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Abstract. The purpose of this paper is to define and investigate the

notion of quasi z◦-submodules of modules over a commutative ring as an
extension of z◦-ideals of commutative rings. Also, we obtain some related

results when M is a reduced multiplication R-module.
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1. Introduction

Throughout this paper, R will denote a commutative ring with identity. An
R-module M is said to be a multiplication module if for every submodule N of
M there exists an ideal I of R such that N = IM [5].

A proper ideal I of R is called a z-ideal whenever any two elements of R are
contained in the same set of maximal ideals and I contains one of them, then
it also contains the other one [15]. For each a ∈ R, let Pa, be the intersection
of all minimal prime ideals of R containing a. A proper ideal I of R is called
a z◦-ideal if for each a ∈ I we have Pa ⊆ I [4]. In fact, the concepts of z-
ideals and z◦-ideals play very important roles in the research on the rings of
continuous real-valued functions (or, more generally reduced rings) and related
subjects, for more information, we refer the reader to [3, 13,17].

For a submodule N of an R-module M , let M(N) be the set of maximal
submodules of M containing N and Max(M) be the set of all maximal sub-
modules of M . The intersection of all maximal submodules of M containing
N is said to be the Jacobson radical of N and denote by RadN (M) [6]. In
case N is not contained in any maximal submodule, the Jacobson radical of N
is defined to be M . We denote the Jacobson radical of zero submodule of M
by RadM (M). A proper submodule N of M is said to be a z-submodule if for
every x, y ∈M , M(x) =M(y) 6= ∅ and x ∈ N imply y ∈ N [9].

Let M be an R-module. A proper submodule P of M is said to be prime if
for any r ∈ R and m ∈ M with rm ∈ P , either m ∈ P or r ∈ (P :R M). In
this case, (P :R M) is a prime ideal of R [7,11]. An R-module M is said to be
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reduced if the intersection of all prime submodules of M is equal to zero [18].
The intersection of all prime submodules of M containing a submodule N of
M is said to be the prime radical of N and denote by radNM . In case N is
not contained in any prime submodule, the prime radical of N is defined to be
M [16]. A prime submodule P of M is a minimal prime submodule over N if
P is a minimal element of the set of all prime submodules of M that contain
N . A minimal prime submodule of M means a minimal prime submodule over
the 0 submodule of M . The set of all minimal prime submodules of M will be
denoted by Minp(M). The intersection of all minimal prime submodules of M
containing a submodule K of M is denote by PK . In case K is not contained
in any minimal prime submodule of M , PK is defined to be M . If N is a
submodule of M , define V (N) = {P ∈Minp(M) : N ⊆ P}.

In [10], the notion of z◦-submodules of an R-module M as an extension of
z◦-ideals was introduced and some of their properties when M is a reduced
multiplication R-module are dealt with. A proper submodule N of an R-
module M is said to be a z◦-submodule of M if Px ⊆ N for all x ∈ N [10]. In
this paper, we introduce the notion of quasi z◦-submodules of an R-module M
as another generalization of z◦-ideals. Also, we investigate some related results
when M is a reduced multiplication R-module.

2. Reduced multiplication modules

Lemma 2.1. Let M be a reduced multiplication R-module and P be a minimal
prime submodule of M . If a ∈ (P :R M), then

AnnR/AnnR(M)(a + AnnR(M)) 6⊆ (P :R M)/AnnR(M).

Proof. By [14, Proposition 1.5], we have (P :R M) is a minimal prime ideal of
R over AnnR(M). As M is a reduced multiplication R-module, R/AnnR(M)
is a reduced ring by [18]. Let a + AnnR(M) ∈ (P :R M)/AnnR(M). Since
R/AnnR(M) is a reduced ring, (a + AnnR(M))2 6= 0. Hence a + AnnR(M) 6∈
AnnR/AnnR(M)(a + AnnR(M)). Therefore, AnnR/AnnR(M)(a + AnnR(M)) 6⊆
(P :R M)/AnnR(M). �

Remark 2.2. [10, Remark ] Let M be a multiplication R-module and Ω be a
subset of Minp(M). Set PΩ = ∩{P : P ∈ Ω}. A subset Ω of Minp(M) is said
to be closed if Ω = V (PΩ). With this notion of closed set, one can see that the
space of minimal prime submodules of M becomes a topological space.

