Theorem [2.5.](#page-2-0) Thus, by part (c), $(0:_{M} Ann_{R}(aM)) \subseteq N$.

 $(d) \Rightarrow (e)$ Let $a, b \in R$, $Ann_R(aM) = Ann_R(bM)$ and $aM \subseteq N$. Then $(0:_{M} Ann_{R}(aM)) = (0:_{M} Ann_{R}(bM)).$ By part (d), $(0:_{M} Ann_{R}(aM)) \subseteq N$. Thus $bM \subseteq (0:_{M} Ann_{R}(bM)) \subseteq N$.

 $(e) \Rightarrow (f)$ By Theorem [2.7.](#page-3-2)

 $(f) \Rightarrow (a)$ Let $aM \subseteq N$. By Corollary [2.6,](#page-2-1) $(0 :_M Ann_R(aM)) = \mathfrak{P}_{aM}$. Let $x \in (0 :_M Ann_R(aM))$. Then $Ann_R(aM) \subseteq Ann_R(x)$. As M is a multiplication R-module, $Rx = JM$ for some ideal J or R. Let $b \in J$. Then $Ann_R(JM) \subseteq Ann_R(bM)$. Therefore, $Ann_R(aM) \subseteq Ann_R(bM)$. Thus by part (f), $bM \subseteq N$, so $Rx = JM \subseteq N$. This implies that $\mathfrak{P}_{aM} = (0 :_M)$ $Ann_R(aM)) \subseteq N.$

An R-module M is said to be a co-multiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$, equivalently, for each submodule N of M, we have $N = (0 :_M Ann_R(N))$ [\[2\]](#page-7-13).

Corollary 3.12. Every proper submodule of a faithful reduced multiplication and co-multiplication R -module is a quasi z° -submodule.

Proof. As M is a co-multiplication R-module, for each $a \in M$ we have $aM =$ $(0:_{M} Ann_{R}(aM))$. Now, the result follows from Theorem [2.5](#page-2-0) $((d) \Rightarrow (a))$. \square

Theorem 3.13. Let M be a faithful reduced multiplication R-module and N be a quasi z° -submodule of M. Then every minimal prime submodule over N is a prime quasi z° -submodule of M.

Proof. Let P be a minimal prime submodule over N. Assume that $Ann(aM) \subseteq$ Ann(bM), where $a \in (P :_R M)$ and $b \in R$. Since P/N is a minimal prime submodule of M/N , by Lemma [2.1](#page-1-0) (b), there exists $c \in Ann_R(a(M/N)) \setminus$ $(P/N :_{R} M/N)$. Thus $ca \in (N :_{R} M)$ and $c \notin (P :_{R} M)$. Now, we have $Ann(caM) \subseteq Ann(cbM)$. As N is a quasi z°-submodule of M, we get that $cb \in (N :_R M) \subseteq (P :_R M)$. Since $c \notin (P :_R M)$ and P is a prime submodule, $b \in (P :_R M)$, as needed.

Corollary 3.14. If $f : M \to M/N$ is the natural epimorphism, where M is a faithful reduced multiplication R-module and N is a quasi z° -submodule of M, then every quasi z° -submodule of M/N contracts to a quasi z° -submodule of M.

Corollary 3.15. Let M be a faithful reduced multiplication R -module. Then we have the following.

- (a) Every maximal quasi z° -submodule is a prime quasi z° -submodule.
- (b) If P is a prime submodule of M, then either P is a quasi z° -submodule or contains a maximal quasi z° -submodule which is a prime quasi z° submodule.

Theorem 3.16. Let M be a faithful multiplication R-module. Then the following are equivalent:

- (a) M is a reduced module, i.e., R is a reduced ring;
- (b) The submodule 0 is a quasi z° -submodule of M.

Proof. (a) \Rightarrow (b) Let $a \in Ann_R(M)$. Then $(0:_M Ann_R(aM)) = 0$. Thus the result follows from Theorem [3.11](#page-5-0) $(d) \Rightarrow (a)$.