Theorem 2.3. Let M be a faithful reduced multiplication R-module. Then
for each a ∈ R, we have V (AnnR(a)M) = Minp(M) \ V (aM). In particular,
V (AnnR(a)M) and V (aM) are disjoint open-and-closed sets of Minp(M).

Proof. If P ∈ V (aM), then aM ⊆ P , so a ∈ (P :R M). Now, since AnnR(M) =
0, we have AnnR(a) 6⊆ (P :R M) by Lemma 2.1. It follows that AnnR(a)M 6⊆
P . Thus V (AnnR(a)M) ∩ V (aM) = ∅. On the other hand, if P ∈Minp(M) \
V (aM), then for any b ∈ AnnR(a), we have abM = 0 ⊆ P . Since a 6∈
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(P :R M) and P is prime, bM ⊆ P . Therefore, P ∈ V (AnnR(a)M). Thus
V (AnnR(a)M) = Minp(M) \ V (aM). Both sets V (AnnR(a)M) and V (aM)
are closed, and since they are complementary, they are also open. �

Corollary 2.4. Let M be a faithful reduced multiplication R-module. Then
Minp(M) is a Hausdorff space with a base of open-and-closed sets.

Proof. Let P 6= Q ∈ Minp(M). If (P :R M) ⊆ (Q :R M), then P = (P :R
M)M ⊆ (Q :R M)M = Q because M is a multiplication R-module. This is a
contradiction because P,Q ∈ Minp(M) and P 6= Q. So, we can assume that
a ∈ (P :R M) \ (Q :R M). Then V (aM) and V (AnnR(a)M) are disjoint open

sets containing P and Ṕ , respectively. Hence Minp(M) is a Hausdorff space.
In fact, the family {V (aM)} is a base for the closed sets. Thus V (AnnR(a)M)
is a base for the open sets. �

Theorem 2.5. Let M be a reduced multiplication R-module. Then we have
the following.

(a) If M is a faithful R-module, then V (aM) = V ((0 :M AnnR(aM))) for
each a ∈ R.

(b) (0 :M AnnR(IJM)) = (0 :M AnnR(IM))∩(0 :M AnnR(JM)) for each
ideals I, J of R.

Proof. (a) Let M be a faithful R-module and a ∈ R. Then AnnR(aM) =
AnnR(a). As aM ⊆ (0 :M AnnR(aM)), we have V ((0 :M AnnR(aM))) ⊆
V (aM). Now, let P be a minimal prime submodule of M containing aM .
Then, there exists b ∈ AnnR(aM) \ (P :R M) by Lemma 2.1. Then, for any
y ∈ (0 :M AnnR(aM)), we have by = 0 ∈ P . Hence y ∈ P . So, (0 :M
AnnR(aM)) ⊆ P , as needed.

(b) Let I, J be ideals of R. As AnnR(IM) ⊆ AnnR(IJM) and AnnR(JM) ⊆
AnnR(IJM), we have

(0 :M AnnR(IJM)) ⊆ (0 :M AnnR(JM)) ∩ (0 :M AnnR(IM)).

Now, suppose that z ∈ (0 :M AnnR(JM)) ∩ (0 :M AnnR(IM)). Let t ∈
AnnR(IJM). Then Jt ⊆ AnnR(IM), so tJz = 0. Since M is a multiplication
module, tzR = AM for some ideal A of R. Hence, A ⊆ AnnR(JM), so
Az = 0. Thus t(Rz)2 = 0. It follows that (Rtz)2 = 0. This means that
(Rtz :R M)2M = 0, so (Rtz :R M)2 ⊆ AnnR(M). It follows that ((Rtz :R
M) + AnnR(M))2 = 0 ∈ R/AnnR(M). As M is a reduced multiplication
R-module, R/AnnR(M) is a reduced ring by [18]. Therefore, (Rtz :R M) +
AnnR(M) = 0R/AnnR(M). This implies that tz = 0. Hence, zAnnR(IJM) = 0.
It follows that z ∈ (0 :M AnnR(IJM)). �

Corollary 2.6. Let M be a faithful reduced multiplication R-module. Then
for each a ∈ R, (0 :M AnnR(aM)) = PaM .

Proof. Since, by [10, Theorem 2.11], (0 :M I) = P(0:MI) for each ideal I of R.
The result follows from Theorem 2.5 (a). �
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Theorem 2.7. Let M be a reduced multiplication R-module. Then the follow-
ing are equivalent:

(a) For a, b ∈ R, AnnR(aM) = AnnR(bM) and aM ⊆ N imply that
bM ⊆ N ;

(b) For a, b ∈ R, AnnR(aM) ⊆ AnnR(bM) and aM ⊆ N imply that
bM ⊆ N .

Proof. (a) ⇒ (b) Let for a, b ∈ R, AnnR(aM) ⊆ AnnR(bM) and aM ⊆ N .
Then (0 :M AnnR(bM)) ⊆ (0 :M AnnR(aM)). Hence (0 :M AnnR(abM)) =
(0 :M AnnR(bM)) by Theorem 2.5 (b). It follows that AnnR(abM) = AnnR(bM).
Now, as abM ⊆ N we have bM ⊆ N by part (a).

(b)⇒ (a) This is clear. �

Theorem 2.8. Let M be a faithful multiplication R-module. Then PIM ⊆
PIM for each ideal I of R. The reverse inclusion holds when M is a finitely
generated R-module.

Proof. Let I be an ideal of R and X be a minimal prime submodule of M such
that IM ⊆ X. Then I ⊆ (X :R M). Since, by [14, Proposition 1.5], (X :R M)
is a minimal prime ideal of R, PI ⊆ (X :R M). Thus PIM ⊆ (X :R M)M ⊆
X. Hence, PIM ⊆ PIM for each ideal I of R. For the converse, let PI = ∩pi,
where pi ∈ Minp(R), I ⊆ pi, where Minp(R) is the set of all minimal prime
ideals of R. As M is a faithful multiplication R-module, by using [8, Theorem
1.6],

IM ⊆ PIM = (
⋂

pi)M =
⋂

piM =
⋂

piM 6=M

piM.

This implies that PIM ⊆ PIM since M is finitely generated, so by using [8,
Page 762], piM 6= M is a minimal prime submodule of M . �

3. Quasi z◦-submodules

Definition 3.1. We say that a proper submodule N of an R-module M is a
quasi z◦-submodule of M if PaM ⊆ N for all a ∈ (N :R M).

Remark 3.2. Let M be an R-module. If N is a quasi z◦-submodule of M ,
then for each a ∈ (N :R M) we have PaM 6= M , i.e., aM contained in at least
a minimal prime submodule of M . Clearly, every minimal prime submodule
of M is a quasi z◦-submodule of M . Also, the family of quasi z◦-submodules
of M is closed under intersection. Therefore, if P0 6= M , then P0 is a quasi
z◦-submodule of M and it is contained in every quasi z◦-submodule of M .

Example 3.3. Let K be a field and let R = K[[x, y]], where x, y are indeter-
minates. Put P = (x, y). Then (Py :R P ) = (y). Put P1 = P/(y), R1 = R/(y),
and M = P/Py. Then by [12, Example 2.7], P1M is a minimal prime sub-
module of the R1-module M and so, P1M is a quasi z◦-submodule of M as an
R1-module.
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We give the following easy results without proofs.

Proposition 3.4. Let N be a submodule of a cyclic R-module M . Then N
is a z◦-submodule of M if and only if N is a quasi z◦-submodule of M . In
particular, an ideal I of the ring R is a z◦-ideal if and only if I is a quasi
z◦-ideal of R.

Lemma 3.5. Let M be an R-module. A submodule N of M is a quasi z◦-
submodule if and only if N =

∑
a∈(N :RM) PaM .

Proposition 3.6. Let N be a proper submodule of an R-module M . Then N
as an R-submodule is a quasi z◦-submodule if and only if as an R/AnnR(M)-
submodule is a quasi z◦-submodule.

Lemma 3.7. Let M be a faithful multiplication R-module. If N is a quasi
z◦-submodule M , then (N :R M) is a z◦-ideal of R. The converse holds when
M is a finitely generated R-module.