414 F. Farshadifar

 $(b) \Rightarrow (a)$ Let $a \in R$ such that $(Ra)^2 = 0$. It is clear that $\mathfrak{P}_{aM} = \mathfrak{P}_{(a^2M)}$. Thus $\mathfrak{P}_{aM} = \mathfrak{P}_{a^2M} = \mathfrak{P}_0$. Since the submodule 0 is a quasi z° -submodule, $aM = 0$. Now, as M is faithful, $a = 0$.

4. Data Availability Statement

Not applicable.

5. Aknowledgement

The author would like to thank the referees for careful reading of the manuscript and making valuable suggestions which improved this paper.

6. Ethical considerations

The author avoided from data fabrication and falsification.

7. Funding

No funding received.

8. Conflict of interest

The author declare no conflict of interest.

References

- [1] Ansari-Toroghy, H., Farshadifar, F., and Mahboobi-Abkenar, F. (2018). On the idealbased zero-divisor graphs. Int. Electron. J. Algebra, 23, 115-130.
- [2] Ansari-Toroghy, H. and Farshadifar, F. (2019). Survey on comultiplication modules. Surv. Math. Appl., 14, 61-108.
- [3] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (1999). On z^0 -ideals in $C(X)$. Fund. Math., 160 (1), 15-25.
- [4] Azarpanah, F., Karamzadeh, O. A. S. and Rezai Aliabad, A. (2000). On ideals consisting entirely of zero divisors. Comm. Algebra, 28 (2), 1061-1073.
- [5] Barnard, A. (1981). Multiplication modules. J. Algebra, 71 (1), 174-178.
- [6] Cissé, M. D. and Sow, D. (2017). On generalizations of essential and small submodules. Southeast Asian Bull. Math., 41 (3), 369-383.
- [7] Dauns, J. (1978). Prime modules. J. Reine Angew. Math., 298, 156-181.
- [8] El-Bast, Z. A. and Smith, P. F. (1988). *Multiplication modules*. Comm. Algebra, 16 (4), 755-779.
- [9] Farshadifar, F. A generalization of z-ideals. submitted.
- [10] Farshadifar, F. z° -submodules of a reduced multiplication module. submitted.
- [11] Feller, E. H. and Swokowski, E. W. (1965). Prime modules. Canadian J. Math., 17, 1041-1052.
- [12] Gaur, A. and Maloo, A. K. (2008). *Minimal prime submodules*. Int. J. Algebra 2 (20), 953-956.
- [13] Gillman, L. and Jerison, M. (1960). Rings of continuous functions. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York.
- [14] Koohy, H. (2008). On finiteness of multiplication modules. Acta Math. Hungar., 118 $(1-2), 1-7.$

Quasi z° -submodules of reduced multiplication modules – JMMR Vol. 14, No. 1 (2025) 415

- [15] Mason, G. (1973). z-ideals and prime idealsz-ideals and prime ideals. J. Algebra, 26, 280-297.
- [16] McCasland, R. L. and Moore, M. E. (1986). On radicals of submodules of finitely generated modules. Canad. Math. Bull., 29 (1), 37-39.
- [17] Namdari, M. (2023). The story of rings of continuous functions in Ahvaz: from $C(X)$ to $C_c(X)$. J. Iran. Math. Soc. 4 (2), 149-182.
- [18] Samei, K. (2011). Reduced multiplication modules. Proc. Indian Acad. Sci. Math. Sci., 121 (2), 121-132.
- [19] Smith, P. F. (1988). Some remarks on multiplication modules. Arch. Math. (Basel), 50 (3), 223-235.

Faranak Farshadifar Orcid number: 0000-0001-7600-994X Department of Mathematics Education Farhangian University

P.O. Box 14665-889, Tehran, Iran

Email address: f.farshadifar@cfu.ac.ir