Proof. This follows from Theorem 2.8. �

Theorem 3.8. Let M be a faithful multiplication R-module. Then we have
the following.
(a) Let M be a finitely generated R-module and I be a z◦-ideal of R. Then

IM is a quasi z◦-submodule of M .
(b) Let R be a reduced ring and N be a quasi z◦-submodule of an R-module

M . Then (N :R (K :R M)M) is a z◦-ideal of R for each submodule K of
M . In particular, if P0 = 0, then AnnR((K :R M)M) is a z◦-ideal of R
for each submodule K of M .

(c) Let R be a reduced ring and N be a quasi z◦-submodule of M . Then
(N :R K) is a z◦-ideal of R for each submodule K of M . In particular, if
P0 = 0, then AnnR(K) is a z◦-ideal of R for each submodule K of M .

Proof. (a) By [19, Theorem 10], I = (IM :R M). Now, the result follows from
Lemma 3.7.

(b) As N is a quasi z◦-submodule, (N :R M) is a z◦-ideal of R by Lemma
3.7. Let K be a submodule of M . Then by [4, Examples of z◦-ideals], ((N :R
M) :R (K :R M)) is a z◦-ideal of R. Now, (N :R (K :R M)M) = ((N :R
M) :R (K :R M)) implies that (N :R (K :R M)M) is a z◦-ideal of R. Now, the
last assertion follows from the fact that P0 is a quasi z◦-submodule of M by
Remark 3.2.

(c) As M is a multiplication R-module, K = (K :R M)M . Now, the result
follows from part (b) �

Let M be an R-module. The set of torsion elements of M with respect to R
is the set T0(M) = {m ∈M : rm = 0 for some 0 6= r ∈ R}.

Theorem 3.9. Let M be a faithful reduced multiplication R-module, a, b ∈M ,
and b ∈ AnnR(aM). If Ann(aM)M = PbM , then (a + b)M 6⊆ T0(M). The
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converse holds when AnnR(a)M = AnnR(aM)M is a quasi z◦-submodule of
M .

Proof. First note that T0(M) = ∪P∈Minp(M)P by [10, Corollary 2.9]. Now, let
Ann(aM)M = PbM and (a + b)M belong to a minimal prime submodule P
of M and seek a contradiction. If a ∈ (P :R M), then b ∈ (P :R M) implies
that PbM ⊆ P , i.e., PbM = AnnR(aM)M ⊆ P , which is a contradiction by
Theorem 2.3. Now, if a 6∈ (P :R M), then we must have b 6∈ (P :R M), i.e.,
Ann(aM)M = PbM 6⊆ P , which is impossible by Theorem 2.3. Conversely,
if (a + b)M 6⊆ T0(M), we have to show that Ann(aM)M ⊆ PbM . Let P be
a minima1 prime submodule with b ∈ (P :R M). Then a + b 6∈ (P :R M)
implies that a 6∈ (P :R M), i.e., Ann(aM)M ⊆ P . Hence Ann(aM)M ⊆ PbM .
The reverse inclusion follows from the fact that AnnR(aM)M is a quasi z◦-
submodule of M . �

Let M be an R-module. The set of zero divisors of R on M is the set
ZdR(M) = {r ∈ R : rm = 0 for some nonzero m ∈M}.

Proposition 3.10. Let M be a faithful multiplication R-module. If N is a
quasi z◦-submodule of M , then (N :R M) ⊆ ZdR(M).

Proof. By [1, Lemma 2.1], ZdR(R) = ZdR(M). Now, the result follows from
the fact that (N :R M) is a z◦-ideal of R by Lemma 3.7. �

Theorem 3.11. Let M be a faithful reduced multiplication R-module. Then
the following are equivalent:
(a) N is a quasi z◦-submodule of M ;
(b) For each a ∈ (N :R M) and submodule K of M , PaM = PK implies that

K ⊆ N ;
(c) For each a ∈ (N :R M) and submodule K of M , V (aM) = V (K) implies

that K ⊆ N ;
(d) For each a ∈ R, we have aM ⊆ N implies that (0 :M AnnR(aM)) ⊆ N ;
(e) For a, b ∈ R, AnnR(aM) = AnnR(bM) and aM ⊆ N imply that bM ⊆ N ;
(f) For a, b ∈ R, AnnR(aM) ⊆ AnnR(bM) and aM ⊆ N imply that bM ⊆ N .

Proof. (a) ⇒ (b) Let a ∈ (N :R M) and K be a submodule of M such that
PaM = PK . By assumption, PaM ⊆ N . Thus K ⊆ PK ⊆ N .

(b) ⇒ (c) Let a ∈ (N :R M) and K be a submodule of M such that
V (aM) = V (K). Then PaM = PK . Thus, by part (b), K ⊆ N .

(c)⇒ (d) Let aM ⊆ N . Then V (aM) = V ((0 :M AnnR(aM)) by Theorem
2.5. Thus, by part (c), (0 :M AnnR(aM)) ⊆ N .

(d) ⇒ (e) Let a, b ∈ R, AnnR(aM) = AnnR(bM) and aM ⊆ N . Then
(0 :M AnnR(aM)) = (0 :M AnnR(bM)). By part (d), (0 :M AnnR(aM)) ⊆ N .
Thus bM ⊆ (0 :M AnnR(bM)) ⊆ N .

(e)⇒ (f) By Theorem 2.7.
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(f) ⇒ (a) Let aM ⊆ N . By Corollary 2.6, (0 :M AnnR(aM)) = PaM .
Let x ∈ (0 :M AnnR(aM)). Then AnnR(aM) ⊆ AnnR(x). As M is a mul-
tiplication R-module, Rx = JM for some ideal J or R. Let b ∈ J . Then
AnnR(JM) ⊆ AnnR(bM). Therefore, AnnR(aM) ⊆ AnnR(bM). Thus by
part (f), bM ⊆ N , so Rx = JM ⊆ N . This implies that PaM = (0 :M
AnnR(aM)) ⊆ N . �

An R-module M is said to be a co-multiplication module if for every submod-
ule N of M there exists an ideal I of R such that N = (0 :M I), equivalently,
for each submodule N of M , we have N = (0 :M AnnR(N)) [2].

Corollary 3.12. Every proper submodule of a faithful reduced multiplication
and co-multiplication R-module is a quasi z◦-submodule.

Proof. As M is a co-multiplication R-module, for each a ∈ M we have aM =
(0 :M AnnR(aM)). Now, the result follows from Theorem 2.5 ((d)⇒ (a)). �

Theorem 3.13. Let M be a faithful reduced multiplication R-module and N
be a quasi z◦-submodule of M . Then every minimal prime submodule over N
is a prime quasi z◦-submodule of M .

Proof. Let P be a minimal prime submodule over N . Assume that Ann(aM) ⊆
Ann(bM), where a ∈ (P :R M) and b ∈ R. Since P/N is a minimal prime
submodule of M/N , by Lemma 2.1 (b), there exists c ∈ AnnR(a(M/N)) \
(P/N :R M/N). Thus ca ∈ (N :R M) and c 6∈ (P :R M). Now, we have
Ann(caM) ⊆ Ann(cbM). As N is a quasi z◦-submodule of M , we get that
cb ∈ (N :R M) ⊆ (P :R M). Since c 6∈ (P :R M) and P is a prime submodule,
b ∈ (P :R M), as needed. �

Corollary 3.14. If f : M → M/N is the natural epimorphism, where M is
a faithful reduced multiplication R-module and N is a quasi z◦-submodule of
M , then every quasi z◦-submodule of M/N contracts to a quasi z◦-submodule
of M .

Corollary 3.15. Let M be a faithful reduced multiplication R-module. Then
we have the following.

(a) Every maximal quasi z◦-submodule is a prime quasi z◦-submodule.
(b) If P is a prime submodule of M , then either P is a quasi z◦-submodule

or contains a maximal quasi z◦-submodule which is a prime quasi z◦-
submodule.

Theorem 3.16. Let M be a faithful multiplication R-module. Then the fol-
lowing are equivalent:

(a) M is a reduced module, i.e., R is a reduced ring;
(b) The submodule 0 is a quasi z◦-submodule of M .

Proof. (a) ⇒ (b) Let a ∈ AnnR(M). Then (0 :M AnnR(aM)) = 0. Thus the
result follows from Theorem 3.11 (d)⇒ (a).
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(b) ⇒ (a) Let a ∈ R such that (Ra)2 = 0. It is clear that PaM = P(a2M).
Thus PaM = Pa2M = P0. Since the submodule 0 is a quasi z◦-submodule,
aM = 0. Now, as M is faithful, a = 0. �
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